
Ph.D.

Matt Might, The Illustrated Guide to a Ph.D.: http://matt.might.net/articles/phd-school-in-pictures

http://matt.might.net/articles/phd-school-in-pictures

ONE SIZE DOES NOT FIT ALL

OLAP Streaming

Log-processing

Web-search Scan-oriented

Archiving OLTP

4

OLAP Streaming

Log-processing

Web-search Scan-oriented

Archiving OLTP

4

OLAP Streaming

Log-processing

Web-search Scan-oriented

Archiving OLTP

4

OLAP Streaming

Log-processing

Web-search Scan-oriented

Archiving OLTP

4

OLAP Streaming

Log-processing

Web-search Scan-oriented

Archiving OLTP

4

OLTP

5

5

OLAP

5

Archive

5

Streaming

5

Log-processing

6

OLTP

OLAP

Archiving

Scan-oriented

Streaming

Log-processing

Web-search

6

7

Indexes
Column

Row

Raw files
Row+Column

1 abc 56 887.9

2 fdg 89 445.35

3 poe 67 234.67

4 lkj 12 385.92

5 yui 17 612.13

6 omg 90 148.9

8

Storage Views

1 abc 56 887.9

2 fdg 89 445.35

3 poe 67 234.67

4 lkj 12 385.92

5 yui 17 612.13

6 omg 90 148.9

8

Log

Storage Views

1 abc 56 887.9

2 fdg 89 445.35

3 poe 67 234.67

4 lkj 12 385.92

5 yui 17 612.13

6 omg 90 148.9

8

Log

Row

Storage Views

1 abc 56 887.9

2 fdg 89 445.35

3 poe 67 234.67

4 lkj 12 385.92

5 yui 17 612.13

6 omg 90 148.9

8

Log

Row

C
ol

um
n

Storage Views

1 abc 56 887.9

2 fdg 89 445.35

3 poe 67 234.67

4 lkj 12 385.92

5 yui 17 612.13

6 omg 90 148.9

8

Log

Row

C
ol

um
n

Column grouped

Storage Views

1 abc 56 887.9

2 fdg 89 445.35

3 poe 67 234.67

4 lkj 12 385.92

5 yui 17 612.13

6 omg 90 148.9

8

Log

Row

C
ol

um
n

Column grouped

Index

Storage Views

1 abc 56 887.9

2 fdg 89 445.35

3 poe 67 234.67

4 lkj 12 385.92

5 yui 17 612.13

6 omg 90 148.9

8

Log

Row

C
ol

um
n

Column grouped

Index

PAX

Storage Views

Chapter 2. Towards A One Size Fits All Database Architecture 24

Log SV Result

tickets.customer_id
!
customer.* ())"

a1=x1..an=xn(
customer.id

(a) Non-optimized OctopusDB

Log SV
!

Log SV

bag=tickets

!
bag=customers

Log SV Result

tickets.customer_id
"
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsLog

customersLog

(b) Bag Partitioning: one Log SV per table

Log SV

Log SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

(c) Key Consolidation: remove di↵erent versions

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

tickets

customers

(d) SV Transformation: use more e�cient Row SV and Col SV

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsCold

ticketsHot

(e) Per-partitions SVs: use cold and hot SVs

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index
SV

Index
SV

$
id,rid

$price,rid

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsHotIndex

customersIndex

(f) Indexing: create two indexes

Figure 2.2: OctopusDB static optimizations for the Running Example

2.3.2 Row, Col, and other SVs

Per-table SVs. The main idea of a Row SV, resp. Col SV, is to create a row store,
resp. column store, for any given subset of the data as specified by a query. Thus, a
di↵erent physical layout of the data is used. For instance, the scanning costs for the two
logical logs ticketLog and customerLog may eventually become too high, e.g. surpass-
ing a given SLA. In that case we may replace these Log SVs by a Col SV and a Row

Example: Flight Tickets

9

Chapter 2. Towards A One Size Fits All Database Architecture 24

Log SV Result

tickets.customer_id
!
customer.* ())"

a1=x1..an=xn(
customer.id

(a) Non-optimized OctopusDB

Log SV
!

Log SV

bag=tickets

!
bag=customers

Log SV Result

tickets.customer_id
"
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsLog

customersLog

(b) Bag Partitioning: one Log SV per table

Log SV

Log SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

(c) Key Consolidation: remove di↵erent versions

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

tickets

customers

(d) SV Transformation: use more e�cient Row SV and Col SV

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsCold

ticketsHot

(e) Per-partitions SVs: use cold and hot SVs

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index
SV

Index
SV

$
id,rid

$price,rid

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsHotIndex

customersIndex

(f) Indexing: create two indexes

Figure 2.2: OctopusDB static optimizations for the Running Example

2.3.2 Row, Col, and other SVs

Per-table SVs. The main idea of a Row SV, resp. Col SV, is to create a row store,
resp. column store, for any given subset of the data as specified by a query. Thus, a
di↵erent physical layout of the data is used. For instance, the scanning costs for the two
logical logs ticketLog and customerLog may eventually become too high, e.g. surpass-
ing a given SLA. In that case we may replace these Log SVs by a Col SV and a Row

Example: Flight Tickets

9

Chapter 2. Towards A One Size Fits All Database Architecture 24

Log SV Result

tickets.customer_id
!
customer.* ())"

a1=x1..an=xn(
customer.id

(a) Non-optimized OctopusDB

Log SV
!

Log SV

bag=tickets

!
bag=customers

Log SV Result

tickets.customer_id
"
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsLog

customersLog

(b) Bag Partitioning: one Log SV per table

Log SV

Log SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

(c) Key Consolidation: remove di↵erent versions

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

tickets

customers

(d) SV Transformation: use more e�cient Row SV and Col SV

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsCold

ticketsHot

(e) Per-partitions SVs: use cold and hot SVs

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index
SV

Index
SV

$
id,rid

$price,rid

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsHotIndex

customersIndex

(f) Indexing: create two indexes

Figure 2.2: OctopusDB static optimizations for the Running Example

2.3.2 Row, Col, and other SVs

Per-table SVs. The main idea of a Row SV, resp. Col SV, is to create a row store,
resp. column store, for any given subset of the data as specified by a query. Thus, a
di↵erent physical layout of the data is used. For instance, the scanning costs for the two
logical logs ticketLog and customerLog may eventually become too high, e.g. surpass-
ing a given SLA. In that case we may replace these Log SVs by a Col SV and a Row

Chapter 2. Towards A One Size Fits All Database Architecture 24

Log SV Result

tickets.customer_id
!
customer.* ())"

a1=x1..an=xn(
customer.id

(a) Non-optimized OctopusDB

Log SV
!

Log SV

bag=tickets

!
bag=customers

Log SV Result

tickets.customer_id
"
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsLog

customersLog

(b) Bag Partitioning: one Log SV per table

Log SV

Log SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

(c) Key Consolidation: remove di↵erent versions

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

tickets

customers

(d) SV Transformation: use more e�cient Row SV and Col SV

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsCold

ticketsHot

(e) Per-partitions SVs: use cold and hot SVs

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index
SV

Index
SV

$
id,rid

$price,rid

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsHotIndex

customersIndex

(f) Indexing: create two indexes

Figure 2.2: OctopusDB static optimizations for the Running Example

2.3.2 Row, Col, and other SVs

Per-table SVs. The main idea of a Row SV, resp. Col SV, is to create a row store,
resp. column store, for any given subset of the data as specified by a query. Thus, a
di↵erent physical layout of the data is used. For instance, the scanning costs for the two
logical logs ticketLog and customerLog may eventually become too high, e.g. surpass-
ing a given SLA. In that case we may replace these Log SVs by a Col SV and a Row

Chapter 2. Towards A One Size Fits All Database Architecture 29

Col SV

Row SV

Log SV

Result 2

!
bag=customers

"
bag,keyrecent

#
(())

!
bag=tickets"

bag,key
recent
(())

Result 3

$
price)!

class=E(Result 1

$
email Result 4

tickets.customer_id

$
id ())!

class=E, a1=x1(
customer.id

tickets.customer_id$
name ())
!
class=E, a2=x2

(
customer.id

Primary
Log Store

(a) Operator Log-Pushdown: before

Col SV

Row SVLog SV

Result 2

Result 3

!
price

Result 1

!
email Result 4

"bag=customers|
(bag=tickets &
tickets.class=E)

"
bag=customers

#
bag,keyrecent

$ (())! name,
email, id

(

"
bag=tickets#

bag,key
recent$ ((

))
!price,

customer_id
(

tickets.customer_id

!
id ())"

a1=x1(
customer.id

tickets.customer_id!
name ())
"

a1=x1
(

customer.id

Primary Log Store

(b) Operator Log-Pushdown: after

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index
SV

Index
SV

$ id,rid

$price,rid

count(*)>=5 customer_id

"
#

(
)

tickets.customer_id

$
customer.* ())!

a1=x1..an=xn(
customer.id

Frequent Fliers
(Adaptive Partial Index)

customer.id

tickets.customer_id

(c) Adaptive Partial SVs

Primary
Log Store

!"#
bag=ticketsbag,keyrecent!

time > now-300
(())))(#

CHEAPEST
(

!"#
bag=customers

bag,key
recent

!
registered_time > now-600 (())))

(
customers.id

tickets.customer_id

Col SV

Index
SV

Result

New Customers getting
Cheapest Tickets in last
5 mins. (Data Stream)

(d) Stream Transformation

Figure 2.3: Workload adaption optimizations of OctopusDB for the Running Example

projections down the lattice until the primary log. Similarly, for selections we (1) com-
pute a conjunctive selection, e.g. �bag=customers|(bag=tickets&tickets.class=E) and (2) push it
even beyond the primary log. Figure 2.3(b) shows the resulting SV lattice. This means
that any incoming log record will be checked even before putting it into the Log SV in
the primary log. Tuples not matching will be discarded and thus we save time writing
them to the primary log. Obviously, similarly to a store pushdown, as soon as a new
query comes in, the conjunctive selection may have to be adapted. Otherwise we would
discard too much. However in OLTP or reporting (not OLAP) workloads are often
known [118] and thus a log and pushdown may be an option.

Adaptive Partial SVs. The holistic SV optimizer can inject additional SVs to speed-
up query processing. Those SVs should be created for those parts of the data that is
frequently queried. For instance, it does not make sense to build an index for an entire
relation if only parts of that relation are queries. This observation lead to a technique
called partial indexing [114]. However, that technique can be extended to create a partial
store adapting dynamically to the current workload. Figure 2.2(e) already showed an
example for static SV partitioning. Figure 2.3(c) shows an example for adaptive partial
SVs. In this example a Frequent Fliers Index SV is used. We use a join query
selecting those customers having at least five tickets over the past week. Index SV
Frequent Fliers will only index those customers. As soon as a customer does not

Example: Flight Tickets

9

Chapter 2. Towards A One Size Fits All Database Architecture 24

Log SV Result

tickets.customer_id
!
customer.* ())"

a1=x1..an=xn(
customer.id

(a) Non-optimized OctopusDB

Log SV
!

Log SV

bag=tickets

!
bag=customers

Log SV Result

tickets.customer_id
"
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsLog

customersLog

(b) Bag Partitioning: one Log SV per table

Log SV

Log SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

(c) Key Consolidation: remove di↵erent versions

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

tickets

customers

(d) SV Transformation: use more e�cient Row SV and Col SV

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsCold

ticketsHot

(e) Per-partitions SVs: use cold and hot SVs

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index
SV

Index
SV

$
id,rid

$price,rid

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsHotIndex

customersIndex

(f) Indexing: create two indexes

Figure 2.2: OctopusDB static optimizations for the Running Example

2.3.2 Row, Col, and other SVs

Per-table SVs. The main idea of a Row SV, resp. Col SV, is to create a row store,
resp. column store, for any given subset of the data as specified by a query. Thus, a
di↵erent physical layout of the data is used. For instance, the scanning costs for the two
logical logs ticketLog and customerLog may eventually become too high, e.g. surpass-
ing a given SLA. In that case we may replace these Log SVs by a Col SV and a Row

Chapter 2. Towards A One Size Fits All Database Architecture 24

Log SV Result

tickets.customer_id
!
customer.* ())"

a1=x1..an=xn(
customer.id

(a) Non-optimized OctopusDB

Log SV
!

Log SV

bag=tickets

!
bag=customers

Log SV Result

tickets.customer_id
"
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsLog

customersLog

(b) Bag Partitioning: one Log SV per table

Log SV

Log SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

(c) Key Consolidation: remove di↵erent versions

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

tickets

customers

(d) SV Transformation: use more e�cient Row SV and Col SV

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsCold

ticketsHot

(e) Per-partitions SVs: use cold and hot SVs

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index
SV

Index
SV

$
id,rid

$price,rid

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsHotIndex

customersIndex

(f) Indexing: create two indexes

Figure 2.2: OctopusDB static optimizations for the Running Example

2.3.2 Row, Col, and other SVs

Per-table SVs. The main idea of a Row SV, resp. Col SV, is to create a row store,
resp. column store, for any given subset of the data as specified by a query. Thus, a
di↵erent physical layout of the data is used. For instance, the scanning costs for the two
logical logs ticketLog and customerLog may eventually become too high, e.g. surpass-
ing a given SLA. In that case we may replace these Log SVs by a Col SV and a Row

Chapter 2. Towards A One Size Fits All Database Architecture 29

Col SV

Row SV

Log SV

Result 2

!
bag=customers

"
bag,keyrecent

#
(())

!
bag=tickets"

bag,key
recent
(())

Result 3

$
price)!

class=E(Result 1

$
email Result 4

tickets.customer_id

$
id ())!

class=E, a1=x1(
customer.id

tickets.customer_id$
name ())
!
class=E, a2=x2

(
customer.id

Primary
Log Store

(a) Operator Log-Pushdown: before

Col SV

Row SVLog SV

Result 2

Result 3

!
price

Result 1

!
email Result 4

"bag=customers|
(bag=tickets &
tickets.class=E)

"
bag=customers

#
bag,keyrecent

$ (())! name,
email, id

(

"
bag=tickets#

bag,key
recent$ ((

))
!price,

customer_id
(

tickets.customer_id

!
id ())"

a1=x1(
customer.id

tickets.customer_id!
name ())
"

a1=x1
(

customer.id

Primary Log Store

(b) Operator Log-Pushdown: after

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index
SV

Index
SV

$ id,rid

$price,rid

count(*)>=5 customer_id

"
#

(
)

tickets.customer_id

$
customer.* ())!

a1=x1..an=xn(
customer.id

Frequent Fliers
(Adaptive Partial Index)

customer.id

tickets.customer_id

(c) Adaptive Partial SVs

Primary
Log Store

!"#
bag=ticketsbag,keyrecent!

time > now-300
(())))(#

CHEAPEST
(

!"#
bag=customers

bag,key
recent

!
registered_time > now-600 (())))

(
customers.id

tickets.customer_id

Col SV

Index
SV

Result

New Customers getting
Cheapest Tickets in last
5 mins. (Data Stream)

(d) Stream Transformation

Figure 2.3: Workload adaption optimizations of OctopusDB for the Running Example

projections down the lattice until the primary log. Similarly, for selections we (1) com-
pute a conjunctive selection, e.g. �bag=customers|(bag=tickets&tickets.class=E) and (2) push it
even beyond the primary log. Figure 2.3(b) shows the resulting SV lattice. This means
that any incoming log record will be checked even before putting it into the Log SV in
the primary log. Tuples not matching will be discarded and thus we save time writing
them to the primary log. Obviously, similarly to a store pushdown, as soon as a new
query comes in, the conjunctive selection may have to be adapted. Otherwise we would
discard too much. However in OLTP or reporting (not OLAP) workloads are often
known [118] and thus a log and pushdown may be an option.

Adaptive Partial SVs. The holistic SV optimizer can inject additional SVs to speed-
up query processing. Those SVs should be created for those parts of the data that is
frequently queried. For instance, it does not make sense to build an index for an entire
relation if only parts of that relation are queries. This observation lead to a technique
called partial indexing [114]. However, that technique can be extended to create a partial
store adapting dynamically to the current workload. Figure 2.2(e) already showed an
example for static SV partitioning. Figure 2.3(c) shows an example for adaptive partial
SVs. In this example a Frequent Fliers Index SV is used. We use a join query
selecting those customers having at least five tickets over the past week. Index SV
Frequent Fliers will only index those customers. As soon as a customer does not

Primary
Log Store

Primary Log Store

Example: Flight Tickets

9

Chapter 2. Towards A One Size Fits All Database Architecture 24

Log SV Result

tickets.customer_id
!
customer.* ())"

a1=x1..an=xn(
customer.id

(a) Non-optimized OctopusDB

Log SV
!

Log SV

bag=tickets

!
bag=customers

Log SV Result

tickets.customer_id
"
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsLog

customersLog

(b) Bag Partitioning: one Log SV per table

Log SV

Log SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

(c) Key Consolidation: remove di↵erent versions

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,key

recent
#

(())

!
bag=tickets"

bag,key
recent
((

)) tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

tickets

customers

(d) SV Transformation: use more e�cient Row SV and Col SV

Col SV

Row SV

Log SV Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsCold

ticketsHot

(e) Per-partitions SVs: use cold and hot SVs

Col SV

Row SV

Log SV

Result

!
bag=customers

"
bag,keyrecent

(())

!
bag=tickets"

bag,key
recent# ((

))
!

time>=now-7days

Col SV

! tim
e<

no
w-7d

ays
Cold

Index
SV

Index
SV

$
id,rid

$price,rid

tickets.customer_id
$
customer.* ())!

a1=x1..an=xn(
customer.id

ticketsHotIndex

customersIndex

(f) Indexing: create two indexes

Figure 2.2: OctopusDB static optimizations for the Running Example

2.3.2 Row, Col, and other SVs

Per-table SVs. The main idea of a Row SV, resp. Col SV, is to create a row store,
resp. column store, for any given subset of the data as specified by a query. Thus, a
di↵erent physical layout of the data is used. For instance, the scanning costs for the two
logical logs ticketLog and customerLog may eventually become too high, e.g. surpass-
ing a given SLA. In that case we may replace these Log SVs by a Col SV and a Row

Primary
Log Store

10

WTF!
Where’s The Food!

Rodent Store

What to store?

Data Files

copy 1 copy 2 copy 3

Data Files

How to store?

?
a b+

Data Files

Where to store?

?

