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Motivation

●Ever growing data
○About 20TB per Google crawl!

●Computing Solutions
○High-end server: 1625.60€/core, 97.66€/GB
○Share-nothing nodes: 299.50€/core, 166.33

€/GB
●Two Paradigms

○Parallel DBMS
○Map/Reduce



Parallel DBMS
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[DeWitt, D. and Gray, J. 1992. ]



Parallel DBMS: Advantages

●Can be column based 
○Example: Vertica

●Local joins possible 
○Partition based on join key

●Can work on compressed data 
○ reduced data transfer

●Flexible query plans
●Supports Declarative languages like SQL



Parallel DBMS - Shortcomings

●Not free of cost
●Not open source
●Cannot scale to thousands of nodes: why?

○Less fault tolerant
○Assumes homogeneous nodes

●Not so easy to achieve high performance
○Needs highly skilled DBA
○Needs high maintenance



Map/Reduce(Hadoop): 
Advantages

●Free of cost
●Open source
●Fault tolerant
●Scales well to thousands of nodes
●Less maintenance
●Flexible query framework



Map/Reduce(Hadoop): 
Shortcomings

●Lack of inbuilt Indexing
●Cannot guarantee local joins
●Performance degradation for SQL like 

queries
○Multiple MR phases
○Each MR phase adds extra cost

●No Flexible query plans
●Data transfer not optimized

 
 

Current Focus

Current Focus

Current Focus



Benchmarks and Schema



Schema

CREATE TABLE Documents (
                                     url VARCHAR
(100) PRIMARY KEY,
                                     contents TEXT 
                                             );

CREATE TABLE Rankings (
                                 pageURL VARCHAR
(100) PRIMARY KEY,
                                 pageRank INT,
                               avgDuration INT 
                                         );



Schema

CREATE TABLE UserVisits (
                                    sourceIP VARCHAR(16),
                                    destURL VARCHAR(100),
                                    visitDate DATE,
                                    adRevenue FLOAT,
                                    userAgent VARCHAR(64),
                                    countryCode VARCHAR(3),
                                    languageCode VARCHAR(6),
                                    searchWord VARCHAR(32),
                                    duration INT 
                                    );



Benchmarks 1&2

●Selection task (Benchmark 1)
○ SELECT pageURL, pageRank FROM Rankings 

WHERE pageRank > X;

●Aggregation task (Benchmark 2)
○ SELECT sourceIP, SUM(adRevenue) FROM 

UserVisits GROUP BY sourceIP;
○ SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue) 

FROM UserVisits GROUP BY SUBSTR(sourceIP, 1, 
7);
 
 



Benchmark 3: Join Task

●SELECT INTO Temp sourceIP, AVG
(pageRank) as avgPageRank, SUM
(adRevenue) as totalRevenue

FROM Rankings AS R, UserVisits AS UV 
WHERE R.pageURL = UV.destURL AND UV.
visitDate BETWEEN Date(‘2000-01-15’) AND Date
(‘2000-01-22’) GROUP BY UV.sourceIP;
●SELECT sourceIP, totalRevenue, avgPageRank
FROM Temp ORDER BY totalRevenue DESC 
LIMIT 1;
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Original (Pavlo) MR Plans
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WHERE pageRank > 10;



Benchmark 2: Phase 1
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Benchmark 3 – Phase 2
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Benchmark 3 – Phase 3
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Improved (Savy) MR Plans



Binary Data

●Eliminates delimiters
●Avoids splitting
●Makes tuples of fixed length
●Helps in indexing
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Improving Hadoop



Improving Hadoop

●Improve Selection (Indexing)
●Improve Join (Co-partitioning)



Indexing

●Data Loading
○ index and load data into DFS

 
●Query Execution

○  index look-up and selection
 
 

●  Implementation on Hadoop



Data Loading

●Partitioning
●Sorting
●Bulk Loading
●HID Splits



Data Loading



Partitioning

Split input data at tuple boundaries



Partitioning

Split input data at tuple boundaries



Partitioning

Split input data at tuple boundaries



Partitioning

Split input data at tuple boundaries



Sorting

Sort each split on the index key



Sorting

Sort each split on the index key



Bulk Loading

Bulk load CSS tree index



HID Split

Construct Header-Index-Data Split



HID Split
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HID Split

Construct Header-Index-Data Split

    Header:    Index end offset
                     Data end offset
                     Start index key
                     End index key  



HID Split

Construct Header-Index-Data Split

    Header:    Index end offset
                     Data end offset
                     Start index key
                     End index key  



Query Execution

● Partitioning
● Split selection
● Index lookup
● Extractor



Query Execution



Partitioning

Read header to get HID boundaries



Partitioning

Read header to get HID boundaries



Partitioning

Read header to get HID boundaries



Partitioning

Read header to get HID boundaries



Split Selection

Discard splits containing out of range index keys



Index Lookup

Find data offsets corresponding to LOW and HIGH keys



Index Lookup

Find data offsets corresponding to LOW and HIGH keys
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Index Lookup

Find data offsets corresponding to LOW and HIGH keys



Index Lookup
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Index Lookup

Find data offsets corresponding to LOW and HIGH keys



Index Lookup

Find data offsets corresponding to LOW and HIGH keys



Index Lookup

Find data offsets corresponding to LOW and HIGH keys



Extractor

Perform selection on data



Extractor

Pass sub-split to Record Reader for processing



Implementation on Hadoop

Loading
● CSS Tree Index
● Indirect index
● Four key types supported - Int, Float, Date, String
● Index stored as byte array
● Reducer to reduce number of files 
● Integral number of HID splits per reducer output

 
Querying 
● Discover HID split boundaries from respective headers
● Read only the selected data from HDFS



Co-Partitioning

● Data loading
● Query execution



Data Loading
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Query Execution
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Query Execution



Indexing on top of Co-partitioning



Indexing on top of Co-partitioning



Indexing on top of Co-partitioning



Indexing on top of Co-partitioning



Indexing on top of Co-partitioning



Indexing on top of Co-partitioning



Indexing on top of Co-partitioning



Experiments



Experimental Setup

●Hadoop 0.19.1
●5 nodes
●Speed?
●RAM?
●Gigabit Ethernet
●Data size

○User Visits: 20GB
○Rankings: 32MB
 
 



Results



Results
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Results



Roadblocks Faced

● Data generation: 
○ 20GB UserVisits, 338MB Rankings in HDFS
○ Took 16 hours for generation
○ Too many OS/library dependencies
○ Poor documentation

● Number of nodes:
○ Allocated 6 nodes
○ Effective (up-and-running) 4 nodes
○ Map/Reduce parallelism not exploited
○ Per-split indexing ideally suited for highly parallel 

execution



Roadblocks Faced

●  Data normalization
○ Schema uses VARCHAR data types 
○ Input data normalized to fixed tuple-sized binaries
○ Byte oriented processing speedup negated by increased 

input size
○ However, facilitates indexing and co-partitioning 

● Low selectivity 
○ Selection task has selectivity close to 1
○ Indexing benefits are sabotaged

●  Incorrect base result
○ Reported join task result was not correct



Roadblocks Faced

● Implementation deviation from the paper
○ Composite key is not really used in join task



Discussion: Loopholes

● Benchmarks are well suited (biased) for databases
● Huge difference in data loading time  
● Queries make heavy use of indexing, sorting data
● Query optimization not done for Map/Reduce
● Fault tolerance not compared

 



Discussion: We can do better!

● Map/Reduce plans can be optimized
● Normalized binary input data can help
● Indexing feasible and performs good
● Co-partitioning feasible and looks promising



Conclusions
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