
Large-Scale Data Analysis:
Bridging the Gap

Alekh Jindal, Yagiz Kargin, Sarath
Kumar, Vinay Setty

Outline

●Motivation: Parallel DBMS vs Map/Reduce
●Schema & Benchmarks Overview
●Original(Pavlo) Map/Reduce Plans
●Improved(SAVY) Design & Implementation
●Improving Hadoop

○ Indexing
○Co-Partitioning

●Experiments
●Conclusion

Motivation

●Ever growing data
○About 20TB per Google crawl!

●Computing Solutions
○High-end server: 1625.60€/core, 97.66€/GB
○Share-nothing nodes: 299.50€/core, 166.33

€/GB
●Two Paradigms

○Parallel DBMS
○Map/Reduce

Parallel DBMS

Data Data Data Data

scan

sort sort sort sort

scan scan scan

Merge

Query

[DeWitt, D. and Gray, J. 1992.]

Parallel DBMS: Advantages

●Can be column based
○Example: Vertica

●Local joins possible
○Partition based on join key

●Can work on compressed data
○ reduced data transfer

●Flexible query plans
●Supports Declarative languages like SQL

Parallel DBMS - Shortcomings

●Not free of cost
●Not open source
●Cannot scale to thousands of nodes: why?

○Less fault tolerant
○Assumes homogeneous nodes

●Not so easy to achieve high performance
○Needs highly skilled DBA
○Needs high maintenance

Map/Reduce(Hadoop):
Advantages

●Free of cost
●Open source
●Fault tolerant
●Scales well to thousands of nodes
●Less maintenance
●Flexible query framework

Map/Reduce(Hadoop):
Shortcomings

●Lack of inbuilt Indexing
●Cannot guarantee local joins
●Performance degradation for SQL like

queries
○Multiple MR phases
○Each MR phase adds extra cost

●No Flexible query plans
●Data transfer not optimized

Current Focus

Current Focus

Current Focus

Benchmarks and Schema

Schema

CREATE TABLE Documents (
 url VARCHAR
(100) PRIMARY KEY,
 contents TEXT
);

CREATE TABLE Rankings (
 pageURL VARCHAR
(100) PRIMARY KEY,
 pageRank INT,
 avgDuration INT
);

Schema

CREATE TABLE UserVisits (
 sourceIP VARCHAR(16),
 destURL VARCHAR(100),
 visitDate DATE,
 adRevenue FLOAT,
 userAgent VARCHAR(64),
 countryCode VARCHAR(3),
 languageCode VARCHAR(6),
 searchWord VARCHAR(32),
 duration INT
);

Benchmarks 1&2

●Selection task (Benchmark 1)
○ SELECT pageURL, pageRank FROM Rankings

WHERE pageRank > X;

●Aggregation task (Benchmark 2)
○ SELECT sourceIP, SUM(adRevenue) FROM

UserVisits GROUP BY sourceIP;
○ SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue)

FROM UserVisits GROUP BY SUBSTR(sourceIP, 1,
7);

Benchmark 3: Join Task

●SELECT INTO Temp sourceIP, AVG
(pageRank) as avgPageRank, SUM
(adRevenue) as totalRevenue

FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL AND UV.
visitDate BETWEEN Date(‘2000-01-15’) AND Date
(‘2000-01-22’) GROUP BY UV.sourceIP;
●SELECT sourceIP, totalRevenue, avgPageRank
FROM Temp ORDER BY totalRevenue DESC
LIMIT 1;

Projection &
Aggregation

Join

selectio
n

Original (Pavlo) MR Plans

Benchmark 1

Data

Data

Data

HDFS

Extra MR job
to merge
results

Map()
PageRank >

10?

Map()
PageRank >

10?

Map()
PageRank >

10?

Mappers

Phase 1

Result

Result

Result

Resul
t

Phase 2

Reduce

Reducer

Identity

Identity

Identity

Mapper
s

 SELECT pageURL, pageRank FROM Rankings
WHERE pageRank > 10;

Benchmark 2: Phase 1

Reduce:
Aggr

Reduce:
Aggr

Reduce
Aggr

Reduce
rs

Dat
a

Dat
a

Dat
a

HDFS

Phase 1

Map:
split

Map:
split

Map:
split

Mapper
s

su
m

su
m

sum

Combiner
s

Inter.
Resu

lt

Inter.
Resu

lt

Inter.
Resu

lt

Result1

Result1

Result1

Benchmark 2: Phase 2

Resul
t

Phase 2

Reduce

Reducer

Identity

Identity

Identity

Mapper
s

Extra MR job
to merge
results

Result1

Result1

Result1

HDFS

rank

rank

ranks

Benchmark 3 – Phase 1

join

join

join

Reduce
rs

HDFS

predicate

predicate

predicate

Mapper
s

Inter.
Resu

lt

Inter.
Resu

lt

Inter.
Resu

lt

Result1

Result1

Result1

Ranking
s

Ranking
s

Ranking
s

User
visits

User
visits

User
visits

Also classifies two
types of records

<Source IP, URL, PageRank,
adReveune>

<Source IP, URL, PageRank,
adReveune>

<Source IP, URL, PageRank,
adReveune>

Also classifies two
types of records

Phase 1

Benchmark 3 – Phase 2

Avg(PR), Sum
(adRevnue)