DSL DSL

Lo
gi

ca
l

D
at

a
Vi

ew
Ph

ys
ic

al

D
at

a
Vi

ew

WWHow! Language

Physical Storage Interface

Data
Management

System

WWHow! Layer

Example Use-cases

•WWHow! File System

•WWHow! RAID

•WWHow! Relational DBMS

•WWHow! Cloud

STORE ‘/Users/Bob/Conferences/Talks/*.*’
WHAT *.(pdf | ppt), *.pdf
WHERE vise4
HOW encryption(rsa) FOR *;

Store my conferences talks (PDFs 2x and PPTs 1x)
using RSA compression on University server

I want my conference talks to be
highly available

STORE ‘/Users/Bob/Conferences/Talks/*.*’
WHAT *.(pdf | ppt), *.pdf
HOW encryption(rsa) FOR *
PREFERENCE Availability=‘high’;

I want my conference talks to be
highly available

job for the  
WWhow! data storage optimizer

STORE ‘/Users/Bob/Conferences/Talks/*.*’
WHAT *.(pdf | ppt), *.pdf
HOW encryption(rsa) FOR *
PREFERENCE Availability=‘high’;

OctopusDB

19

• Cool Vision

• Tough to realize

C-Store

21

?

Trojan Columns

23

UDF Storage Layer

Query Processor

Relations

Physical Representation

File 1 File 2 File 3 File n....

Application
User

Database

24

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

Relation

Physical Table

Trojan Columns

24

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

Relation

Physical Table

Trojan Columns

Tuple
Iterator

Data
Parser

Data
Accessor

(a) Convert row
tuples into blobs

(b) Store blob data

(c) Get next
row data

w
ri

te
-U

D
F

25

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

product, is it possible to introduce column store technology in it to
support analytical workloads efficiently? All this without having
access to the source code of the database product.

1.3 Our Idea
Our idea is to use User Defined Functions (UDFs) as an access

layer for data storage and retrieval. To do so, we create and install
certain UDFs within the database system and exploit them when-
ever we need to store or access data. The data is actually stored
in a compressed column-oriented fashion on disk. But the UDFs
translate it into the row layout for the query processor. This means
we trick the database into believing that the data is still stored in
row layout, even though it is not. Finally, note that our approach is
very different from the two extremes of data stores: either having a
different product for different stores or doing deep seated changes
in the database product. We do neither of these, but still gain per-
formance significantly. The major benefits of our approach are as
follows:

(1.) Injects column store functionality into existing closed source
database products e.g. IBM DB2, Oracle.
(2.) Logical view of data remains unchanged for the outside user;
instead, the changes are transparently injected inside the DBMS.
(3.) Does not invade or make heavy changes in the system; rather,
uses lightweight UDFs to store and access the data.
(4.) Just fixes the storage layer (row, column, or even column-
grouped layouts) by inserting appropriate UDFs.
(5.) Reuses the query optimizer (at least partially) and therefore no
need to re-implement state-of-the-art database technologies.
(6.) User queries remain (almost) unchanged.

1.4 Contributions
Our main contributions are as follows:

(1.) We present Trojan Columns: a radically different technique
to inject column store functionality into a given database system.
Trojan Columns masks the database storage layer and translates
back and forth from users’ row-view to the physical column-view
of data. All the while, users’ view remains unchanged. (Section 2)
(2.) We present techniques to query Trojan Columns. We show
how to push down one or more operators in the query tree to the
UDFs. We describe how to rewrite the user queries in order to use
the UDFs for data access. (Section 3)
(3.) We present experimental results from DBMS-X over TPC-H
datasets. We evaluate Trojan Columns over there different bench-
marks including (1) unmodified TPC-H queries, (2) simplified
TPC-H queries as proposed in the C-Store paper [8], as well as
(3) micro-benchmarks to investigate the pros and cons of Trojan
Columns by varying several query parameters. (Section 4)

2. TROJAN COLUMNS
In this section, we present Trojan Columns: a novel way of in-

jecting column store functionality in a given row-oriented database
system. Trojan Columns uses table returning UDFs2 to translate the
user’s logical row view to the physical column view on disk. The
core philosophy of Trojan Columns is very similar to Trojan tech-
niques in Hadoop++ [4, 6]: affect the changes from inside without
changing the source code of the system. In the following, we de-
scribe how to create Trojan Columns.
2Typically database systems support three kinds of UDFs based on
their return types: (i) scalar value returning UDFs, (ii) row return-
ing UDFs, and (iii) table (of rows) returning UDFs.

Trojan Columns maps logical relations to physical tables as
follows. First, we horizontally partition a given relation T into
segments. Then, we store each attribute in a given segment
as a separate BLOB (binary large object) in a physical table
T_trojan(segment_ID, attribute_ID, blob_data). To illustrate, con-
sider the following entries of a Customer relation.

Customer
name phone market_segment
smith 2134 automobile
john 3425 household
kim 6756 furniture
joe 9878 building
mark 4312 building
steve 2435 automobile
jim 5766 household
ian 8789 household

Assuming a segment size of 4, i.e. 4 entries of each column are
mapped to a different row, Trojan Columns converts this to the fol-
lowing Customer_trojan table:

Customer_trojan
segment_ID attribute_ID blob_data

1 name smith, john, kim, joe
1 phone 2134, 3425, 6756, 9878
1 market_segment automobile, household, furniture, building
2 name mark, steve, jim, ian
2 phone 4312, 2435, 5766, 8789
2 market_segment building, automobile, household, household

We store each entry in the blob_data column of the above table as
a BLOB, thus mimicking a column-oriented storage. Experimen-
tally, we found bigger segment sizes, e.g. ⇠10M, to be more suit-
able. The data storage idea for Trojan Columns is inspired by SQL
Server Column Indexes [7]. However, in practice, Trojan Columns
is radically different from Column Indexes in several ways.

First, Trojan Columns uses UDFs to store the blob data instead
of native SQL support in case of Column Indexes. This not only
makes Trojan Columns plug-and-play, but also allows us to cus-
tomize the blob storage to user applications. For example, we might
prefer light weight compression (e.g. RLE) for read-intensive ap-
plication and higher compression ratio (e.g. Huffman) for archive
applications. Additionally, we could simply let the database sys-
tem apply the default compression method for blobs, e.g. TOAST
compression in PostgreSQL. Likewise, we might choose to sort the
data within or even across the blobs in any way, e.g. sort on attribute
IDs. Essentially, we have full control and flexibility to decide how
the blobs must reside on disk.

Second, Trojan Columns is quite different from SQL Server Col-
umn Indexes not only in data storage, but also in data access. Sim-
ilar to data storage, the access method is plugged into a given
database, instead of making deep changes in the data access layer
itself. Again, based on user applications, we have full control to
decide how to access the data. For example, for an airline com-
pany, we may choose to look for all possible connections only for
premium customers.

Third, Trojan Columns uses standard database tables to store the
blob, instead of a new index type in case of Column Indexes. The
database uses its own physical storage mechanism to persist the
blob table on disk. In other words, Trojan Columns simply pro-
vides a mechanism to decouple logical representation of relations
from their physical implementation, a.k.a physical data indepen-
dence, which, unfortunately, still remains a myth in several mod-
ern databases [10]. Finally, with Trojan Columns the database sys-
tem is entirely agnostic of the column store functionality injected
within, i.e. no new SQL keywords, or data types, or any entries
in the system catalog have to be added. The consequence is that
Trojan Columns is database product independent, i.e. they can be
plugged into any existing database product.

2

Relation

Physical Table

Trojan Columns

Tuple
Iterator

Data
Parser

Data
Accessor

(e) Reconstruct
row tuples

(d) Parse blob data

(f) Fetch
blob data

(g)End of table

re
ad

-U
D

F

Example: TPC-H Query 6
Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

26

Example: TPC-H Query 6
Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

(a)
Standard

plan

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

scanUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

selectU
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

(b)
Scan

pushdow
n

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

scanUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

selectU
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

(c)
Selectpushdow

n

Figure
1:Standard

and
U

D
F

query
plansfor

TPC
-H

Q
uery

6.

3.
Q

U
ER

Y
IN

G
TR

O
JA

N
C

O
LU

M
N

S
In

the
previous

section,
w

e
described

how
to

create
Trojan

C
olum

ns.
In

this
section,w

e
describe

how
w

e
process

queries
us-

ing
Trojan

C
olum

ns.
Since

Trojan
C

olum
ns

internally
store

data
in

colum
n-oriented

fashion,w
e

need
to

translate
the

data
back

to
row

layoutbefore
passing

itto
the

query
processor,i.e.use

a
U

D
F

to
scan

the
table.

A
dditionally,

w
e

m
ay

also
push

dow
n

other
operators

to
the

U
D

F
in

order
to

boost
perform

ance.
B

elow
,

w
e

firstdescribe
operator

pushdow
n

as
a

technique
to

process
Trojan

C
olum

ns,and
then

w
e

describe
how

to
rew

rite
userqueries.

3.1
O

perator
Pushdow

n
The

core
idea

ofquerying
Trojan

C
olum

nsisto
push

a
partofthe

query
tree

dow
n

to
the

U
D

F.This
m

eans
thata

partofthe
query

is
processed

by
the

U
D

F
w

hile
the

rem
aining

query
is

stillprocessed
by

the
standard

database
query

executor.
Let’s

consider
query

6
from

the
TPC

-H
benchm

ark
[9]as

a
running

exam
ple

below
.

Fig-
ure

1(a)show
s

the
logicalquery

plan
forquery

6.
B

elow
,let’s

see
how

w
e

can
push

dow
n

one
orm

ore
operators

in
query

6
to

a
U

D
F.

Scan
Pushdow

n.
First

of
all,

w
e

need
to

push
dow

n
the

scan
operator

to
the

U
D

F.This
is

because
w

e
need

to
interpretTrojan

C
olum

ns
correctly

(and
differently)atthe

leaflevel.
Suppose

that
l
i
n
e
i
t
e
m

table
in

query
6

is
stored

as
Trojan

C
olum

ns.
Fig-

ure
1(b)show

sthe
query

plan
w

ith
the

U
D

F.A
sshow

n
in

the
figure,

the
U

D
F

now
figuresoutw

hich
physicaltable

to
read

(the
blob

and
notthe

row
representation)

for
l
i
n
e
i
t
e
m

table.
A

lso,the
U

D
F

is
responsible

forinterpreting
the

physicaltable,reconstructing
the

logical
l
i
n
e
i
t
e
m

tuples,and
passing

them
on

to
the

upper
part

ofthe
query

tree.
Projection

Pushdow
n.

A
long

w
ith

the
scan,

w
e

can
also

push
dow

n
the

projection
operatorto

the
U

D
F,i.e.pass

the
projected

at-
tributes

as
param

eters
to

the
U

D
F.The

U
D

F
now

returns
only

the
projected

attributes.Since
the

U
D

F
return

type
is

stillthe
com

plete
row

,allother
attribute

values
are

setto
N

U
LL.A

consequence
of

pushing
projection

dow
n

to
the

U
D

F
is

thatthe
U

D
F

now
needs

to
fetch

the
blobs

ofonly
the

projected
attributes.

This
saves

consid-
erable

I/O
costand

im
proves

query
perform

ance.
Selection

Pushdow
n.To

push
the

selection
dow

n,w
e

sim
ply

pass
the

selection
predicate

to
the

U
D

F,as
show

n
in

Figure
1(c).

The
U

D
F

is
now

responsible
forevaluating

the
selectpredicate

on
each

of
the

incom
ing

tuple.
To

do
so,

the
U

D
F

now
only

fetches
the

selection
attributes

first.Then,before
returning

the
tuple,the

U
D

F
evaluates

the
selection

predicate.
If

the
predicates

satisfy
then

the
U

D
F

fetches
the

projection
attribute

blobs,if
needed,and

returns
a

tuple
of

the
projected

attributes.
If

the
selection

predicates
do

Result

shipdate, discount
extendedprice, partkey

shipdate BET
W

EEN

‘1995-09-01’ A
N

D
 ‘1995-10-01’

σπ

agg

100 * SU
M

(C
A

SE
 W

H
EN

 type LIK
E ‘PRO

M
O

%
’

 T
H

EN
 extendedprice*(1-discount)

 ELSE 0
EN

D
) / SU

M
(extendedprice*(1-discount))

γ

lineitem

S
C
A
N

part

S
C
A
N type,

partkey
π

partkey

Result

shipdate, discount
extendedprice, partkey

shipdate BET
W

EEN

‘1995-09-01’ A
N

D
 ‘1995-10-01’

σπ

agg

100 * SU
M

(C
A

SE
 W

H
EN

 type LIK
E ‘PRO

M
O

%
’

 T
H

EN
 extendedprice*(1-discount)

 ELSE 0
EN

D
) / SU

M
(extendedprice*(1-discount))

γ

lineitem

S
C
A
N

part

S
C
A
N type,

partkey
π

partkey
aggregateU

D
F

Figure
2:Exam

ple
U

D
F

query
plan

for
TPC

-H
query

14.

notsatisfy,then
the

U
D

F
inspects

the
nextselection

attribute
val-

ues.
This

continues
untileither

a
qualifying

tuple
if

found
or

end
ofdata

is
reached.Pushing

dow
n

selection
to

the
U

D
F

has
tw

o
ad-

vantages:
(1)

the
num

ber
of

U
D

F
outputtuples,and

consequently
the

num
berofU

D
F

calls
are

reduced,and
(2)w

e
can

perform
late

m
aterialization

by
fetching

projection
attributes

only
forsegm

ents
having

atleastone
tuple

qualifying
the

selection
predicates.

The
firstadvantage

saves
the

overhead
in

each
U

D
F

call,w
hile

the
sec-

ond
advantage

saves
I/O

forprojection
attributes.

A
ggregation

Pushdow
n.

W
e

can
even

push
dow

n
the

aggregates
(and

group
by)

to
the

U
D

F.The
U

D
F

m
ustnow

do
the

grouping
and

aggregation
before

outputting
any

of
the

tuples.
This

m
eans

that
the

U
D

F
m

ust
precom

pute
the

results
w

hen
initializing

and
then

sim
ply

return
the

aggregated
resultsubsequently.

The
m

ajor
benefit

of
pushing

aggregation
dow

n
the

U
D

F
is

to
dram

atically
reduce

the
num

berofU
D

F
calls.

D
ealing

w
ith

Join
Q

ueries.
So

far
w

e
have

considered
single

ta-
ble

queries,i.e.no
join

conditions.
N

ow
letus

see
how

joins
are

processed
in

the
presence

of
Trojan

C
olum

ns.
For

queries
having

join
conditions,w

e
sim

ply
push

dow
n

the
scan,selection,and

pro-
jection

operators
to

the
U

D
F

and
letthe

database
do

the
join.This

w
orks

w
ell

because
the

output
of

U
D

F
can

be
processed

by
the

database
query

executor.
Figure

2
show

s
the

U
D

F
query

plan
for

TPC
-H

query
14.From

the
figure

w
e

see
thatthe

l
i
n
e
i
t
e
m

leaf
is

pushed
inside

the
U

D
F,w

hile
the

join
is

stillperform
ed

outside.
A

lso
note

thatthe
query

plan
in

Figure
2

accesses
p
a
r
t

table
us-

ing
the

standard
database

access
m

ethod.
This

is
because

p
a
r
t

is
m

uch
sm

aller
table

and
it

does
not

pay
off

to
use

a
U

D
F

for
it.

Thus,w
e

see
thatU

D
Fs

can
be

seam
lessly

integrated
into

the
query

pipeline.
This

holds
true

even
for

nested
queries,e.g.TPC

-
H

query
8.

A
lternatively,instead

of
letting

the
database

executor
process

the
join,one

could
think

ofeven
pushing

dow
n

the
join

to
the

U
D

F.The
U

D
F

w
ould

then
have

to
access

tw
o

physicaltables
and

join
them

based
on

the
join

condition.
The

advantage
w

ould
be

thatw
e

could
have

even
lesseroutputtuples

(depending
on

join
selectivity).

H
ow

ever,the
problem

is
thatw

e
w

illneed
to

recode
the

physicaljoin
operatorsasw

ellasthe
optim

izerlogic
to

pick
the

physicaljoin
operator.

Thus,w
e

see
the

pros
and

cons
of

pushing
too

m
any

operators
dow

n
the

U
D

F.Exploring
these

in
m

ore
detail

w
illbe

partofa
future

w
ork.

W
heredoesoperatorpushdow

n
lead

to?
In

the
extrem

e
case,w

e
can

push
dow

n
the

entire
SQ

L
query,i.e.allquery

operators,dow
n

to
the

U
D

F.H
ow

ever,this
m

eans
thatthe

U
D

F
is

now
responsible

fordeciding
how

to
execute

a
given

query.In
otherw

ords,the
U

D
F

m
usttake

care
ofquery

optim
ization

as
w

ellas
execution,m

aking
ita

m
icro-kernelforprocessing

SQ
L

queries.
The

consequence
is

3

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

26

Example: TPC-H Query 6
Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

(a)
Standard

plan

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

scanUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

selectU
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

(b)
Scan

pushdow
n

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

scanUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

selectU
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

read-UDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BET
W

EEN

‘1994-01-01’ A
N

D
 ‘1995-01-01’

A
N

D
 discount BET

W
EEN

0.05 A
N

D
 0.07

A
N

D
 quantity <

 24

σπ

agg
(extendedprice * discount)

γlineitem

S
C
A
N

(c)
Selectpushdow

n

Figure
1:Standard

and
U

D
F

query
plansfor

TPC
-H

Q
uery

6.

3.
Q

U
ER

Y
IN

G
TR

O
JA

N
C

O
LU

M
N

S
In

the
previous

section,
w

e
described

how
to

create
Trojan

C
olum

ns.
In

this
section,w

e
describe

how
w

e
process

queries
us-

ing
Trojan

C
olum

ns.
Since

Trojan
C

olum
ns

internally
store

data
in

colum
n-oriented

fashion,w
e

need
to

translate
the

data
back

to
row

layoutbefore
passing

itto
the

query
processor,i.e.use

a
U

D
F

to
scan

the
table.

A
dditionally,

w
e

m
ay

also
push

dow
n

other
operators

to
the

U
D

F
in

order
to

boost
perform

ance.
B

elow
,

w
e

firstdescribe
operator

pushdow
n

as
a

technique
to

process
Trojan

C
olum

ns,and
then

w
e

describe
how

to
rew

rite
userqueries.

3.1
O

perator
Pushdow

n
The

core
idea

ofquerying
Trojan

C
olum

nsisto
push

a
partofthe

query
tree

dow
n

to
the

U
D

F.This
m

eans
thata

partofthe
query

is
processed

by
the

U
D

F
w

hile
the

rem
aining

query
is

stillprocessed
by

the
standard

database
query

executor.
Let’s

consider
query

6
from

the
TPC

-H
benchm

ark
[9]as

a
running

exam
ple

below
.

Fig-
ure

1(a)show
s

the
logicalquery

plan
forquery

6.
B

elow
,let’s

see
how

w
e

can
push

dow
n

one
orm

ore
operators

in
query

6
to

a
U

D
F.