ReducersHDFS

Identity

Identity

Identity

Mappers

Inter.
Resu

lt

Inter.
Resu

lt

Inter.
Resu

lt

Result1

Result1

Result1

<Source IP, URL, PageRank,
adReveune>

<Source IP, URL, PageRank,
adReveune>

<Source IP, URL, PageRank,
adReveune>

<Source IP, Avg(PR), Max
(Sum(adRevenue))>

Avg(PR), Sum
(adRevnue)

Avg(PR), Sum
(adRevnue)

<Source IP, Avg(PR), Max
(Sum(adRevenue))>

<Source IP, Avg(PR), Max
(Sum(adRevenue))>

Phase 2

Benchmark 3 – Phase 3

Reducer

HDFS

Identity

Identity

Identity

Mapper
s

Inter.
Resu

lt

Inter.
Resu

lt

Inter.
Resu

lt

<Source IP, Avg(PR), Max
(Sum(adRevenue))>

Max(Sum
(adRevnue)

<Source IP, Avg(PR), Max
(Sum(adRevenue))>

<Source IP, Avg(PR), Max
(Sum(adRevenue))>

Final
Result

Source IP, Avg(PR), Sum
(adRevenue)

Phase 3

Improved (Savy) MR Plans

Binary Data

●Eliminates delimiters
●Avoids splitting
●Makes tuples of fixed length
●Helps in indexing

Benchmark 1

Data

Data

Data

HDFS

PageRank >
10?

PageRank >
10?

PageRank >
10?

Mappers

Phase 1

Resul
t

Phase 2

Reduce

Reducer

Result

Result

Result

Extra MR job
to merge
results

Binary
data

Benchmark 2

Dat
a

Dat
a

Dat
a

HDFS

Phase 1

split

split

split

Mapper
s

su
m

su
m

sum

Combiners

Inter.
Resu

lt

Inter.
Resu

lt

Inter.
Resu

lt

Aggr

Aggr

Aggr

Reduce
rs

Res
ult

Phase 2

Res
ult

Res
ult

Res
ult

merge

Reduce
r

Extra MR job
to merge
results

Aggr

Reducer

Result

Binary
data

rank

rank

ranks

Benchmark 3(Design I) – Phase
1

join

join

join

ReducersHDFS

Identity

Identity

Identity

Mappers

Inter.
Resu

lt

Inter.
Resu

lt

Inter.
Resu

lt

Result1

Result1

Result1

Ranking
s

Ranking
s

Ranking
s

User
visits

User
visits

User
visits

<Source IP, URL, PageRank,
adReveune>

<Source IP, URL, PageRank,
adReveune>

<Source IP, URL, PageRank,
adReveune>

predicate

predicate

predicate

Record
Reader
s

Easy to classify
(just look at record

size)

Binary
data

Phase 1

Benchmark 3(Design I) – Phase
2

HDFS

Identity

Identity

Identity

Mapper
s

Inter.
Resu

lt

Inter.
Resu

lt

Inter.
Resu

lt

Result1

Result1

Result1

<Source IP, URL, PageRank,
adReveune>

<Source IP, URL, PageRank,
adReveune>

<Source IP, URL, PageRank,
adReveune>

Reducer
s

Max(Sum
(adRevnue)

Avg(PR),
Sum

(adRevnue

Avg(PR),
Sum

(adRevnu
e

Avg(PR),
Sum

(adRevnu
e

Combiner
s

Final
Result

Source IP, Avg(PR), Sum
(adRevenue)

No
Phase

3!

Phase 2

Benchmark 3(Design II) –
Phase 1

Max(Sum
(adRevenue))

Max(Sum
(adRevenue))

Max(Sum
(adRevenue))

R ReducersHDFS

Identity

Identity

Identity

Mappers

Inter.
Resu

lt

Inter.
Resu

lt

Inter.
Resu

lt

Result1

Result1

Result1

User
visits

User
visits

User
visits

<Source IP, Sum
(adReveune), <Dest URLs>>

predic
ate

predic
ate

predic
ate

RR

Only
UserVisit

s

<Source IP, Sum
(adReveune), <Dest URLs>>

<Source IP, Sum
(adReveune), <Dest URLs>>

Very small data
(Top R records)