Scan
Pushdow

n.
First

of
all,

w
e

need
to

push
dow

n
the

scan
operator

to
the

U
D

F.This
is

because
w

e
need

to
interpretTrojan

C
olum

ns
correctly

(and
differently)atthe

leaflevel.
Suppose

that
l
i
n
e
i
t
e
m

table
in

query
6

is
stored

as
Trojan

C
olum

ns.
Fig-

ure
1(b)show

sthe
query

plan
w

ith
the

U
D

F.A
sshow

n
in

the
figure,

the
U

D
F

now
figuresoutw

hich
physicaltable

to
read

(the
blob

and
notthe

row
representation)

for
l
i
n
e
i
t
e
m

table.
A

lso,the
U

D
F

is
responsible

forinterpreting
the

physicaltable,reconstructing
the

logical
l
i
n
e
i
t
e
m

tuples,and
passing

them
on

to
the

upper
part

ofthe
query

tree.
Projection

Pushdow
n.

A
long

w
ith

the
scan,

w
e

can
also

push
dow

n
the

projection
operatorto

the
U

D
F,i.e.pass

the
projected

at-
tributes

as
param

eters
to

the
U

D
F.The

U
D

F
now

returns
only

the
projected

attributes.Since
the

U
D

F
return

type
is

stillthe
com

plete
row

,allother
attribute

values
are

setto
N

U
LL.A

consequence
of

pushing
projection

dow
n

to
the

U
D

F
is

thatthe
U

D
F

now
needs

to
fetch

the
blobs

ofonly
the

projected
attributes.

This
saves

consid-
erable

I/O
costand

im
proves

query
perform

ance.
Selection

Pushdow
n.To

push
the

selection
dow

n,w
e

sim
ply

pass
the

selection
predicate

to
the

U
D

F,as
show

n
in

Figure
1(c).

The
U

D
F

is
now

responsible
forevaluating

the
selectpredicate

on
each

of
the

incom
ing

tuple.
To

do
so,

the
U

D
F

now
only

fetches
the

selection
attributes

first.Then,before
returning

the
tuple,the

U
D

F
evaluates

the
selection

predicate.
If

the
predicates

satisfy
then

the
U

D
F

fetches
the

projection
attribute

blobs,if
needed,and

returns
a

tuple
of

the
projected

attributes.
If

the
selection

predicates
do

Result

shipdate, discount
extendedprice, partkey

shipdate BET
W

EEN

‘1995-09-01’ A
N

D
 ‘1995-10-01’

σπ

agg

100 * SU
M

(C
A

SE
 W

H
EN

 type LIK
E ‘PRO

M
O

%
’

 T
H

EN
 extendedprice*(1-discount)

 ELSE 0
EN

D
) / SU

M
(extendedprice*(1-discount))

γ

lineitem

S
C
A
N

part

S
C
A
N type,

partkey
π

partkey

Result

shipdate, discount
extendedprice, partkey

shipdate BET
W

EEN

‘1995-09-01’ A
N

D
 ‘1995-10-01’

σπ

agg

100 * SU
M

(C
A

SE
 W

H
EN

 type LIK
E ‘PRO

M
O

%
’

 T
H

EN
 extendedprice*(1-discount)

 ELSE 0
EN

D
) / SU

M
(extendedprice*(1-discount))

γ

lineitem

S
C
A
N

part

S
C
A
N type,

partkey
π

partkey
aggregateU

D
F

Figure
2:Exam

ple
U

D
F

query
plan

for
TPC

-H
query

14.

notsatisfy,then
the

U
D

F
inspects

the
nextselection

attribute
val-

ues.
This

continues
untileither

a
qualifying

tuple
if

found
or

end
ofdata

is
reached.Pushing

dow
n

selection
to

the
U

D
F

has
tw

o
ad-

vantages:
(1)

the
num

ber
of

U
D

F
outputtuples,and

consequently
the

num
berofU

D
F

calls
are

reduced,and
(2)w

e
can

perform
late

m
aterialization

by
fetching

projection
attributes

only
forsegm

ents
having

atleastone
tuple

qualifying
the

selection
predicates.

The
firstadvantage

saves
the

overhead
in

each
U

D
F

call,w
hile

the
sec-

ond
advantage

saves
I/O

forprojection
attributes.

A
ggregation

Pushdow
n.

W
e

can
even

push
dow

n
the

aggregates
(and

group
by)

to
the

U
D

F.The
U

D
F

m
ustnow

do
the

grouping
and

aggregation
before

outputting
any

of
the

tuples.
This

m
eans

that
the

U
D

F
m

ust
precom

pute
the

results
w

hen
initializing

and
then

sim
ply

return
the

aggregated
resultsubsequently.

The
m

ajor
benefit

of
pushing

aggregation
dow

n
the

U
D

F
is

to
dram

atically
reduce

the
num

berofU
D

F
calls.

D
ealing

w
ith

Join
Q

ueries.
So

far
w

e
have

considered
single

ta-
ble

queries,i.e.no
join

conditions.
N

ow
letus

see
how

joins
are

processed
in

the
presence

of
Trojan

C
olum

ns.
For

queries
having

join
conditions,w

e
sim

ply
push

dow
n

the
scan,selection,and

pro-
jection

operators
to

the
U

D
F

and
letthe

database
do

the
join.This

w
orks

w
ell

because
the

output
of

U
D

F
can

be
processed

by
the

database
query

executor.
Figure

2
show

s
the

U
D

F
query

plan
for

TPC
-H

query
14.From

the
figure

w
e

see
thatthe

l
i
n
e
i
t
e
m

leaf
is

pushed
inside

the
U

D
F,w

hile
the

join
is

stillperform
ed

outside.
A

lso
note

thatthe
query

plan
in

Figure
2

accesses
p
a
r
t

table
us-

ing
the

standard
database

access
m

ethod.
This

is
because

p
a
r
t

is
m

uch
sm

aller
table

and
it

does
not

pay
off

to
use

a
U

D
F

for
it.

Thus,w
e

see
thatU

D
Fs

can
be

seam
lessly

integrated
into

the
query

pipeline.
This

holds
true

even
for

nested
queries,e.g.TPC

-
H

query
8.

A
lternatively,instead

of
letting

the
database

executor
process

the
join,one

could
think

ofeven
pushing

dow
n

the
join

to
the

U
D

F.The
U

D
F

w
ould

then
have

to
access

tw
o

physicaltables
and

join
them

based
on

the
join

condition.
The

advantage
w

ould
be

thatw
e

could
have

even
lesseroutputtuples

(depending
on

join
selectivity).

H
ow

ever,the
problem

is
thatw

e
w

illneed
to

recode
the

physicaljoin
operatorsasw

ellasthe
optim

izerlogic
to

pick
the

physicaljoin
operator.

Thus,w
e

see
the

pros
and

cons
of

pushing
too

m
any

operators
dow

n
the

U
D

F.Exploring
these

in
m

ore
detail

w
illbe

partofa
future

w
ork.

W
heredoesoperatorpushdow

n
lead

to?
In

the
extrem

e
case,w

e
can

push
dow

n
the

entire
SQ

L
query,i.e.allquery

operators,dow
n

to
the

U
D

F.H
ow

ever,this
m

eans
thatthe

U
D

F
is

now
responsible

fordeciding
how

to
execute

a
given

query.In
otherw

ords,the
U

D
F

m
usttake

care
ofquery

optim
ization

as
w

ellas
execution,m

aking
ita

m
icro-kernelforprocessing

SQ
L

queries.
The

consequence
is

3

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN
Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

(a) Standard plan

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN
re

ad
-U

D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

(b) Scan pushdown

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad

-U
D

F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

(c) Select pushdown

Figure 1: Standard and UDF query plans for TPC-H Query 6.

3. QUERYING TROJAN COLUMNS
In the previous section, we described how to create Trojan

Columns. In this section, we describe how we process queries us-
ing Trojan Columns. Since Trojan Columns internally store data
in column-oriented fashion, we need to translate the data back to
row layout before passing it to the query processor, i.e. use a UDF
to scan the table. Additionally, we may also push down other
operators to the UDF in order to boost performance. Below, we
first describe operator pushdown as a technique to process Trojan
Columns, and then we describe how to rewrite user queries.

3.1 Operator Pushdown
The core idea of querying Trojan Columns is to push a part of the

query tree down to the UDF. This means that a part of the query is
processed by the UDF while the remaining query is still processed
by the standard database query executor. Let’s consider query 6
from the TPC-H benchmark [9] as a running example below. Fig-
ure 1(a) shows the logical query plan for query 6. Below, let’s see
how we can push down one or more operators in query 6 to a UDF.
Scan Pushdown. First of all, we need to push down the scan
operator to the UDF. This is because we need to interpret Trojan
Columns correctly (and differently) at the leaf level. Suppose that
lineitem table in query 6 is stored as Trojan Columns. Fig-
ure 1(b) shows the query plan with the UDF. As shown in the figure,
the UDF now figures out which physical table to read (the blob and
not the row representation) for lineitem table. Also, the UDF
is responsible for interpreting the physical table, reconstructing the
logical lineitem tuples, and passing them on to the upper part
of the query tree.
Projection Pushdown. Along with the scan, we can also push
down the projection operator to the UDF, i.e. pass the projected at-
tributes as parameters to the UDF. The UDF now returns only the
projected attributes. Since the UDF return type is still the complete
row, all other attribute values are set to NULL. A consequence of
pushing projection down to the UDF is that the UDF now needs to
fetch the blobs of only the projected attributes. This saves consid-
erable I/O cost and improves query performance.
Selection Pushdown. To push the selection down, we simply pass
the selection predicate to the UDF, as shown in Figure 1(c). The
UDF is now responsible for evaluating the select predicate on each
of the incoming tuple. To do so, the UDF now only fetches the
selection attributes first. Then, before returning the tuple, the UDF
evaluates the selection predicate. If the predicates satisfy then the
UDF fetches the projection attribute blobs, if needed, and returns
a tuple of the projected attributes. If the selection predicates do

Result

shipdate, discount
extendedprice, partkey

shipdate BETWEEN
‘1995-09-01’ AND ‘1995-10-01’
σ
π

agg

100 * SUM(CASE
 WHEN type LIKE ‘PROMO%’
 THEN extendedprice*(1-discount)
 ELSE 0
END) / SUM(extendedprice*(1-discount))

γ

lineitem

SCANpart

SCAN

type,
partkey
π

partkey

Result

shipdate, discount
extendedprice, partkey

shipdate BETWEEN
‘1995-09-01’ AND ‘1995-10-01’
σ
π

agg

100 * SUM(CASE
 WHEN type LIKE ‘PROMO%’
 THEN extendedprice*(1-discount)
 ELSE 0
END) / SUM(extendedprice*(1-discount))

γ

lineitem

SCANpart

SCAN

type,
partkey
π

partkey aggregateUDF

Figure 2: Example UDF query plan for TPC-H query 14.

not satisfy, then the UDF inspects the next selection attribute val-
ues. This continues until either a qualifying tuple if found or end
of data is reached. Pushing down selection to the UDF has two ad-
vantages: (1) the number of UDF output tuples, and consequently
the number of UDF calls are reduced, and (2) we can perform late
materialization by fetching projection attributes only for segments
having at least one tuple qualifying the selection predicates. The
first advantage saves the overhead in each UDF call, while the sec-
ond advantage saves I/O for projection attributes.
Aggregation Pushdown. We can even push down the aggregates
(and group by) to the UDF. The UDF must now do the grouping
and aggregation before outputting any of the tuples. This means
that the UDF must precompute the results when initializing and
then simply return the aggregated result subsequently. The major
benefit of pushing aggregation down the UDF is to dramatically
reduce the number of UDF calls.
Dealing with Join Queries. So far we have considered single ta-
ble queries, i.e. no join conditions. Now let us see how joins are
processed in the presence of Trojan Columns. For queries having
join conditions, we simply push down the scan, selection, and pro-
jection operators to the UDF and let the database do the join. This
works well because the output of UDF can be processed by the
database query executor. Figure 2 shows the UDF query plan for
TPC-H query 14. From the figure we see that the lineitem leaf
is pushed inside the UDF, while the join is still performed outside.
Also note that the query plan in Figure 2 accesses part table us-
ing the standard database access method. This is because part
is much smaller table and it does not pay off to use a UDF for
it. Thus, we see that UDFs can be seamlessly integrated into the
query pipeline. This holds true even for nested queries, e.g. TPC-
H query 8. Alternatively, instead of letting the database executor
process the join, one could think of even pushing down the join to
the UDF. The UDF would then have to access two physical tables
and join them based on the join condition. The advantage would
be that we could have even lesser output tuples (depending on join
selectivity). However, the problem is that we will need to recode
the physical join operators as well as the optimizer logic to pick the
physical join operator. Thus, we see the pros and cons of pushing
too many operators down the UDF. Exploring these in more detail
will be part of a future work.
Where does operator pushdown lead to? In the extreme case, we
can push down the entire SQL query, i.e. all query operators, down
to the UDF. However, this means that the UDF is now responsible
for deciding how to execute a given query. In other words, the UDF
must take care of query optimization as well as execution, making
it a micro-kernel for processing SQL queries. The consequence is

3

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

sc
an
U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN
re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

selectUDF

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

re
ad
-U
D
F

Result

quantity, discount
extendedprice, shipdate

 shipdate BETWEEN
‘1994-01-01’ AND ‘1995-01-01’
AND discount BETWEEN
0.05 AND 0.07
AND quantity < 24

σ

π

agg (extendedprice * discount)γ

lineitem

SCAN

26

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
365.2108 1418.482 1920.728

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

87.67472 11.98881
87.75437 14.9901
89.62153 19.97205
182.0698 214.1835
98.44627 99.12788
201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

86.65741 17.2841491 11.93774 1.870134
87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

84.98788 11.73531 1.870134
84.99943 14.9807 35.4904
86.81531 19.2472 3126.133
53.78619 17.77678 5635.36
54.15577682 18.92309 42.51629
58.82072 26.09723 51910.05
37.9362 23.50066 364.2986

#Q Row UDF SP CTables
Q1
Q5
Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Average

6.049218 3.99627 3.979247 3.91177 76.610197 29.224907 28.885804 28.3293 5.761383 5.761383 1.54641450317317 2.70427504012379 7.2 4.9
6.500357 4.996701 4.993567 4.993567 76.786365 29.251457 29.235774 28.3331 6.4859846 6.4859846 1.30174621525613 2.71012504903531 5.7 4.4
8.166438 6.65735 6.415735 6.415735 77.949255 29.873844 29.661791 28.9384 9.1986176 9.1986176 1.27287645668418 2.69362360139779 4.5 3.1
115.2812 71.39452 6.026886 5.925594 96.499163 60.689942 17.773179 17.9287 135.28219 5.8851449 19.454796468212 5.38237556348034 3 3
80.61028 33.04263 6.307697 6.307697 91.366148 32.815423 17.552832 18.0519 78.720073 6.5704091 12.7796695554697 5.06129652327357 2.9 2.7
119.5952 66.07094 8.699078 8.699078 100.34913 67.094243 19.138945 19.6069 137.73047 9.89423 13.7480360153004 5.11804966848521 2.3 2
640.2426 630.0412 7.833554 7.833554 121.73695 56.357448 12.721117 12.6454 472.82738 7.4822793 81.7307954771259 9.62697542821979 1.6 1.7
139.4922 116.5999 6.322252 6.298142 91.613886 43.615323 22.138492 21.9763 120.85801 7.3254355 18.8334763844602 4.75667441057369 3.9 3.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

Column Row

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.7303 19.00066 4.03829689442592
99.72904 168.1716 0.593019363330949
77.58903 10.34288 7.50168462355436
110.9366 112.2248 0.988521365413824
92.48604 40.90545 2.26097083569539
81.20765 59.68494 1.36060536289681
79.14086 77.20672 1.02505138993445

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.6102 3.91177 19.5845332992439
76.78636 4.993567 15.3770576679435
77.94926 6.415735 12.1497000262355
96.49916 5.925594 16.2851466795314
91.36615 6.307697 14.4848662938839
100.3491 8.699078 11.5356054204958
121.7369 7.833554 15.5404496269874

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

10

20

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

(a) Simplified queries, Simplified dataset

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
365.2108 1418.482 1920.728

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

87.67472 11.98881
87.75437 14.9901
89.62153 19.97205
182.0698 214.1835
98.44627 99.12788
201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

86.65741 17.2841491 11.93774 1.870134
87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

84.98788 11.73531 1.870134
84.99943 14.9807 35.4904
86.81531 19.2472 3126.133
53.78619 17.77678 5635.36
54.15577682 18.92309 42.51629
58.82072 26.09723 51910.05
37.9362 23.50066 364.2986

#Q Row UDF SP CTables
Q1
Q5
Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Average

6.049218 3.99627 3.979247 3.91177 76.610197 29.224907 28.885804 28.3293 5.761383 5.761383 1.54641450317317 2.70427504012379 7.2 4.9
6.500357 4.996701 4.993567 4.993567 76.786365 29.251457 29.235774 28.3331 6.4859846 6.4859846 1.30174621525613 2.71012504903531 5.7 4.4
8.166438 6.65735 6.415735 6.415735 77.949255 29.873844 29.661791 28.9384 9.1986176 9.1986176 1.27287645668418 2.69362360139779 4.5 3.1
115.2812 71.39452 6.026886 5.925594 96.499163 60.689942 17.773179 17.9287 135.28219 5.8851449 19.454796468212 5.38237556348034 3 3
80.61028 33.04263 6.307697 6.307697 91.366148 32.815423 17.552832 18.0519 78.720073 6.5704091 12.7796695554697 5.06129652327357 2.9 2.7
119.5952 66.07094 8.699078 8.699078 100.34913 67.094243 19.138945 19.6069 137.73047 9.89423 13.7480360153004 5.11804966848521 2.3 2
640.2426 630.0412 7.833554 7.833554 121.73695 56.357448 12.721117 12.6454 472.82738 7.4822793 81.7307954771259 9.62697542821979 1.6 1.7
139.4922 116.5999 6.322252 6.298142 91.613886 43.615323 22.138492 21.9763 120.85801 7.3254355 18.8334763844602 4.75667441057369 3.9 3.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

Column Row

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.7303 19.00066 4.03829689442592
99.72904 168.1716 0.593019363330949
77.58903 10.34288 7.50168462355436
110.9366 112.2248 0.988521365413824
92.48604 40.90545 2.26097083569539
81.20765 59.68494 1.36060536289681
79.14086 77.20672 1.02505138993445

#Q Row SP UDF Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.6102 3.91177 5.761383 19.5845332992439
76.78636 4.993567 6.485985 15.3770576679435
77.94926 6.415735 9.198618 12.1497000262355
96.49916 5.925594 135.2822 16.2851466795314
91.36615 6.307697 78.72007 14.4848662938839
100.3491 8.699078 137.7305 11.5356054204958
121.7369 7.833554 472.8274 15.5404496269874

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

10

20

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

125

250

375

500

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

(b) Simplified queries, Unmodified dataset

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 0.138
99.729039 169.34457 299.18712 508.0337 0.589
110.93664 119.46429 332.80993 358.39288 0.929
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

(c) Unmodified queries, Unmodified dataset

Figure 3: Comparing TPC-H Query Runtimes of Trojan Columns with Standard Row in DBMS-X.

vious section. We also tried nested (and unmodified) TPC-H
queries. However, query nesting reduces the benefits of using Tro-
jan Columns. This is because Trojan Columns only improves the
I/O costs, which is just a fraction of the overall query costs. Apart
from I/O, the remaining query processing costs are still the same as
those for standard row.

4.2 Trojan Columns on Micro-benchmarks
In this section, we evaluate Trojan Columns on a micro-

benchmark. The idea is to understand the pros and cons of Trojan
Columns using simpler single table queries. Our micro-benchmark
consists of queries of the following form over the lineitem table.

SELECT attr_1,attr_2,..,attr_r FROM lineitem
WHERE l_partkey >= lowKey AND l_partkey < highKey;

We vary the selectivity of the above query (by adjusting lowKey
and highKey) as well as the number of projected attributes. Figure 4
shows the improvement factor of Trojan Columns over standard
row when varying the number of referenced attributes from 1 to
16, and selectivity from 10�6 to 1.

qa16 71.60011 71.74058 72.41696 74.32579 98.73742 322.3892 2491.637
qa15 33.04871 33.11921 33.54528 35.75 59.49115 279.758 2458.112
qa13 30.5564 30.62711 30.92837 33.24232 56.71105 269.9108 2420.362
qa11 26.41372 26.24167 26.68348 29.14089 53.20931 272.8816 2602.132
qa9 23.90317 23.89993 24.38536 26.48005 49.15689 280.7952 2555.326
qa7 21.97541 21.94776 22.44053 24.47841 48.20631 275.0487 2492.356
qa5 13.94277 14.02303 14.47728 16.47504 40.9869 266.2783 2562.701
qa3 11.87712 11.26811 11.59191 13.83992 36.73721 272.6078 2580.75
qa1 8.781504 8.675566 9.206705 11.29272 34.80775 267.7441 2606.762
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

qa16 152.6776 152.6776 152.6268 152.7685 152.9608 152.7476 152.7678
qa15 153.385 152.8995 152.7691 152.6166 152.7179 152.6566 153.0205
qa13 152.8888 153.2741 152.8284 153.1116 153.1723 152.8181 152.8595
qa11 152.8289 152.6875 153.4154 152.7188 152.8187 152.7271 152.8885
qa9 152.8593 152.5857 152.4958 153.3135 152.7388 152.6467 152.7074
qa7 153.8692 152.6672 152.6966 152.5147 152.8193 152.8088 152.8496
qa5 152.769 153.4248 152.7179 152.6675 153.5663 152.748 152.7384
qa3 152.6876 152.8791 153.2124 152.6269 152.718 152.779 152.7682
qa1 153.0306 152.7988 152.9599 153.2835 152.7586 152.8184 152.7484
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

16 2.13 2.13 2.11 2.06 1.55 0.47 0.06
15 4.64 4.62 4.55 4.27 2.57 0.55 0.06
13 5.00 5.00 4.94 4.61 2.70 0.57 0.06
11 5.79 5.82 5.75 5.24 2.87 0.56 0.06
9 6.39 6.38 6.25 5.79 3.11 0.54 0.06
7 7.00 6.96 6.80 6.23 3.17 0.56 0.06
5 10.96 10.94 10.55 9.27 3.75 0.57 0.06
3 12.86 13.57 13.22 11.03 4.16 0.56 0.06
1 17.43 17.61 16.61 13.57 4.39 0.57 0.06

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

)

Figure 4: Trojan Columns improvement factor in DBMS X.

From the figure, we see that Trojan Columns has a maximum im-
provement factor of over 17 (lower left region). Also, we see that
for low selectivities (� 0.1) Trojan Columns performs worse than
standard row. To investigate this, we break down the query runtime
into data access, data processing (decompression, operator evalua-
tion etc.), and data output costs. Our results showed that data output
costs dominate (as high as 60�80%) the query runtime for low se-
lectivity queries. This is because each call to the UDF interface has
some overhead: the lower the selectivity, the more function calls,
the higher the overhead. These function call overheads overshadow
the performance improvements of Trojan Columns for low selectiv-
ities. In principal, this overhead could be removed if the database
storage interface were available in LLVM bitcode. Then the UDF
query could at runtime be dynamically recompiled together with
the DBMS storage layer to remove that boundary and bake the UDF
into the kernel. This remains an interesting avenue for future work.

However, overall even for medium sized selectivites the perfor-
mance gains of Trojan Columns are tremendous.

4.3 How far are Trojan Columns?

4.3.1 Comparison with Materialized Views
The focus of Trojan Columns in this paper is to improve query

I/O cost. However, as mentioned before, I/O is just a fraction of the
total query costs. Since the database system is unaware of the col-
umn store inside, the query processing costs remain the same out-
side the UDF. To better understand the impact of Trojan Columns,
let us now see the query times inside the subquery. To do so, we
measure just the time to compute the subquery computed by the
read-UDF using (1) Standard Row, (2) Trojan Columns, and (3) a
Materialized View perfectly matching the query expression.

Figure 5(a) shows the results. We can see that Trojan Columns
is significantly better (factor 5 on average) than standard row. Fur-
thermore, we also see that except for Q14 Trojan Columns actually
outperforms Materialized Views by a factor of up to 2.5. This is
because Trojan Columns benefits from efficient column-oriented
compression. Query Q14 has the lowest selectivity (1.25%) among
these four queries, and therefore Trojan Columns does not perform
as well as Materialized Views. This is a very good result consider-
ing that Materialized Views require ⇠12GB of storage in this ex-
periment, whereas Trojan Columns only requires ⇠5GB. Still, the
performance of Trojan Columns is very close to Materialized Views
for Q14. We conclude that Trojan Columns provides considerable
improvements in terms of I/O costs. Furthermore, we see Trojan
Columns as a method that improves over Materialised Views, i.e. a
better way of storing and accessing query subexpressions.

4.3.2 Comparison with Column Stores
Trojan Columns allows users to use their existing row-oriented

database system for efficiently supporting analytical workloads as
well, i.e. bridge the huge gap between row stores and column
stores. Thus, it would be interesting to see how far are Trojan
Columns from a full blown column store. To do so, we run un-
modified TPC-H queries on Trojan Columns as well as on a top
notch commercial column-oriented database system DBMS-Y.

Figure 5(b) shows the results. We can see that while Trojan
Columns are slower than DBMS-Y for Q12 and Q14 (by a factor
of 1.3 and 1.4 respectively), Trojan Columns are in fact faster than
DBMS-Y for Q1 and Q6 (by a factor of 1.6 and 3 respectively).
This is because Trojan Column push down even the aggregation
operator to the data access layer for Q1 and Q6. Overall, we see
that Trojan Columns are quite competitive to a full blown column-
oriented database system and can achieve comparable query per-
formance in the same row-oriented database system.

5. DISCUSSION
Trojan Column Benefits. From the above experiments, we see that
Trojan Columns significantly improves the performance of DBMS-
X. This is because Trojan Columns can successfully emulate a col-
umn store without any overhead that typically exists in full vertical

5

Benchmark Results *

27* Mike Stonebraker et. al. C-Store: A Column Oriented DBMS. VLDB 2005

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
365.2108 1418.482 1920.728

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

87.67472 11.98881
87.75437 14.9901
89.62153 19.97205
182.0698 214.1835
98.44627 99.12788
201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

86.65741 17.2841491 11.93774 1.870134
87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

84.98788 11.73531 1.870134
84.99943 14.9807 35.4904
86.81531 19.2472 3126.133
53.78619 17.77678 5635.36
54.15577682 18.92309 42.51629
58.82072 26.09723 51910.05
37.9362 23.50066 364.2986

#Q Row UDF SP CTables
Q1
Q5
Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Average

6.049218 3.99627 3.979247 3.91177 76.610197 29.224907 28.885804 28.3293 5.761383 5.761383 1.54641450317317 2.70427504012379 7.2 4.9
6.500357 4.996701 4.993567 4.993567 76.786365 29.251457 29.235774 28.3331 6.4859846 6.4859846 1.30174621525613 2.71012504903531 5.7 4.4
8.166438 6.65735 6.415735 6.415735 77.949255 29.873844 29.661791 28.9384 9.1986176 9.1986176 1.27287645668418 2.69362360139779 4.5 3.1
115.2812 71.39452 6.026886 5.925594 96.499163 60.689942 17.773179 17.9287 135.28219 5.8851449 19.454796468212 5.38237556348034 3 3
80.61028 33.04263 6.307697 6.307697 91.366148 32.815423 17.552832 18.0519 78.720073 6.5704091 12.7796695554697 5.06129652327357 2.9 2.7
119.5952 66.07094 8.699078 8.699078 100.34913 67.094243 19.138945 19.6069 137.73047 9.89423 13.7480360153004 5.11804966848521 2.3 2
640.2426 630.0412 7.833554 7.833554 121.73695 56.357448 12.721117 12.6454 472.82738 7.4822793 81.7307954771259 9.62697542821979 1.6 1.7
139.4922 116.5999 6.322252 6.298142 91.613886 43.615323 22.138492 21.9763 120.85801 7.3254355 18.8334763844602 4.75667441057369 3.9 3.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

Column Row

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.7303 19.00066 4.03829689442592
99.72904 168.1716 0.593019363330949
77.58903 10.34288 7.50168462355436
110.9366 112.2248 0.988521365413824
92.48604 40.90545 2.26097083569539
81.20765 59.68494 1.36060536289681
79.14086 77.20672 1.02505138993445

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.6102 3.91177 19.5845332992439
76.78636 4.993567 15.3770576679435
77.94926 6.415735 12.1497000262355
96.49916 5.925594 16.2851466795314
91.36615 6.307697 14.4848662938839
100.3491 8.699078 11.5356054204958
121.7369 7.833554 15.5404496269874

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

10

20

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

(a) Simplified queries, Simplified dataset

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

229.8306 17.28415 18.14766
230.3591 19.45795 19.50107
233.8478 27.59585 24.49931
289.4975 405.8466 345.8437
274.0984 236.1602 241.8309
301.0474 413.1914 358.7857
365.2108 1418.482 1920.728

#Q Row UDF SP CTables
qnb1
qnb2
qnb3
qnb4
qnb5
qnb6
qnb7

87.67472 11.98881
87.75437 14.9901
89.62153 19.97205
182.0698 214.1835
98.44627 99.12788
201.2827 198.2128
169.0723 1890.123

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

86.65741 17.2841491 11.93774 1.870134
87.70732 19.4579537 14.9807 35.4904
88.98537 27.59585 19.2472 3126.133
53.31954 17.65543 18.08066 5635.36
52.6585 19.71123 18.92309 42.51629
57.41684 29.68269 26.09723 51910.05
38.16335 22.44684 23.50066 364.2986

#Q Row UDF SP CTables
qsnb1
qsnb2
qsnb3
qsnb4
qsnb5
qsnb6
qsnb7

84.98788 11.73531 1.870134
84.99943 14.9807 35.4904
86.81531 19.2472 3126.133
53.78619 17.77678 5635.36
54.15577682 18.92309 42.51629
58.82072 26.09723 51910.05
37.9362 23.50066 364.2986

#Q Row UDF SP CTables
Q1
Q5
Q6
Q10
Q12
Q14
Q19

230.1909 57.88195 57.00197
299.1871 508.0337 504.5149
232.7671 25.95971 31.02864
332.8099 358.3929 336.6745
277.4581 111.9957 122.7164
243.6229 92.36434 179.0548
237.42257 129.345887 231.6202

#Q SP1 SP2 SP3 SP4 Row1 Row2 Row3 Row4 UDF1 UDF3 SP Improvement Row Improvement SP Over Row UDF Over Row
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Average

6.049218 3.99627 3.979247 3.91177 76.610197 29.224907 28.885804 28.3293 5.761383 5.761383 1.54641450317317 2.70427504012379 7.2 4.9
6.500357 4.996701 4.993567 4.993567 76.786365 29.251457 29.235774 28.3331 6.4859846 6.4859846 1.30174621525613 2.71012504903531 5.7 4.4
8.166438 6.65735 6.415735 6.415735 77.949255 29.873844 29.661791 28.9384 9.1986176 9.1986176 1.27287645668418 2.69362360139779 4.5 3.1
115.2812 71.39452 6.026886 5.925594 96.499163 60.689942 17.773179 17.9287 135.28219 5.8851449 19.454796468212 5.38237556348034 3 3
80.61028 33.04263 6.307697 6.307697 91.366148 32.815423 17.552832 18.0519 78.720073 6.5704091 12.7796695554697 5.06129652327357 2.9 2.7
119.5952 66.07094 8.699078 8.699078 100.34913 67.094243 19.138945 19.6069 137.73047 9.89423 13.7480360153004 5.11804966848521 2.3 2
640.2426 630.0412 7.833554 7.833554 121.73695 56.357448 12.721117 12.6454 472.82738 7.4822793 81.7307954771259 9.62697542821979 1.6 1.7
139.4922 116.5999 6.322252 6.298142 91.613886 43.615323 22.138492 21.9763 120.85801 7.3254355 18.8334763844602 4.75667441057369 3.9 3.1

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Ru
nt

im
e

(s
ec

)

Stage 1 Stage 2 Stage 3 Stage 4

1

10

100

1000

10000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

Column Row

#Q Row SP Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.7303 19.00066 4.03829689442592
99.72904 168.1716 0.593019363330949
77.58903 10.34288 7.50168462355436
110.9366 112.2248 0.988521365413824
92.48604 40.90545 2.26097083569539
81.20765 59.68494 1.36060536289681
79.14086 77.20672 1.02505138993445

#Q Row SP UDF Improvement Factor
Q1
Q2
Q3
Q4
Q5
Q6
Q7

76.6102 3.91177 5.761383 19.5845332992439
76.78636 4.993567 6.485985 15.3770576679435
77.94926 6.415735 9.198618 12.1497000262355
96.49916 5.925594 135.2822 16.2851466795314
91.36615 6.307697 78.72007 14.4848662938839
100.3491 8.699078 137.7305 11.5356054204958
121.7369 7.833554 472.8274 15.5404496269874

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

30

60

90

120

150

180

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Row SP

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

5

10

15

20

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Im
pr

ov
em

en
t F

ac
to

r

0

10

20

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

125

250

375

500

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

(b) Simplified queries, Unmodified dataset

Standard Row Trojan Columns Trojan Columns (SP)

Lineitem
Orders
Part
customer
partsupp
supplier
nation
region

771.41172 1451.3873 365.11702086
484.01618 369.97302
100.43459 59.400493
89.459029 ***
401.02168 ***
10.144428 ***
5.5904746 ***
5.8037666 ***

0

375

750

1125

1500

Lineitem Orders Part

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

Standard Row Trojan Columns Trojan Columns (SP) Standard Row Trojan Columns Trojan Columns (O) Trojan Columns (SP) Factor Factor

Q1
Q6
Q12
Q14
Q3
Q5
Q10
Q19
Q2
Q4
Q8
Q15
Q17

76.730296 19.293983 24.208052774 230.19089 57.881948 72.62415832 3.977 3.17
77.589034 8.6532381 11.235220175 232.7671 25.959714 33.70566052 8.966 6.906
92.486038 37.331905 40.598335758 277.45811 111.99572 121.7950073 2.477 2.278
81.207649 30.788114 59.597473787 243.62295 92.364343 178.7924214 2.638 1.363
111.88261 809.38127 335.64782 2428.1438 0.138
99.729039 169.34457 299.18712 508.0337 0.589
110.93664 119.46429 332.80993 358.39288 0.929
79.140857 43.115296 237.42257 129.34589 227.3616356 1.836
0 0
110.75535 0 332.26604
97.387131 97.664365 292.16139 292.9931 0.997
80.508382 66.914039 241.52515 200.74212 1.203
0 0
0 0

0

25

50

75

100

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns

0

35

70

105

140

Q1 Q6 Q12 Q14

Q
ue

ry
 T

im
e

(s
ec

)

Standard Row
Trojan Columns (UDF)
Trojan Columns (SP)

(c) Unmodified queries, Unmodified dataset

Figure 3: Comparing TPC-H Query Runtimes of Trojan Columns with Standard Row in DBMS-X.

vious section. We also tried nested (and unmodified) TPC-H
queries. However, query nesting reduces the benefits of using Tro-
jan Columns. This is because Trojan Columns only improves the
I/O costs, which is just a fraction of the overall query costs. Apart
from I/O, the remaining query processing costs are still the same as
those for standard row.

4.2 Trojan Columns on Micro-benchmarks
In this section, we evaluate Trojan Columns on a micro-

benchmark. The idea is to understand the pros and cons of Trojan
Columns using simpler single table queries. Our micro-benchmark
consists of queries of the following form over the lineitem table.

SELECT attr_1,attr_2,..,attr_r FROM lineitem
WHERE l_partkey >= lowKey AND l_partkey < highKey;

We vary the selectivity of the above query (by adjusting lowKey
and highKey) as well as the number of projected attributes. Figure 4
shows the improvement factor of Trojan Columns over standard
row when varying the number of referenced attributes from 1 to
16, and selectivity from 10�6 to 1.

qa16 71.60011 71.74058 72.41696 74.32579 98.73742 322.3892 2491.637
qa15 33.04871 33.11921 33.54528 35.75 59.49115 279.758 2458.112
qa13 30.5564 30.62711 30.92837 33.24232 56.71105 269.9108 2420.362
qa11 26.41372 26.24167 26.68348 29.14089 53.20931 272.8816 2602.132
qa9 23.90317 23.89993 24.38536 26.48005 49.15689 280.7952 2555.326
qa7 21.97541 21.94776 22.44053 24.47841 48.20631 275.0487 2492.356
qa5 13.94277 14.02303 14.47728 16.47504 40.9869 266.2783 2562.701
qa3 11.87712 11.26811 11.59191 13.83992 36.73721 272.6078 2580.75
qa1 8.781504 8.675566 9.206705 11.29272 34.80775 267.7441 2606.762
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

qa16 152.6776 152.6776 152.6268 152.7685 152.9608 152.7476 152.7678
qa15 153.385 152.8995 152.7691 152.6166 152.7179 152.6566 153.0205
qa13 152.8888 153.2741 152.8284 153.1116 153.1723 152.8181 152.8595
qa11 152.8289 152.6875 153.4154 152.7188 152.8187 152.7271 152.8885
qa9 152.8593 152.5857 152.4958 153.3135 152.7388 152.6467 152.7074
qa7 153.8692 152.6672 152.6966 152.5147 152.8193 152.8088 152.8496
qa5 152.769 153.4248 152.7179 152.6675 153.5663 152.748 152.7384
qa3 152.6876 152.8791 153.2124 152.6269 152.718 152.779 152.7682
qa1 153.0306 152.7988 152.9599 153.2835 152.7586 152.8184 152.7484
0 qs6 qs5 qs4 qs3 qs2 qs1 qs0

16 2.13 2.13 2.11 2.06 1.55 0.47 0.06
15 4.64 4.62 4.55 4.27 2.57 0.55 0.06
13 5.00 5.00 4.94 4.61 2.70 0.57 0.06
11 5.79 5.82 5.75 5.24 2.87 0.56 0.06
9 6.39 6.38 6.25 5.79 3.11 0.54 0.06
7 7.00 6.96 6.80 6.23 3.17 0.56 0.06
5 10.96 10.94 10.55 9.27 3.75 0.57 0.06
3 12.86 13.57 13.22 11.03 4.16 0.56 0.06
1 17.43 17.61 16.61 13.57 4.39 0.57 0.06

1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E+00

selectivity (fraction of tuples accessed)

re

fe
re

nc
ed

 a
ttr

ib
ut

es
 (r

)

Figure 4: Trojan Columns improvement factor in DBMS X.