Phase 1

Benchmark 3(Design I) – Phase
2

HDFS

Rankin
gs

Ranking
s

Rankin
gs

Read

Read

Read

Record
Reader
s

Result1

Result1

Result1

<Source IP, Sum(adReveune),
<Dest URLs>>

<Source IP, Sum(adReveune),
<Dest URLs>>

<Source IP, Sum(adReveune),
<Dest URLs>>

Max(sum(adRevenue))
&

Join

Single Mapper

Final
Result

Source IP, Avg(PR), Sum
(adRevenue)

Phase 2

Improving Hadoop

Improving Hadoop

●Improve Selection (Indexing)
●Improve Join (Co-partitioning)

Indexing

●Data Loading
○ index and load data into DFS

●Query Execution

○ index look-up and selection

● Implementation on Hadoop

Data Loading

●Partitioning
●Sorting
●Bulk Loading
●HID Splits

Data Loading

Partitioning

Split input data at tuple boundaries

Partitioning

Split input data at tuple boundaries

Partitioning

Split input data at tuple boundaries

Partitioning

Split input data at tuple boundaries

Sorting

Sort each split on the index key

Sorting

Sort each split on the index key

Bulk Loading

Bulk load CSS tree index

HID Split

Construct Header-Index-Data Split

HID Split

Construct Header-Index-Data Split

HID Split

Construct Header-Index-Data Split

 Header: Index end offset
 Data end offset
 Start index key
 End index key

HID Split

Construct Header-Index-Data Split

 Header: Index end offset
 Data end offset
 Start index key
 End index key

Query Execution

● Partitioning
● Split selection
● Index lookup
● Extractor

Query Execution

Partitioning

Read header to get HID boundaries

Partitioning

Read header to get HID boundaries

Partitioning

Read header to get HID boundaries

Partitioning

Read header to get HID boundaries

Split Selection

Discard splits containing out of range index keys

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Index Lookup

Find data offsets corresponding to LOW and HIGH keys

Extractor

Perform selection on data

Extractor

Pass sub-split to Record Reader for processing

Implementation on Hadoop

Loading
● CSS Tree Index
● Indirect index
● Four key types supported - Int, Float, Date, String
● Index stored as byte array
● Reducer to reduce number of files
● Integral number of HID splits per reducer output

Querying
● Discover HID split boundaries from respective headers
● Read only the selected data from HDFS

Co-Partitioning

● Data loading
● Query execution

Data Loading

Data Loading

Data Loading

Data Loading

Data Loading

Query Execution

Query Execution

Query Execution

Query Execution

Query Execution

Indexing on top of Co-partitioning

Indexing on top of Co-partitioning

Indexing on top of Co-partitioning

Indexing on top of Co-partitioning

Indexing on top of Co-partitioning

Indexing on top of Co-partitioning

Indexing on top of Co-partitioning

Experiments

Experimental Setup

●Hadoop 0.19.1
●5 nodes
●Speed?
●RAM?
●Gigabit Ethernet
●Data size

○User Visits: 20GB
○Rankings: 32MB

Results

Results

Results

Results

Results

Roadblocks Faced

● Data generation:
○ 20GB UserVisits, 338MB Rankings in HDFS
○ Took 16 hours for generation
○ Too many OS/library dependencies
○ Poor documentation

● Number of nodes:
○ Allocated 6 nodes
○ Effective (up-and-running) 4 nodes
○ Map/Reduce parallelism not exploited
○ Per-split indexing ideally suited for highly parallel

execution

Roadblocks Faced

● Data normalization
○ Schema uses VARCHAR data types
○ Input data normalized to fixed tuple-sized binaries
○ Byte oriented processing speedup negated by increased

input size
○ However, facilitates indexing and co-partitioning

● Low selectivity
○ Selection task has selectivity close to 1
○ Indexing benefits are sabotaged

● Incorrect base result
○ Reported join task result was not correct

Roadblocks Faced

● Implementation deviation from the paper
○ Composite key is not really used in join task

Discussion: Loopholes

● Benchmarks are well suited (biased) for databases
● Huge difference in data loading time
● Queries make heavy use of indexing, sorting data
● Query optimization not done for Map/Reduce
● Fault tolerance not compared

Discussion: We can do better!

● Map/Reduce plans can be optimized
● Normalized binary input data can help
● Indexing feasible and performs good
● Co-partitioning feasible and looks promising

Conclusions

References

●Pavlo, A., Paulson, E., Rasin, A., Abadi,
D. J., DeWitt, D. J., Madden, S., and
Stonebraker, M. 2009. A comparison of
approaches to large-scale data analysis.
SIGMOD '09.

●DeWitt, D. and Gray, J. 1992. Parallel
database systems: the future of high
performance database systems. Commun.
ACM35, 6 (Jun. 1992)