From the figure, we see that Trojan Columns has a maximum im-
provement factor of over 17 (lower left region). Also, we see that
for low selectivities (� 0.1) Trojan Columns performs worse than
standard row. To investigate this, we break down the query runtime
into data access, data processing (decompression, operator evalua-
tion etc.), and data output costs. Our results showed that data output
costs dominate (as high as 60�80%) the query runtime for low se-
lectivity queries. This is because each call to the UDF interface has
some overhead: the lower the selectivity, the more function calls,
the higher the overhead. These function call overheads overshadow
the performance improvements of Trojan Columns for low selectiv-
ities. In principal, this overhead could be removed if the database
storage interface were available in LLVM bitcode. Then the UDF
query could at runtime be dynamically recompiled together with
the DBMS storage layer to remove that boundary and bake the UDF
into the kernel. This remains an interesting avenue for future work.

However, overall even for medium sized selectivites the perfor-
mance gains of Trojan Columns are tremendous.

4.3 How far are Trojan Columns?

4.3.1 Comparison with Materialized Views
The focus of Trojan Columns in this paper is to improve query

I/O cost. However, as mentioned before, I/O is just a fraction of the
total query costs. Since the database system is unaware of the col-
umn store inside, the query processing costs remain the same out-
side the UDF. To better understand the impact of Trojan Columns,
let us now see the query times inside the subquery. To do so, we
measure just the time to compute the subquery computed by the
read-UDF using (1) Standard Row, (2) Trojan Columns, and (3) a
Materialized View perfectly matching the query expression.

Figure 5(a) shows the results. We can see that Trojan Columns
is significantly better (factor 5 on average) than standard row. Fur-
thermore, we also see that except for Q14 Trojan Columns actually
outperforms Materialized Views by a factor of up to 2.5. This is
because Trojan Columns benefits from efficient column-oriented
compression. Query Q14 has the lowest selectivity (1.25%) among
these four queries, and therefore Trojan Columns does not perform
as well as Materialized Views. This is a very good result consider-
ing that Materialized Views require ⇠12GB of storage in this ex-
periment, whereas Trojan Columns only requires ⇠5GB. Still, the
performance of Trojan Columns is very close to Materialized Views
for Q14. We conclude that Trojan Columns provides considerable
improvements in terms of I/O costs. Furthermore, we see Trojan
Columns as a method that improves over Materialised Views, i.e. a
better way of storing and accessing query subexpressions.

4.3.2 Comparison with Column Stores
Trojan Columns allows users to use their existing row-oriented

database system for efficiently supporting analytical workloads as
well, i.e. bridge the huge gap between row stores and column
stores. Thus, it would be interesting to see how far are Trojan
Columns from a full blown column store. To do so, we run un-
modified TPC-H queries on Trojan Columns as well as on a top
notch commercial column-oriented database system DBMS-Y.

Figure 5(b) shows the results. We can see that while Trojan
Columns are slower than DBMS-Y for Q12 and Q14 (by a factor
of 1.3 and 1.4 respectively), Trojan Columns are in fact faster than
DBMS-Y for Q1 and Q6 (by a factor of 1.6 and 3 respectively).
This is because Trojan Column push down even the aggregation
operator to the data access layer for Q1 and Q6. Overall, we see
that Trojan Columns are quite competitive to a full blown column-
oriented database system and can achieve comparable query per-
formance in the same row-oriented database system.

5. DISCUSSION
Trojan Column Benefits. From the above experiments, we see that
Trojan Columns significantly improves the performance of DBMS-
X. This is because Trojan Columns can successfully emulate a col-
umn store without any overhead that typically exists in full vertical

5

Benchmark Results *

27* Mike Stonebraker et. al. C-Store: A Column Oriented DBMS. VLDB 2005

5x

1980s

1990s

2000s

HYRISE
2010s

7 Vertical Partitioning
Algorithms

• Brute Force

• Navathe’s Algorithm

• HillClimb

• AutoPart

• HYRISE

• O2P

• Trojan
29

Four Comparison Metrics

• How Fast?

• How Good?

• How fragile?

• Where does it makes sense?

30

Optimization Runtime

31

If the table has N rows, the total number of blocks on disk for par-
tition i are:

blocksi =

2

666
Nj
b
si

k

3

777
.

Assume that we have to perform a seek every time the I/O buffer
for partition i needs to be filled. Then the number of times the
I/O buffer gets full determines the seek cost of reading partition i.
Given an average seek time ts of the disk, the seek cost of reading
partition i is given as:

costseek
i = ts ·

&
blocksi

blocksbuff
i

'
.

On the other hand, the scan cost of partition i is determined by
the total number of blocks of partition i to be read. Given disk
bandwidth BW, the scan cost of partition i is given as:

costscan
i =

blocksi · b
BW

.

Finally, for a query Q referencing a PQ set of vertical partitions, the
total I/O cost is the sum of the seek- and scan costs of all referenced
partitions:

costQ =
X

i2PQ

⇣
costseek

i + costscan
i

⌘
.

The total I/O costs of the entire workload will be the sum of the I/O
costs of each query in the workload.

5. COMPARISON METRICS
As discussed in the previous section, we apply the same setting

to all vertical partitioning algorithms. However, since there is no
prior work comparing different vertical partitioning algorithms, it
is not clear how to compare them, i.e. the comparison metrics are
not defined. The authors of HYRISE compared their algorithm
against HillClimb in terms of query costs. However, we believe
that other measures such as time taken to compute the layouts are
equally important. Thus, in this section, we systematically intro-
duce four comparison metrics for vertical partitioning algorithms
and describe them below.
How fast? Vertical partitioning being an NP-hard problem, the first
thing that comes to mind is how fast is a given algorithm, i.e. how
long does it take to come up with a solution. Additionally, the
optimization time should be seen in comparison to the table size (or
indirectly the layout creation time). For example, if it takes fifteen
minutes to create the layouts (i.e., a large table) then it might be
acceptable to spend an hour to find the layouts.
How good? Since the goal of a vertical partitioning algorithm is to
improve the workload runtime, it is important to know the expected
workload runtime. Additionally, it is important to know how much
does vertical partitioning improve the workload runtime over row
and column layouts. Note that this improvement comes at a price:
we need to invest in the optimization and the creation time. Thus,
we need to see the time invested (optimization + creation) com-
pared to the expected workload execution cost benefits.

In fact, the ratio of these two quantities gives the fraction (or the
multiple) of query workload that we need to execute before the time
invested pays off over the workload runtime improvements.
How fragile? Heterogenous hardwares/software settings are com-
mon in data centers these days. However, vertical partitioning al-
gorithms can be computationally expensive, therefore it is not pos-
sible to recompute them for each and every hardware/software set-
ting. Thus, we need to know how fragile the different vertical par-
titioning algorithms are over different parameters in the cost model
(which models the hardware/software settings). We measure algo-
rithm fragility as the change in workload runtime when there is a

change in a cost model parameter. Fragility, thus defined, gives
hints on whether or not we should re-run the vertical partitioning
algorithm if the hardware/software settings change.
Where does it make sense? The fragility metric above measures
how far off is the workload performance, if we optimize vertical
partitioning for one cost model and use it over another. However, at
the same time, it is also important to know how does the workload
performance change if we re-optimize vertical partitioning over dif-
ferent cost models. Thus, we optimize for each new cost model pa-
rameter and show the workload performance. This helps us to find
the sweet spots for vertical partitioning, i.e. the cost model param-
eters for which vertical partitioning makes the most sense.

6. SIMULATIONS AND EXPERIMENTS
We now present the results from the six vertical partitioning al-

gorithms considered in Section 3. We implemented all algorithms
in Java 6 and tried to keep the implementations as close to the orig-
inal descriptions as possible. However, we did adapt the algorithms
to the unified settings shown in Table 2. For example, Trojan was
adapted to work without considering data replication. We ran all
experiments on the common hardware described in Section 4. We
organize the results along the four comparison metrics introduced
in Section 5. We repeated each measurement five times and report
the average. We discarded the results of the first five runs to allow
for just-in-time compilation in the JVM to complete and use the
results of the second five runs. We used cold caches, both for the
operating system as well as the hard disk, for all runs.

6.1 Comparing Optimization Time
In this section we address the following questions:

How do the algorithms compare in terms of optimization time?

Figure 1 shows the optimization times for different vertical parti-
tioning algorithms. We can see that the fastest algorithm (O2P) is

0.01

0.1

1

10

100

1,000

10,000

O
pt

im
iza

tio
n

tim
e

(s
)

AutoPart HillClimb HYRISE Navathe O2P Trojan BruteForce

Figure 1: Optimization time for different algorithms

5 orders of magnitude faster than BruteForce. Even the slowest al-
gorithm (Trojan) is 3 orders of magnitude faster than BruteForce.
Thus, all algorithms find a vertical partitioning solution much faster
than BruteForce. The optimization times of AutoPart, HillClimb,
HYRISE, Navathe, and O2P are quite acceptable (at most 5 sec-
onds), however, Trojan and BruteForce have very high optimization
times (1.5 minutes and 1 hour, respectively). The time to transform
from row layout to vertically partitioned layout for scale factor 10
is around 420 seconds for all algorithms. This means that it takes
much longer to transform the layout than it takes to compute the
layout.

How do the optimization times change with the workload size?

Let us now see how the optimization times change with the work-
load size. Recall that, for every vertical partitioning candidate, an
algorithm computes the expected cost of each query in the query

Distance from Column
Layouts

32

TPC-H SSB
AutoPart
HillClimb
HYRISE
Navathe
O2P
Trojan
BruteForce

3.71 5.29
3.71 5.29
1.58 5.27

-21.47 1.64
-27.74 1.64

3.71 0.05
3.71 5.29

-30

-25

-20

-15

-10

-5

0

5

10

AutoPart HillClimb HYRISE Navathe O2P Trojan BruteForce

Pe
rc

en
ta

ge
 D

iff
er

en
ce

 fr
om

 C
ol

um
n

La
yo

ut
s

[%
]

TPC-H SSB

Effect of Buffer Size

33

-5

0

5

10

15

20

25

30

HillClimb Navathe Column Row

-0.05-0.19-0.16-0.16

-0.05-0.19-0.16-0.16

-0.05-0.17-0.15-0.15

0000

0.471.801.541.50

5.24

24.23

18.12
20.00

Fr
ag

ilit
y

(fa
ct

or
)

0.08 MB 0.8 MB
8 MB 80 MB
800 MB 8000 MB

Figure 8: Algorithm fragility — estimated change in workload
runtime due to changing the buffer size at query time.

From the figure, we can see that changing the buffer size can sig-
nificantly affect the workload runtime, by up to 24 times. This is
because buffer size strongly determines the number of random I/Os
during query processing. Other disk parameters like block size,
disk bandwidth, and disk seek time do not have such an impact on
query performance. Interested readers can see Appendix A.2 for
details. The take away message is that the performance of verti-
cally partitioned layouts depends highly on the buffer size.

We also ran an experiment to see how the query workload costs
change with changes in the query workload, i.e. to see how fragile
the algorithms are to the workload changes. Our results show that
query workload costs change by only 14% for up to 50% change in
query workload.

6.4 Where does vertical partitioning make
sense?

In this section we concern ourselves with the following issues:

What happens if we adapt to different disk characteristics?

In the previous section, we saw that the performance of vertically
partitioned layouts depend strongly on the buffer size. So let us
now see how much do the query times change, if the partitioning is
adapted to the different buffer sizes. Figure 9 shows the estimated
workload runtimes for two vertical partitioning algorithms (Hill-
Climb and Navathe) normalized by the estimated workload runtime
for Column, when the buffer size is changed.

Normalized Estimated Costs =
Estimated costs of the layout
Estimated costs of Column

⇤ 100%

0%

25%

50%

75%

100%

125%

150%

0.01 0.1 1 10 100 1,000 10,000

N
or

m
al

ize
d

es
td

. c
os

ts
 (%

)

Buffer Size (MB, log scale)

HillClimb Navathe
Materialized views Column

Figure 9: Estimated workload runtime compared to Column
when re-optimizing for each buffer size.

Additionally, we also show the workload costs of the perfect mate-
rialized views as well as for Column. We do not show Row because
it is out-performed by all other layouts for all buffer size values. In
order to amplify the variation we compare the workload costs to
Column for different buffer sizes. The first thing that we see is
that in the best case, i.e. for the perfect materialized views, verti-
cal partitioning pays off over Column only up to a buffer size of
100 MB. The layouts produced by HillClimb perform either bet-
ter or the same as Column. HillClimb has the best improvement
over Column for a buffer size of 100KB. The layouts produced by
Navathe, on the other hand, perform better than Column only in a

narrow range of approximately 30 KB to 300 KB. For all remaining
buffer size values, Navathe performs worse than Column. For the
sake of completeness, we also ran experiments to see the adaptivity
of vertical partitioning algorithms over block size, disk bandwidth,
and disk seek time. We have additionally examined the effects of
scaling the dataset (see Appendix A.3 and A.4).

The key message from this experiment, and also from this paper,
is that vertical partitioning makes sense only for small buffer sizes,
e.g. less than 100 MB. This is indeed the case for many data man-
agement systems. For example, PostgreSQL has a default buffer
size of 8 MB. In case we can afford to have big buffers (due to large
main-memory or dedicated nodes) it is better to use column layout.
We also repeated this experiment with different dataset sizes. In-
terested readers can see Figures 13(a) and 13(b).

7. LESSONS LEARNED
In this paper, we compared different vertical partitioning algo-

rithms and studied ways to pick one vertical partitioning algorithm
over another for row-oriented database systems. Traditionally, ver-
tical partitioning and index selection have been treated as different
problems3 and hence we do not consider selection predicates and
indexes in our study. However, we did consider putting the selec-
tion attributes in a different partition. But it turns out that this af-
fects the data layouts only when the selectivity is higher than 10�4

for uniformly distributed datasets, such as TPC-H. Below we dis-
cuss the key lessons learned in this paper.

1. We don’t really need brute force. The brute force algorithm
spends an extremely long time to compute the layouts (more than
an hour for TPC-H). On the other hand, the vertical partitioning
algorithms evaluated in this paper terminate in at most a few min-
utes. In fact, AutoPart and HillClimb take less than 1 second to
compute the layouts for all tables in the TPC-H benchmark. Still
both AutoPart and HillClimb find exactly the same solution as the
brute force algorithm. HYRISE takes slightly more than a second
to compute the layouts but it is only 2.21% off from the brute force
algorithm, in terms of query costs. Similarly Trojan takes a couple
of minutes for optimization, however it is just 0.01% off from the
brute force algorithm in terms of estimated runtime. This is an im-
portant result and shows that we do not really need the brute force
algorithm. Several heuristics, as proposed in different algorithms,
are good enough.

2. Watch out for the buffer size. The performance of vertically
partitioned layouts depend heavily on the database buffer size. In
fact, the buffer size can impact the query workload runtimes by as
much as factor 20. Thus buffer size is a crucial consideration when
computing vertical partitioning. Furthermore, our measurements
reveal that vertical partitioning improves over column layout only
for buffer sizes less than 100 MB. This means if we can have a
system with buffered reads of more than 100 MB at a time, then
we better use the column layout. Put another way: if we want to
avoid vertical partitioning then we must increase the buffer size of
our database system. This is one of the core results of this paper.

3. HillClimb is the best algorithm for disk-based systems.
Amongst the six vertical partitioning algorithms compared in this
paper, HillClimb turns out to be the best for the TPC-H queries.
HillClimb offers the best trade-off between optimization time and
workload runtime performance. It spends 4 orders of magnitude
less time in optimization and still finds the same vertical partition-
ing as the brute force algorithm. As a result, the optimization time
3In fact, most of the vertical partitioning algorithms do not consider
selectivities.

Comparison’s Paper: Hadoop Vs PDBMS

Comparison’s Paper: Hadoop Vs PDBMS

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

20

40

60

80

100

120

140

160

se
co

nd
s

←
 0

.3

←
 0

.8

←
 1

.8

←
 4

.7

←
 1

2.
4

Vertica Hadoop

Figure 6: Selection Task Results

tom input handlers in Hadoop; the MR programs are able to use
Hadoop’s KeyValueTextInputFormat interface on the data
files to automatically split lines of text files into key/values pairs by
the tab delimiter. Again, we found that other data format options,
such as SequenceFileInputFormat or custom Writable
tuples, resulted in both slower load and execution times.

DBMS-X: We used the same loading procedures for DBMS-X as
discussed in Section 4.2. The Rankings table was hash partitioned
across the cluster on pageURL and the data on each node was sorted
by pageRank. Likewise, the UserVisits table was hash partitioned
on destinationURL and sorted by visitDate on each node.

Vertica: Similar to DBMS-X, Vertica used the same bulk load com-
mands discussed in Section 4.2 and sorted the UserVisits and Rank-
ings tables by the visitDate and pageRank columns, respectively.

Results & Discussion: Since the results of loading the UserVisits
and Ranking data sets are similar, we only provide the results for
loading the larger UserVisits data in Figure 3. Just as with loading
the Grep 535MB/node data set (Figure 1), the loading times for
each system increases in proportion to the number of nodes used.

4.3.2 Selection Task
The Selection task is a lightweight filter to find the pageURLs

in the Rankings table (1GB/node) with a pageRank above a user-
defined threshold. For our experiments, we set this threshold pa-
rameter to 10, which yields approximately 36,000 records per data
file on each node.

SQL Commands: The DBMSs execute the selection task using the
following simple SQL statement:

SELECT pageURL, pageRank
FROM Rankings WHERE pageRank > X;

MapReduce Program: The MR program uses only a single Map
function that splits the input value based on the field delimiter and
outputs the record’s pageURL and pageRank as a new key/value
pair if its pageRank is above the threshold. This task does not re-
quire a Reduce function, since each pageURL in the Rankings data
set is unique across all nodes.

Results & Discussion: As was discussed in the Grep task, the re-
sults from this experiment, shown in Figure 6, demonstrate again
that the parallel DBMSs outperform Hadoop by a rather significant

factor across all cluster scaling levels. Although the relative per-
formance of all systems degrade as both the number of nodes and
the total amount of data increase, Hadoop is most affected. For
example, there is almost a 50% difference in the execution time
between the 1 node and 10 node experiments. This is again due
to Hadoop’s increased start-up costs as more nodes are added to
the cluster, which takes up a proportionately larger fraction of total
query time for short-running queries.
Another important reason for why the parallel DBMSs are able

to outperform Hadoop is that both Vertica and DBMS-X use an in-
dex on the pageRank column and store the Rankings table already
sorted by pageRank. Thus, executing this query is trivial. It should
also be noted that although Vertica’s absolute times remain low, its
relative performance degrades as the number of nodes increases.
This is in spite of the fact that each node still executes the query in
the same amount of time (about 170ms). But because the nodes fin-
ish executing the query so quickly, the system becomes flooded with
control messages from too many nodes, which then takes a longer
time for the system to process. Vertica uses a reliable message layer
for query dissemination and commit protocol processing [4], which
we believe has considerable overhead when more than a few dozen
nodes are involved in the query.

4.3.3 Aggregation Task
Our next task requires each system to calculate the total adRev-

enue generated for each sourceIP in the UserVisits table (20GB/node),
grouped by the sourceIP column. We also ran a variant of this query
where we grouped by the seven-character prefix of the sourceIP col-
umn to measure the effect of reducing the total number of groups
on query performance. We designed this task to measure the per-
formance of parallel analytics on a single read-only table, where
nodes need to exchange intermediate data with one another in order
compute the final value. Regardless of the number of nodes in the
cluster, this tasks always produces 2.5 million records (53 MB); the
variant query produces 2,000 records (24KB).

SQLCommands: The SQL commands to calculate the total adRev-
enue is straightforward:

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourceIP;

The variant query is:

SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue)
FROM UserVisits GROUP BY SUBSTR(sourceIP, 1, 7);

MapReduce Program: Unlike the previous tasks, the MR program
for this task consists of both a Map and Reduce function. The Map
function first splits the input value by the field delimiter, and then
outputs the sourceIP field (given as the input key) and the adRev-
enue field as a new key/value pair. For the variant query, only the
first seven characters (representing the first two octets, each stored
as three digits) of the sourceIP are used. These two Map functions
share the same Reduce function that simply adds together all of the
adRevenue values for each sourceIP and then outputs the prefix and
revenue total. We also used MR’s Combine feature to perform the
pre-aggregate before data is transmitted to the Reduce instances,
improving the first query’s execution time by a factor of two [8].

Results & Discussion: The results of the aggregation task experi-
ment in Figures 7 and 8 show once again that the two DBMSs out-
perform Hadoop. The DBMSs execute these queries by having each
node scan its local table, extract the sourceIP and adRevenue fields,
and perform a local group by. These local groups are then merged at

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

200

400

600

800

1000

1200

1400

1600

1800

se
co

nd
s

←
 2

1.
5

←
 2

8.
2

←
 3

1.
3

←
 3

6.
1

←
 8

5.
0

←
 1

5.
7

←
 2

8.
0

←
 2

9.
2

←
 2

9.
4

←
 3

1.
9

Vertica DBMS−X Hadoop

Figure 9: Join Task Results

1 Nodes 10 Nodes 25 Nodes 50 Nodes 100 Nodes
0

1000

2000

3000

4000

5000

6000

7000

8000

se
co

nd
s

Vertica Hadoop

Figure 10: UDF Aggregation Task Results

records for a particular sourceIP on a single node. We use the iden-
tity Map function in the Hadoop API to supply records directly to
the split process [1, 8].
Reduce Function: For each sourceIP, the function adds up the

adRevenue and computes the average pageRank, retaining the one
with the maximum total ad revenue. Each Reduce instance outputs
a single record with sourceIP as the key and the value as a tuple of
the form (avgPageRank, totalRevenue).

Phase 3 – In the final phase, we again only need to define a sin-
gle Reduce function that uses the output from the previous phase to
produce the record with the largest total adRevenue. We only exe-
cute one instance of the Reduce function on a single node to scan
all the records from Phase 2 and find the target record.
Reduce Function: The function processes each key/value pair

and keeps track of the record with the largest totalRevenue field.
Because the Hadoop API does not easily expose the total number
records that a Reduce instance will process, there is no way for
the Reduce function to know that it is processing the last record.
Therefore, we override the closing callback method in our Reduce
implementation so that the MR program outputs the largest record
right before it exits.

Results & Discussion: The performance results for this task is dis-
played in Figure 9. We had to slightly change the SQL used in 100
node experiments for Vertica due to an optimizer bug in the system,
which is why there is an increase in the execution time for Vertica
going from 50 to 100 nodes. But even with this increase, it is clear
that this task results in the biggest performance difference between
Hadoop and the parallel database systems. The reason for this dis-
parity is two-fold.
First, despite the increased complexity of the query, the perfor-

mance of Hadoop is yet again limited by the speed with which the
large UserVisits table (20GB/node) can be read off disk. The MR
program has to perform a complete table scan, while the parallel
database systems were able to take advantage of clustered indexes
on UserVisits.visitDate to significantly reduce the amount of data
that needed to be read. When breaking down the costs of the dif-
ferent parts of the Hadoop query, we found that regardless of the
number of nodes in the cluster, phase 2 and phase 3 took on aver-
age 24.3 seconds and 12.7 seconds, respectively. In contrast, phase
1, which contains the Map task that reads in the UserVisits and
Rankings tables, takes an average of 1434.7 seconds to complete.
Interestingly, it takes approximately 600 seconds of raw I/O to read
the UserVisits and Rankings tables off of disk and then another 300

seconds to split, parse, and deserialize the various attributes. Thus,
the CPU overhead needed to parse these tables on the fly is the lim-
iting factor for Hadoop.
Second, the parallel DBMSs are able to take advantage of the fact

that both the UserVisits and the Rankings tables are partitioned by
the join key. This means that both systems are able to do the join
locally on each node, without any network overhead of repartition-
ing before the join. Thus, they simply have to do a local hash join
between the Rankings table and a selective part of the UserVisits
table on each node, with a trivial ORDER BY clause across nodes.

4.3.5 UDF Aggregation Task
The final task is to compute the inlink count for each document

in the dataset, a task that is often used as a component of PageR-
ank calculations. Specifically, for this task, the systems must read
each document file and search for all the URLs that appear in the
contents. The systems must then, for each unique URL, count the
number of unique pages that reference that particular URL across
the entire set of files. It is this type of task that the MR is believed
to be commonly used for.
We make two adjustments for this task in order to make pro-

cessing easier in Hadoop. First, we allow the aggregate to include
self-references, as it is non-trivial for a Map function to discover
the name of the input file it is processing. Second, on each node
we concatenate the HTML documents into larger files when storing
them in HDFS. We found this improved Hadoop’s performance by
a factor of two and helped avoid memory issues with the central
HDFS master when a large number of files are stored in the system.

SQL Commands: To perform this task in a parallel DBMS re-
quires a user-defined function F that parses the contents of each
record in the Documents table and emits URLs into the database.
This function can be written in a general-purpose language and is
effectively identical to the Map program discussed below. With this
function F, we populate a temporary table with a list of URLs and
then can execute a simple query to calculate the inlink count:

SELECT INTO Temp F(contents) FROM Documents;
SELECT url, SUM(value) FROM Temp GROUP BY url;

Despite the simplicity of this proposed UDF, we found that in
practice it was difficult to implement in the DBMSs.
For DBMS-X, we translated the MR program used in Hadoop

into an equivalent C program that uses the POSIX regular expres-
sion library to search for links in the document. For each URL
found in the document contents, the UDF returns a new tuple (URL,

Analytical Query
Performance

Selection Task Join Task

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 52

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T �1

. . .

R2

T �2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

u�
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Figure 3.2: The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical
query execution plan

(SortGrp) building groups as defined by UDF grp. For each group MMap5 calls UDF
combine which pre-reduces the data [45]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files are then retrieved from
disk and merged (Merge). Again, we apply SortGrp, MMap and combine. The result is
stored back on disk (Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3 looks di↵erent. This
asymmetry may occur if a mapper subplan (here: M3) consumes less input data and/or

5A multimap operator MMap maps one input item to zero, one, or many output item(s). See Sec-
tion 3.2.6 for details.

..

Client

Data Node 1Data Node 3

Mapper 1 Mapper 3

Reducer 1

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 52

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T �1

. . .

R2

T �2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

u�
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Figure 3.2: The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical
query execution plan

(SortGrp) building groups as defined by UDF grp. For each group MMap5 calls UDF
combine which pre-reduces the data [45]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files are then retrieved from
disk and merged (Merge). Again, we apply SortGrp, MMap and combine. The result is
stored back on disk (Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3 looks di↵erent. This
asymmetry may occur if a mapper subplan (here: M3) consumes less input data and/or

5A multimap operator MMap maps one input item to zero, one, or many output item(s). See Sec-
tion 3.2.6 for details.

..

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 52

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T �1

. . .

R2

T �2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

u�
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Figure 3.2: The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical
query execution plan

(SortGrp) building groups as defined by UDF grp. For each group MMap5 calls UDF
combine which pre-reduces the data [45]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files are then retrieved from
disk and merged (Merge). Again, we apply SortGrp, MMap and combine. The result is
stored back on disk (Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3 looks di↵erent. This
asymmetry may occur if a mapper subplan (here: M3) consumes less input data and/or

5A multimap operator MMap maps one input item to zero, one, or many output item(s). See Sec-
tion 3.2.6 for details.

..

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 52

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T �1

. . .

R2

T �2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

u�
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Figure 3.2: The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical
query execution plan

(SortGrp) building groups as defined by UDF grp. For each group MMap5 calls UDF
combine which pre-reduces the data [45]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files are then retrieved from
disk and merged (Merge). Again, we apply SortGrp, MMap and combine. The result is
stored back on disk (Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3 looks di↵erent. This
asymmetry may occur if a mapper subplan (here: M3) consumes less input data and/or

5A multimap operator MMap maps one input item to zero, one, or many output item(s). See Sec-
tion 3.2.6 for details.

Trojan Index Creation

SData T H F... ...

DataSet

Indexed Split i

Trojan Index

Figure 2: Indexed Data Layout

discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T) �

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

SData T H F... ...

DataSet

Indexed Split i

Trojan Index

Figure 2: Indexed Data Layout

discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T) �

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

SData T H F... ...

DataSet

Indexed Split i

Trojan Index

Figure 2: Indexed Data Layout

discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T) �

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

SData T H F... ...

DataSet

Indexed Split i

Trojan Index

Figure 2: Indexed Data Layout

discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T) �

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

SData T H F... ...

DataSet

Indexed Split i

Trojan Index

Figure 2: Indexed Data Layout

discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T) �

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

37

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 52

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T �1

. . .

R2

T �2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

u�
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Figure 3.2: The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical
query execution plan

(SortGrp) building groups as defined by UDF grp. For each group MMap5 calls UDF
combine which pre-reduces the data [45]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files are then retrieved from
disk and merged (Merge). Again, we apply SortGrp, MMap and combine. The result is
stored back on disk (Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3 looks di↵erent. This
asymmetry may occur if a mapper subplan (here: M3) consumes less input data and/or

5A multimap operator MMap maps one input item to zero, one, or many output item(s). See Sec-
tion 3.2.6 for details.

Trojan Index Access

SData T H F... ...

DataSet

Indexed Split i

Trojan Index

Figure 2: Indexed Data Layout

discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T) �

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

38

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 52

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T �1

. . .

R2

T �2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

u�
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Figure 3.2: The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical
query execution plan

(SortGrp) building groups as defined by UDF grp. For each group MMap5 calls UDF
combine which pre-reduces the data [45]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files are then retrieved from
disk and merged (Merge). Again, we apply SortGrp, MMap and combine. The result is
stored back on disk (Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3 looks di↵erent. This
asymmetry may occur if a mapper subplan (here: M3) consumes less input data and/or

5A multimap operator MMap maps one input item to zero, one, or many output item(s). See Sec-
tion 3.2.6 for details.

Trojan Index Access
SData T H F... ...

DataSet

Indexed Split i

Trojan Index

Figure 2: Indexed Data Layout

discuss the Trojan Index creation and subsequent query processing
below.

3.1 Index Creation
Trojan Index is a covering index consisting of a sparse directory

over the sorted split data. This directory is represented using a
cache-conscious CSS-tree [17] with the leaf pointers pointing to
pages inside the split. In MapReduce we can express our index
creation operation for relation T over an attribute ai as follows:
Index.

Indexai (T) �

8>>>>>>><
>>>>>>>:

map(key k, value v) ��
[(getSplitID() ⌅ prjai (k ⌅ v), k ⌅ v)]
reduce(key ik, vset ivs) ��
[(ivs ⌅ indexBuilderai (ivs))]

Here, prjai denotes a projection to attribute ai and ⌅ denotes that
two attribute sets are concatenated to a new schema. Figure 3(a)
shows the MapReduce plan corresponding to the indexing opera-
tion defined above. The distributed file system stores the data for
Relation T. The MapReduce client partitions the Relation T into
splits as shown in the figure. The itemize.next() function reads
{offset,record}-pairs and the map emits {splitID+a,record}
as the intermediate key-value pair. Here splitID+a is a composite
key concatenating the split ID (function getSplitID()) and the
index attribute; record is a value containing all attributes of the
record.

We need to re-partition the composite keys emitted from the
mappers such that the reducers receive almost the same amount
of data. We do this by supplying a hash partitioning function (UDF
sh in The Hadoop Plan) that re-partitions records by hashing only
on the split identifier portion of the composite key.

sh(key k, value v, int numPartitions) �� k.splitID % numPartitions (1)

To construct a clustered Trojan Index, the data needs to be sorted
on the index attribute a. For this we exploit the interesting orders
created by the MapReduce framework [10]. This is faster than per-
forming a local sort at the reducers. To do so, we provide a UDF
cmp instructing MapReduce to sort records by considering only the
second part (the index attribute a) of the composite key.

cmp(key k1, key k2) �� compare(k1.a , k2.a)

Since we are building Trojan Index per split, we need to pre-
serve the split in each reducer call. For this we provide a grouping
function (UDF grp) that groups tuples based on the split identifier
portion of the composite key.

grp(key k1, key k2) �� compare(k1.splitID , k2.splitID) (2)

reduce, shown in Figure 3(a), has a local indexBuilder func-
tion. which builds the Trojan Index on the index attribute of the
sorted data. reduce emits the set of values concatenated with the
Trojan Index, index header, and split footer. The output data is
stored on the distributed file system.

3.2 Query Processing
Consider a query q referencing an indexed dataset T . We iden-

tify the split boundaries using footer F and create a map task for

Algorithm 1: Trojan Index/Trojan Join split UDF
Input : JobConf job, Int numSplits
Output: logical data splits

FileSplit [] splits;1
File [] files = GetFiles(job);2
foreach file in files do3

Path path = file.getPath();4
InputStream in = GetInputStream(path);5
Long o⇥set = file.getLength();6
while o�set > 0 do7

in.seek(o�set-FOOTER SIZE);8
Footer footer = ReadFooter(in);9
Long splitSize = footer.getSplitSize();10
o⇥set -= (splitSize + FOOTER SIZE);11
BlockLocations blocks = GetBlockLocations(path,o�set);12
FileSplit newSplit = CreateSplit(path,o�set,splitSize,blocks);13
splits.add(newSplit);14

end15
end16
return splits;17

Algorithm 2: Trojan Index itemize.initialize UDF
Input: FileSplit split, JobConf job

Global FileSplit split = split;1
Key lowKey = job.getLowKey();2
Global Key highKey = job.getHighKey();3
Int splitStart = split.getStart();4
Global Int splitEnd = split.getEnd();5
Header h = ReadHeader(split);6
Overlap type = h.getOverlapType(lowKey,highKey);7
Global Int o⇥set;8
if type == LEFT CONTAINED or type == FULL CONTAINED or type ==9
POINT CONTAINED then

Index i = ReadIndex(split);10
o⇥set = splitStart + i.lookup(lowKey);11

else if type == RIGHT CONTAINED or type == SPAN then12
o⇥set = splitStart;13

else14
// NOT CONTAINED, skip the split;15
o⇥set = splitEnd;16

end17
Seek(o�set);18

each split. Algorithm 1 shows the split UDF that we provide for
creating the splits. For a given job, we retrieve and iterate over all
data files (Lines 2–3). For each file we retrieve its path and the in-
put stream (Lines 4–5). The input stream is used to seek and read
the split footers, i.e. we do not scan the entire data here. We start
looking for footers from the end (Lines 6–8) and retrieve the split
size from them (Lines 9–10). We set the o⇥set to the beginning of
the split (Line 11) and use it to retrieve block locations (Line 12)
and to create a logical split (Line 13). We add the newly created
split to the list of logical splits (Line 14) and repeat the process un-
til all footers in all files have been read. Finally, we return the list
of logical splits (Line 17).

Algorithm 2 shows the itemize UDF that we provide for in-
dex scan. We read the low and the high selection keys (Lines 1–2)
from the job configuration and the split boundary o⇥sets (Lines 3–
4) from the split configuration. Thereafter, we first read the index
header (Line 5) and evaluate the overlap type (Line 6) i.e. the por-
tion of the split data relevant to the query. Only if the split contains
the low key (Line 8), we read the index (Line 9) and compute the
low key o⇥set within the split (Line 10). Otherwise, if the split con-
tains the high key or the selection range spans the split (Line 11),
we set the o⇥set to the beginning of the split (Line 12); else we skip
the split entirely (Lines 13–15). Finally, we seek the o⇥set within
the split (Line 17) to start reading data record by record. Algo-
rithm 3 shows the method to get the next record from the data split.

38

Chapter 3. Indexing and Join Techniques for Large Scale Data Management 52

fits well with the simplicity philosophy of Hadoop.
Hadoop++ changes the internal layout of a split — a large hori-

zontal partition of the data — and/or feeds Hadoop with appropri-
ate UDFs. However, Hadoop++ does not change anything in the
Hadoop framework.

Contributions. In this paper we make the following contributions:

(1.) The Hadoop Plan. We demonstrate that Hadoop is noth-
ing but a hard-coded, operator-free, physical query execution plan
where ten User Defined Functions block, split, itemize, mem,
map, sh, cmp, grp, combine, and reduce are injected at pre-
determined places. We make Hadoop’s hard-coded query process-
ing pipeline explicit and represent it as a DB-style physical query
execution plan (The Hadoop Plan). As a consequence, we are then
able to reason on that plan. (Section 2)
(2.) Trojan Index. We provide a non-invasive, DBMS-
independent indexing technique coined Trojan Index. A Trojan
Index enriches logical input splits by bulkloaded read-optimized
indexes. Trojan Indexes are created at data load time and thus have
no penalty at query time. Notice, that in contrast to HadoopDB we
neither change nor replace the Hadoop framework at all to integrate
our index, i.e. the Hadoop framework is not aware of the Trojan In-
dex. We achieve this by providing appropriate UDFs. (Section 3)
(3.) Trojan Join. We provide a non-invasive, DBMS-independent
join technique coined Trojan Join. Trojan join allows us to co-
partition the data at data load time. Similarly to Trojan Indexes,
Trojan Joins do neither require a DBMS nor SQL to do so. Tro-
jan Index and Trojan Join may be combined to create arbitrarily
indexed and co-partitioned data inside the same split. (Section 4)
(4.) Experimental comparison. To provide a fair experimen-
tal comparison, we implemented all Trojan-techniques on top of
Hadoop and coin the result Hadoop++. We benchmark Hadoop++
against Hadoop as well as HadoopDB as proposed at VLDB
2009 [3]. As in [3] we used the benchmark from SIGMOD
2009 [16]. All experiments are run on Amazon’s EC2 Cloud.
Our results confirm that Hadoop++ outperforms Hadoop and even
HadoopDB for index and join-based tasks. (Section 5)

In addition, Appendix A illustrates processing strategies systems
for analytical data processing. Appendix B shows that MapReduce
and DBMS have the same expressiveness, i.e. any MapReduce task
may be run on a DBMS and vice-versa. Appendices C to E contain
additional details and results of our experimental study.

2. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

In this section we examine how Hadoop computes a MapReduce
task. We have analyzed Yahoo!’s Hadoop version 0.19. Note that
Hadoop uses a hard-coded execution pipeline. No operator-model
is used. However Hadoop’s query execution strategy may be ex-
pressed as a physical operator DAG. To our knowledge, this paper
is the first to do so in that detail and we term it The Hadoop Plan.
Based on this we then reason on The Hadoop Plan.

2.1 The Hadoop Plan
The Hadoop Plan is shaped by three user-defined parameters

M, R, and P setting the number of mappers, reducers, and data
nodes, respectively [10]. An example for a plan with four map-
pers (M = 4), two reducers (R = 2), and four data nodes (P = 4)
is shown in Figure 1. We observe, that The Hadoop Plan consists
of a subplan L () and P subplans H1–H4 () which correspond
to the inital load phase (HDFS) into Hadoop’s distributed file sys-

T

L PPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

PPartsplit PPartsplit

H2

. . .

H3 Fetch Fetch Fetch

Store Store Store

Scan

PPartsplit

H4

. . .

M1 Union

RecReaditemize

MMapmap

PPartmem

LPartsh LPartsh LPartsh

Sortcmp Sortcmp Sortcmp

SortGrpgrp SortGrpgrp SortGrpgrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Mergecmp

SortGrpgrp

MMapcombine

Store

PPartsh

M2

. . .

M3

RecReaditemize

MMapmap

LPartsh

Sortcmp

SortGrpgrp

MMapcombine

Store

PPartsh

M4

. . .

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Mergecmp

SortGrpgrp

MMapreduce

R1 Store

T �1

. . .

R2

T �2

D
at

a
Lo

ad
Ph

as
e

M
ap

Ph
as

e
Sh

u�
e

Ph
as

e
R

ed
uc

e
Ph

as
e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

tem. M determines the number of mapper subplans (), whereas R
determines the number of reducer subplans ().

Let’s analyze The Hadoop Plan in more detail:
Data Load Phase. To be able to run a MapReduce job, we first
load the data into the distributed file system. This is done by par-
titioning the input T horizontally into disjoint subsets T1, . . . ,Tb.
See the physical partitioning operator PPart in subplan L. In the
example b = 6, i.e. we obtain subsets T1, . . . ,T6. These subsets
are called blocks. The partitioning function block partitions the
input T based on the block size. Each block is then replicated
(Replicate). The default number of replicas used by Hadoop is 3,
but this may be configured. For presentation reasons, in the exam-
ple we replicate each block only once. The figure shows 4 di�erent
data nodes with subplans H1–H4. Replicas are stored on di�erent
nodes in the network (Fetch and Store). Hadoop tries to store
replicas of the same block on di�erent nodes.
Map Phase. In the map phase each map subplan M1–M4 reads a
subset of the data called a split2 from HDFS. A split is a logical
concept typically comprising one or more blocks. This assignment
is defined by UDF split. In the example, the split assigned to M1
consists of two blocks which may both be retrieved from subplan
H1. Subplan M1 unions the input blocks T1 and T5 and breaks them
into records (RecRead). The latter operator uses a UDF itemize
that defines how a split is divided into items. Then subplan M1
calls map on each item and passes the output to a PPart opera-
tor. This operator divides the output into so-called spills based

2Not to be confused with spills. See below. We use the terminology
introduced in [10].

Figure 3.2: The Hadoop Plan: Hadoop’s processing pipeline expressed as a physical
query execution plan

(SortGrp) building groups as defined by UDF grp. For each group MMap5 calls UDF
combine which pre-reduces the data [45]. The output is materialized on disk (Store).
M1 shows a subplan processing three spill files. These spill files are then retrieved from
disk and merged (Merge). Again, we apply SortGrp, MMap and combine. The result is
stored back on disk (Store). Subplan M3 shows a variant where only a single spill file
that fits into main memory is created. When compared to M1, M3 looks di↵erent. This
asymmetry may occur if a mapper subplan (here: M3) consumes less input data and/or

5A multimap operator MMap maps one input item to zero, one, or many output item(s). See Sec-
tion 3.2.6 for details.

Trojan Index Access

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.

T

PhysPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

H2

...

H3 Fetch Fetch Fetch

Store Store Store

Scan

H4

...

M1 Union

RecReaditem

MMapmap

PhysPartmem

LogPartsh LogPartsh LogPartsh

Sort Sort Sort

SortGrp SortGrp SortGrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Merge

SortGrp

MMapcombine

Store

PhysPartsh

M2

...

M3

RecReaditem

MMapmap

LogPartsh

Sort

SortGrp

MMapcombine

Store

PhysPartsh

M4

...

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Merge

SortGrp

MMapreduce

R1 Store

T ⇥1

...

R2

T ⇥2

lo
ad

ph
as

e
(H

FS
)

m
ap

ph
as

e
sh

u⇤
e

ph
as

e
re

du
ce

ph
as

e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

3. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

FIX TEXT TO INCLUDE RECORD READER OPERATOR
FIX TEXT TO CONSIDER SIMPLIFIED FIGURE
DID WE INTRODUCE ALL OPERATORS?
In this section we examine how Hadoop computes a MapRe-

duce task. We have analyzed Yahoo!’s Hadoop version 0.19, which
is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.

3.1 The Hadoop Plan
As mentioned above Hadoop implements a hard-coded data pro-

cessing pipeline, which can be expressed as a physical query execu-
tion plan. An example for a plan for four mappers (M = 4) and two

3

IndexScan IndexScan

Map

Reduce

Distributed
File System

Distributed
File System

{offset, record}

{splitID+a, record}
Index

Builder

Input Splits
of Relation T

Map

Reduce

{offset, record}

{a/b, record}

Distributed
File System Input Splits

of Relation S
Input Splits

of Relation T

Distributed
File System

DataSet

... ...

Indexed Co-Partitioned Split i

SData T SData SHt Hs FTrojan Index Hi
SData T SData SHt Hs F

DataSet

... ...

Rearranged Co-Partitioned Split i

SData T H F... ...

DataSet

Indexed Split i

Trojan Index SData Tk SData Sk F

DataSet

... ...

Co-Partitioned Split i

co-group j co-group j+1

Ht Hs Ht HsSData Tk+1 SData Sk+1

(a) Indexing

Map

Reduce

{offset, record}

{joinvalue, record}

Distributed
File System Input Splits

of Relation S
Input Splits

of Relation T

Distributed
File System

(b) Co-partitioning
Figure 3: MapReduce Plans

Algorithm 3: Trojan Index itemize.next UDF
Input : KeyType key, ValueType value
Output: has more records

if o�set < splitEnd then1
Record nextRecord = ReadNextRecord(split);2
o⇥set += nextRecord.size();3
if nextRecord.key < highKey then4

SetKeyValue(key, value, nextRecord);5
return true;6

end7
end8
return false;9

We check if the split o⇥set is within the end of split (Line 1) and
index key value of the next record is less than the high key (Line 3).
If yes, we set the key and the value to be fed to the mapper and re-
turn true (Lines 4-5), indicating there could be more records. Else,
we return false (Line 8).

Note that the use of the Trojan Index is optional and depends
upon the query predicate. Thus, both full and index scan are possi-
ble over the same data. In addition, indexes and data may be kept
in separate physical blocks, i.e. UDF splitmay compose physical
blocks into logical splits suited for a particular task.

4. TROJAN JOIN
E⇤cient join processing is one of the most important features of

DBMSs. In MapReduce, two datasets are usually joined using re-
partitioning: partitioning records by join key in the map phase and
grouping records with the same key in the reduce phase. The re-
ducer joins the records in each key-based group. This re-partitioned
join corresponds to the join detailed in Appendix B.3. Yang et
al. [23] proposed to extend MapReduce by a third Merge phase.
The Merge phase is a join operator which follows the reduce phase
and gets sorted results from it. Afrate and Ullman [4] proposed
techniques to perform multiway joins in a single MapReduce job.
However, all of the above approaches perform the join operation in
the reduce phase and hence transfer a large amount of data trough
the network — which is a potential bottleneck. Moreover, these
approaches do not exploit any schema-knowledge, which is often
available in advance for many relational-style tasks. Furthermore,
join conditions in a schema are very unlikely to change — the set
of tables requested in a join query may however change.

Trojan Join is our solution to support more e⇥ective join pro-
cessing in Hadoop. We assume that we know the schema and the
expected workload, similar to DBMS and HadoopDB. The core
idea is to co-partition the data at load time — i.e. given two input
relations, we apply the same partitioning function on the join at-

of MapReduce versus PDBMS has been started. On the one hand,
DBMS advocates argue that MapReduce cannot perform as well as
PDBMS due to some substantial di�erences [25]. On the other
hand, MapReduce advocates argue that DBMSs cannot scale as
well as MapReduce and that DBMSs are much more di⇥cult to set
up. Thus, much research work is being done to mix both PDBMS
and MapReduce technologies in order to yield better performances.
For example, Aster [2] and Greenplum [5] already support MapRe-
duce jobs in their DBMS solutions and Vertica [9] does the same
for its new version 3.5. On the other side, Yahoo! proposed Pig
Latin [21, 23] as a SQL-like query language for MapReduce; Hive
proposed a query language for MapReduce called Hive QL [8].
And, inspired by DBMSs, other works also focus on providing
more flexible query execution plans than MapReduce [15, 22].

Recently, Abouzeid et al. [12] proposed HadoopDB as a new
shared-nothing massively parallel processing architecture, which
uses Hadoop as communication layer among local DBMSs at dif-
ferent nodes. HadoopDB pushes most of the work into di�erent
local DBMSs (in the data load and map phase) and performs only
lightweight computations outside the local DBMSs such as aggre-
gation of intermediate aggregates (in the reduce phase). As ex-
ample, consider once more again our inverted buzzword search in-
dex example. To achieve this, HadoopDB pushes the same SQL
query as Parallel DBMS (Section 2.1) into local DBMSs via map
tasks. Local DBMSs in turn compute the SQL query and re-
turn results to map tasks. Each map task then simply outputs the
set of couples [(buzzword1,DID), . . . , (buzzwordn,DID)] found by
each local DBMS. Finally, HadoopDB uses the same reduce func-
tion as MapReduce (Section 2.2) to store each single buzzword
with the set of identifiers of those document where it appears,
[(buzzword � postinglist)].

2.4 Hadoop++
HadoopDB [12] adds index access to Hadoop by using a DBMS

as local storage on computing nodes and pushing as much work as
possible into the DBMSs. In addition, HadoopDB takes advantage
of DBMSs to co-partition data at loading time and hence to perform
joins locally. The cost of these two features, however, is the overall
system interface being changed to SQL and unwarranted DBMS
overheads due to the following reasons: (i) MapReduce tasks are
read-only operations over the input data (ii) transaction-support,
synchronization and recovery features are not required, and (iii)
HadoopDB creates only one map instance per chunk database, con-
sequently: (a) parallelization strongly depends on the number of
chunk databases and (b) performance depends on the size of the
input data stored in each chunk database (e.g. see results for the
selection task in [12]). In fact, we only need read-only access, in-
dexing, and very basic local query optimization from a DBMS.

In this paper, we show how to support index access (Section 5)
and co-partitioned joins (Section 6) into MapReduce without using
DBMSs nor doing any change to the core of the framework. There-
fore, for our running example of inverted buzzword search index,
our proposed system (Hadoop++) operates exactly as MapReduce
by passing the same key-value tuples to the map and reduce func-
tions. However, like HadoopDB, Hadoop++ also allows:

• to perform index accesses whenever a MapReduce job can
exploit the use of indexes, and

• to co-partition data so as to allow map tasks to perform local
joins at query time.

The results of our experiments demonstrate that Hadoop++ can
have better performance than HadoopDB without forcing users to

use SQL and DBMSs. One can claim, however, that MapReduce
cannot perform some tasks that PDBMSs can do. We analytically
demonstrate that PDBMSs and MapReduce have the same query
expressiveness and hence both can perform any parallel-processing
task. For lack of space, we give all these details in Appendix A.

T

PhysPartblock

Replicate Replicate Replicate Replicate Replicate Replicate

T1 T6

H1 Fetch Fetch Fetch

Store Store Store

Scan Scan

H2

...

H3 Fetch Fetch Fetch

Store Store Store

Scan

H4

...

M1 Union

RecReaditem

MMapmap

PhysPartmem

LogPartsh LogPartsh LogPartsh

Sort Sort Sort

SortGrp SortGrp SortGrp

MMapcombine MMapcombine MMapcombine

Store Store Store

Merge

SortGrp

MMapcombine

Store

PhysPartsh

M2

...

M3

RecReaditem

MMapmap

LogPartsh

Sort

SortGrp

MMapcombine

Store

PhysPartsh

M4

...

T1 T5 T2 T4 T3 T6

Fetch Fetch Fetch Fetch

Buffer Buffer Buffer Buffer

Store Store Merge

Store

Merge

SortGrp

MMapreduce

R1 Store

T ⇥1

...

R2

T ⇥2

lo
ad

ph
as

e
(H

FS
)

m
ap

ph
as

e
sh

u⇤
e

ph
as

e
re

du
ce

ph
as

e

Figure 1: The Hadoop Plan: Hadoop’s processing pipeline ex-
pressed as a physical query execution plan

3. HADOOP AS A PHYSICAL QUERY EX-
ECUTION PLAN

FIX TEXT TO INCLUDE RECORD READER OPERATOR
FIX TEXT TO CONSIDER SIMPLIFIED FIGURE
DID WE INTRODUCE ALL OPERATORS?
In this section we examine how Hadoop computes a MapRe-

duce task. We have analyzed Yahoo!’s Hadoop version 0.19, which
is based on Apache’s Hadoop version 0.19. This source distribu-
tion includes some code patches that were added to improve sta-
bility and performance on Yahoo! clusters. The main functionality
as discussed here remains however unchanged. Note that Hadoop
uses a hard-coded execution pipeline. No operator-model is used.
However Hadoop’s query execution strategy may be expressed as
a physical operator DAG. To our knowledge, this paper is the first
to do so and we term it The Hadoop Plan. Based on this we then
discuss the shortcomings of The Hadoop Plan.

3.1 The Hadoop Plan
As mentioned above Hadoop implements a hard-coded data pro-

cessing pipeline, which can be expressed as a physical query execu-
tion plan. An example for a plan for four mappers (M = 4) and two

3

IndexScan IndexScan

Map

Reduce

Distributed
File System

Distributed
File System

{offset, record}

{splitID+a, record}
Index

Builder

Input Splits
of Relation T

Map

Reduce

{offset, record}

{a/b, record}

Distributed
File System Input Splits

of Relation S
Input Splits

of Relation T

Distributed
File System

DataSet

... ...

Indexed Co-Partitioned Split i

SData T SData SHt Hs FTrojan Index Hi
SData T SData SHt Hs F

DataSet

... ...

Rearranged Co-Partitioned Split i

SData T H F... ...

DataSet

Indexed Split i

Trojan Index SData Tk SData Sk F

DataSet

... ...

Co-Partitioned Split i

co-group j co-group j+1

Ht Hs Ht HsSData Tk+1 SData Sk+1

Figure 4: Co-partitioned Data Layout
tributes of both the relations at data loading time — and place the
co-group pairs, having the same join key from the two relations, on
the same split and hence on the same node. As a result, joins are
now processed locally within each node at query time — a feature
that is also explored by SQL-DBMSs. Moreover, we are free to
group the data on any attribute other than the join attribute in the
same MapReduce job. The salient features of Trojan Join are as
follows:
(1.) Non-Invasive. We do not change the existing Hadoop frame-
work. We only change the internal representation of a data split.
(2.) Seamless Splitting. When co-grouping the data, we create
three headers per data split: two for indicating the boundaries of
data belonging to di⇥erent relations; one for indicating the bound-
aries of the logical split. Trojan Join automatically splits data at
logical split boundaries that are opaque to the user.
(3.) Mapper-side Co-partitioned Join. Trojan Join allows users to
join relations in the map phase itself exploiting co-partitioned data.
This avoids the shu⌅e phase, which is typically quite costly from
the network tra⇤c perspective.
(4.) Trojan Index Compatibility. Trojan indexes may freely be
combined with Trojan Joins. We detail this aspect in Section 4.3.

We illustrate the data layout for Trojan Join in Figure 4. Each
split is separated by split footer (F) and contains data from two re-
lations T S (depicted green and blue in Figure 4). We use two head-
ers Ht and Hs, one for each relation, to indicate the size of each co-
partition5. Given an equi-join predicate PJ(T, S) = (T.ai = S .bj),
the Trojan Join proceeds in two phases: the data co-partitioning
and query processing phases.

4.1 Data Co-Partitioning
Trojan Join co-partitions two relations in order to perform join

queries using map tasks only. Formally, we can express co-
partitioning as:

CoPartitionai ,b j (T, S) �

8>>>>>>><
>>>>>>>:

map(key k, value v) ��8>><
>>:

[(prjai (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = T ,
[(prjb j (k ⌅ v), k ⌅ v)] if input(k ⌅ v) = S .
reduce(key ik, vset ivs) �� [({ik} ⇥ ivs)]

Here, the helper input() function identifies whether an input
record belongs to T or S . Figure 3(b) shows the MapReduce plan
for co-partitioning the data. This works as follows. The MapRe-
duce client partitions the data of both relations into splits as shown
in the figure. For each record in an input split, itemize.next()
receives the offset as key and the record as value and map emits
{joinvalue, record} as key-value pairs. Here joinvalue is the
key having value either ai or bj depending on the lineage; record
contains all attributes of the record. For re-partitioning, sorting and
grouping the key-value pairs we use the entire key i.e. we use the
default sh, cmp, and grpUDFs. As a result, each call to reduce re-
ceives the set of records having the same join attribute value. The fi-
nal output of reduce is a virtual split containing several co-groups
as shown in Figure 4.
5Notice that one can also store each relation in separate physical
blocks just like a DBMS. Extending our approach to this is straight-
forward: we simply need to provide a UDF split. This also holds
for our Trojan Index proposal.

38

 0

 10000

 20000

 30000

 40000

 50000

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

Hadoop++(256MB)
Hadoop++(1GB)

(I)ndex Creation
(C)o-Partitioning
Data (L)oading

L

C

I

L

C

I

L

C

I

L

C

I

L

C

I

L

C

I

(a) Data loading, partitioning, and indexing

 0

 20

 40

 60

 80

 100

 120

 140

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

HadoopDB Chunks

Hadoop++(256MB)
Hadoop++(1GB)

(b) Selection Task

 0

 500

 1000

 1500

 2000

 2500

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

Hadoop++(256MB)
Hadoop++(1GB)

(c) Join Task

Figure 6: Benchmark Results related to Indexing and Join Processing

ever, Hadoop++ significantly outperforms HadoopDB. This is be-
cause HadoopDB sometimes pushes tasks to straggler nodes rather
than replica nodes. This slows down its speculative execution.

6. DISCUSSION & CONCLUSION
This paper has proposed new index and join techniques: Tro-

jan Index and Trojan Join, to improve runtimes of MapReduce
jobs. Our techniques are non-invasive, i.e. they do to require us
to change the underlying Hadoop framework. We simply need to
provide appropriate user-defined functions (and not only the two
functions map and reduce). The beauty of this approach is that we
can incorporate such techniques to any Hadoop version with no ef-
fort. We exploited this during our experiments when moving from
Hadoop 0.20.1 to Hadoop 0.19.0 (used by HadoopDB) for fairness
reasons. We implemented our Trojan techniques on top of Hadoop
and named the resulting system Hadoop++.

The experimental results demonstrate that Hadoop++ outper-
forms Hadoop. Furthermore, for tasks related to indexing and join
processing Hadoop++ outperforms HadoopDB – without requir-
ing a DBMS or deep changes in Hadoop’s execution framework
or interface. We also observe that as we increase the split size,
Hadoop++ further improves for both selection and join tasks. This
is because the index coverage also increases. Performance of fault-
tolerance, however, decreases with larger splits as it requires more
time to recompute lost tasks. This symbolizes a tradeo⇥ between
runtime and fault tolerance of MapReduce jobs.

An important lesson learned from this paper is that most of the
performance benefits stem from exploiting schema knowledge on
the dataset and anticipating the query workload at data load time.
Only if this schema knowledge is available, DBMSs, HadoopDB
as well as Hadoop++ may improve over Hadoop. But again: there
is no need to use a DBMS for this. Schema knowledge and an-
ticipated query workload may be exploited in any data processing
system.

In terms of Hadoop++’s interface we believe that we do not have
to change the programming interface to SQL: standard MapReduce
jobs — unaware of possible indexes and join conditions — may be
analyzed [6] and then rewritten to use the Trojan techniques pro-
posed in this paper.
Acknowledgments. We would like to thank all students of the
MapReduce/PigLatin LAB at UdS (summer’09) for the fruitful dis-
cussions. Work partially supported by Saarbrücken Cluster of Ex-
cellence MMCI, UdS Graduate School for CS, and IMPRS CS.

7. REFERENCES
[1] Dbcolumn on MapReduce, http://databasecolumn.vertica.com
/2008/01/mapreduce-a-major-step-back.html.

[2] HDFS Bug, http://issues.apache.org/jira/browse/HDFS-96.
[3] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and

A. Rasin. HadoopDB: An Architectural Hybrid of MapReduce and

DBMS Technologies for Analytical Workloads. PVLDB, 2(1), 2009.
[4] F. Afrati and J. Ullman. Optimizing Joins in a Map-Reduce

Environment. In EDBT, 2010.
[5] D. Bitton and D. J. DeWitt. Duplicate Record Elimination in Large

Data Files. TODS, 8(2), 1983.
[6] M. J. Cafarella and C. Re. Relational Optimization for Data-Intensive

Programs. In WebDB, 2010.
[7] R. Chaiken et al. Scope: Easy and E⇤cient Parallel Processing of

Massive Data Sets. PVLDB, 1(2), 2008.
[8] J. Cohen, B. Dolan, M. Dunlap, J. Hellerstein, and C. Welton. Mad

Skills: New Analysis Practices for Big Data. PVLDB, 2(2), 2009.
[9] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,

and R. Sears. MapReduce Online. In NSDI, 2010.
[10] J. Dean and S. Ghemawat. Mapreduce: Simplified Data Processing

on Large Clusters. In OSDI, 2004.
[11] J. Dean and S. Ghemawat. MapReduce: A Flexible Data Processing

Tool. CACM, 53(1):72–77, 2010.
[12] A. Gates et al. Building a HighLevel Dataflow System on Top of

MapReduce: The Pig Experience. PVLDB, 2(2), 2009.
[13] M. Isard et al. Dryad: Distributed Data-Parallel Programs from

Sequential Building Blocks. In EuroSys, 2007.
[14] K. Morton and A. Friesen. KAMD: A Progress Estimator for

MapReduce Pipelines. In ICDE, 2010.
[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig

Latin: A Not-So-Foreign Language for Data Processing. In
SIGMOD, 2008.

[16] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A comparison of approaches to large-scale data
analysis. In SIGMOD, 2009.

[17] J. Rao and K. A. Ross. Cache Conscious Indexing for
Decision-Support in Main Memory. In VLDB, 1999.

[18] J. Schad, J. Dittrich, and J.-A. Quiane-Ruiz. Runtime Measurements
in the Cloud: Observing, Analyzing, and Reducing Variance.
PVLDB, 3(1), 2010.

[19] M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin. MapReduce and Parallel DBMSs: Friends or
Foes? CACM, 53(1), 2010.

[20] A. Thusoo et al. Hive - a warehousing solution over a map-reduce
framework. PVLDB, 2(2), 2009.

[21] P. Yan and P. Larson. Data Reduction Through Early Grouping. In
CASCON, 1994.

[22] C. Yang, C. Yen, C. Tan, and S. Madden. Osprey: Implementing
MapReduce-Style Fault Tolerance in a Shared-Nothing Distributed
Database. In ICDE, 2010.

[23] H. Yang et al. Map-Reduce-Merge: Simplified Relational Data
Processing on Large Clusters. In SIGMOD, 2007.

Selection Analytical Task *

39* Pavlo et. al. A Comparison of Approaches to large-Scale Data Analysis. SIGMOD 2009

 0

 10000

 20000

 30000

 40000

 50000

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

Hadoop++(256MB)
Hadoop++(1GB)

(I)ndex Creation
(C)o-Partitioning
Data (L)oading

L

C

I

L

C

I

L

C

I

L

C

I

L

C

I

L

C

I

(a) Data loading, partitioning, and indexing

 0

 20

 40

 60

 80

 100

 120

 140

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

HadoopDB Chunks

Hadoop++(256MB)
Hadoop++(1GB)

(b) Selection Task

 0

 500

 1000

 1500

 2000

 2500

10 nodes 50 nodes 100 nodes

ru
nt

im
e

[s
ec

on
ds

]

Hadoop
HadoopDB

Hadoop++(256MB)
Hadoop++(1GB)

(c) Join Task

Figure 6: Benchmark Results related to Indexing and Join Processing

ever, Hadoop++ significantly outperforms HadoopDB. This is be-
cause HadoopDB sometimes pushes tasks to straggler nodes rather
than replica nodes. This slows down its speculative execution.

6. DISCUSSION & CONCLUSION
This paper has proposed new index and join techniques: Tro-

jan Index and Trojan Join, to improve runtimes of MapReduce
jobs. Our techniques are non-invasive, i.e. they do to require us
to change the underlying Hadoop framework. We simply need to
provide appropriate user-defined functions (and not only the two
functions map and reduce). The beauty of this approach is that we
can incorporate such techniques to any Hadoop version with no ef-
fort. We exploited this during our experiments when moving from
Hadoop 0.20.1 to Hadoop 0.19.0 (used by HadoopDB) for fairness
reasons. We implemented our Trojan techniques on top of Hadoop
and named the resulting system Hadoop++.

The experimental results demonstrate that Hadoop++ outper-
forms Hadoop. Furthermore, for tasks related to indexing and join
processing Hadoop++ outperforms HadoopDB – without requir-
ing a DBMS or deep changes in Hadoop’s execution framework
or interface. We also observe that as we increase the split size,
Hadoop++ further improves for both selection and join tasks. This
is because the index coverage also increases. Performance of fault-
tolerance, however, decreases with larger splits as it requires more
time to recompute lost tasks. This symbolizes a tradeo⇥ between
runtime and fault tolerance of MapReduce jobs.

An important lesson learned from this paper is that most of the
performance benefits stem from exploiting schema knowledge on
the dataset and anticipating the query workload at data load time.
Only if this schema knowledge is available, DBMSs, HadoopDB
as well as Hadoop++ may improve over Hadoop. But again: there
is no need to use a DBMS for this. Schema knowledge and an-
ticipated query workload may be exploited in any data processing
system.

In terms of Hadoop++’s interface we believe that we do not have
to change the programming interface to SQL: standard MapReduce
jobs — unaware of possible indexes and join conditions — may be
analyzed [6] and then rewritten to use the Trojan techniques pro-
posed in this paper.
Acknowledgments. We would like to thank all students of the
MapReduce/PigLatin LAB at UdS (summer’09) for the fruitful dis-
cussions. Work partially supported by Saarbrücken Cluster of Ex-
cellence MMCI, UdS Graduate School for CS, and IMPRS CS.

7. REFERENCES
[1] Dbcolumn on MapReduce, http://databasecolumn.vertica.com
/2008/01/mapreduce-a-major-step-back.html.

[2] HDFS Bug, http://issues.apache.org/jira/browse/HDFS-96.
[3] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and

A. Rasin. HadoopDB: An Architectural Hybrid of MapReduce and

DBMS Technologies for Analytical Workloads. PVLDB, 2(1), 2009.
[4] F. Afrati and J. Ullman. Optimizing Joins in a Map-Reduce

Environment. In EDBT, 2010.
[5] D. Bitton and D. J. DeWitt. Duplicate Record Elimination in Large

Data Files. TODS, 8(2), 1983.
[6] M. J. Cafarella and C. Re. Relational Optimization for Data-Intensive

Programs. In WebDB, 2010.
[7] R. Chaiken et al. Scope: Easy and E⇤cient Parallel Processing of

Massive Data Sets. PVLDB, 1(2), 2008.
[8] J. Cohen, B. Dolan, M. Dunlap, J. Hellerstein, and C. Welton. Mad

Skills: New Analysis Practices for Big Data. PVLDB, 2(2), 2009.
[9] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,

and R. Sears. MapReduce Online. In NSDI, 2010.
[10] J. Dean and S. Ghemawat. Mapreduce: Simplified Data Processing

on Large Clusters. In OSDI, 2004.
[11] J. Dean and S. Ghemawat. MapReduce: A Flexible Data Processing

Tool. CACM, 53(1):72–77, 2010.
[12] A. Gates et al. Building a HighLevel Dataflow System on Top of

MapReduce: The Pig Experience. PVLDB, 2(2), 2009.
[13] M. Isard et al. Dryad: Distributed Data-Parallel Programs from

Sequential Building Blocks. In EuroSys, 2007.
[14] K. Morton and A. Friesen. KAMD: A Progress Estimator for

MapReduce Pipelines. In ICDE, 2010.
[15] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig

Latin: A Not-So-Foreign Language for Data Processing. In
SIGMOD, 2008.

[16] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A comparison of approaches to large-scale data
analysis. In SIGMOD, 2009.

[17] J. Rao and K. A. Ross. Cache Conscious Indexing for
Decision-Support in Main Memory. In VLDB, 1999.

[18] J. Schad, J. Dittrich, and J.-A. Quiane-Ruiz. Runtime Measurements
in the Cloud: Observing, Analyzing, and Reducing Variance.
PVLDB, 3(1), 2010.

[19] M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin. MapReduce and Parallel DBMSs: Friends or
Foes? CACM, 53(1), 2010.

[20] A. Thusoo et al. Hive - a warehousing solution over a map-reduce
framework. PVLDB, 2(2), 2009.

[21] P. Yan and P. Larson. Data Reduction Through Early Grouping. In
CASCON, 1994.

[22] C. Yang, C. Yen, C. Tan, and S. Madden. Osprey: Implementing
MapReduce-Style Fault Tolerance in a Shared-Nothing Distributed
Database. In ICDE, 2010.

[23] H. Yang et al. Map-Reduce-Merge: Simplified Relational Data
Processing on Large Clusters. In SIGMOD, 2007.

Join Analytical Task *

40* Pavlo et. al. A Comparison of Approaches to large-Scale Data Analysis. SIGMOD 2009

41

Trojan Index Trojan Join

42

Traditional Layouts

43

001 alex bsc
002 tim msc

003 mat bsc
004 joel bsc

005 phil msc
006 ron msc

007 neo bsc
008 jack msc

009 jens bsc
010 tom msc

Row Column* PAX**
(default)

* A. Floratou et al. Column-Oriented Storage Techniques for MapReduce. PVLDB, April, 2011
** Y. He et al. RCFile: A fast and space-efficient data placement structure in MapReduce-based warehouse systems. ICDE, 2011

Traditional Layouts

44

Row Column PAX
Non-required Reads

Network Costs

Data Block Placement

Tuple Reconstruction

Trojan Data Layouts

45

Replica 2Replica 1 Replica 3

Trojan Data Layouts

46

Non-required Reads

Network Costs

Data Block Placement

Tuple Reconstruction

Row Column PAX Trojan

Layout Quality

47

#Non-required
Attributes Read

#Joins in Tuple
Reconstruction

HADOOP-ROW 525 0

HADOOP-PAX 0 139

Trojan Layout 14 20

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n

t
F

a
c
to

r

TPC-H Queries

(a) TPC-H Customer

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n

t
F

a
c
to

r

TPC-H Queries

(b) TPC-H LineItem

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n

t
F

a
c
to

r

SSB Queries

(c) SSB LineOrder

0

1

2

3

4

5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

over Hadoop-Row over Hadoop-PAX

Im
p

ro
v
e
m

e
n

t
F

a
c
to

r

SDSS Queries

(d) SDSS PhotoObj

Figure 7: Improvement of data access time when using Trojan Layouts over Hadoop-Row and Hadoop-PAX.

access pattern, i.e. the attributes accessed by each query. Recent
works in other aspects of MapReduce (shown in Figure 1) have de-
scribed how to extract these data access patterns from MapReduce
jobs [19, 7]. We run each benchmark three times, measure the time
it takes to read the required data from disk — i.e. the elapsed time
between the initialization and finalization of the itemize UDF —
and report the improvement factor of our approach based on the
average reading time of the trials.

5.4 Per-Replica Trojan Layout Performance
In this section, we evaluate the data access time improvement

of Trojan Layouts over Hadoop-Row and Hadoop-PAX. Let us first
evaluate these three data layouts in terms of redundant attributes
reads and attribute joins for tuple reconstruction. For this, we
analyzed the query groupings and their Trojan Layouts (see Ap-
pendix B for layout details) and we observed that in all datasets
at least two query groups fit perfectly to its corresponding Trojan
Layout. Hence, per-replica Trojan Layouts significantly reduce re-
dundant attribute access as well as tuple reconstruction overhead.
Table 1 summarizes this observation.

#Redundant Attributes Read #Joins in Tuple Reconstruction

HADOOP-ROW 525 0

HADOOP-PAX 0 139

Trojan Layout 14 20

Table 1: Per-replica Trojan Layout analysis

We observe that Trojan Layouts allow us to read ⇠37 times less
redundant attributes than Hadoop-Row and to perform ⇠7 times less
attribute joins for reconstructing tuples than Hadoop-PAX. Thus,
Trojan Layouts provide for a good trade-o↵ between the number of
redundant attributes and the number of joins in tuple reconstruction

(green cells). This is in contrast to Hadoop-Row and Hadoop-PAX,
which are at the two extremes (red cells).

Figure 7 illustrates the improvement of data access time when
using Trojan Layouts over Hadoop-Row and Hadoop-PAX. We ob-
serve that for those queries referencing few attributes, e.g. Q4 in
LineItem and all queries in LineOrder, Trojan Layouts improve
Hadoop-Row up to factor of 4.8. Indeed, this is because Hadoop-
Row reads a large number of redundant attributes as shown in Ta-
ble 1. In particular, we observe that Hadoop-Row slightly outper-
forms Trojan Layouts only for Q3 in LineItem. This is because
all attributes are referenced and Trojan Layouts have an extra tuple
reconstruction cost that Hadoop-Row does not have. On the other
side, we observe that for those queries referencing many attributes,
e.g. Q1 in LineItem and Q4 in PhotoObj, Trojan Layouts outper-
form Hadoop-PAX up to a factor of 3.5. The reason is that tuple
reconstruction cost in Hadoop-PAX increases as the number of ref-
erenced attributes increases as well. Trojan Layouts amortize tuple
reconstruction cost by co-locating attributes in the same column
groups. Further, the results show that Trojan Layouts never perform
worse than Hadoop-PAX, having at least the same performance as
Hadoop-PAX in the worst case (e.g. Q6–Q8 in Customer).

Overall, our experimental results show that Trojan Layouts sig-
nificantly outperform Hadoop-Row as well as Hadoop-PAX. Our
experimental results also support the simulation results we pre-
sented in Figure 2.

5.5 Comparing Scheduling Policies
In the above experiments, we considered the Best-Layout

scheduling policy (see Section 4.4), which always allocates map
tasks to those nodes storing the best Trojan Layout for incoming
map tasks. However, as discussed in Section 4.4, one could apply
two other scheduling policies as well: the Fetch Best-Layout
policy and the 2nd Best-Layout policy. To understand which
policy performs better, we measure their relative performance with

9

Projection Analytical Task

48

Hadoop Aggressive Indexing Library

Individual Jobs: Weblog, RecordReader

0

1000

2000

3000

4000

Bob-Q1 Bob-Q2 Bob-Q3 Bob-Q4 Bob-Q5

683
333

527573

28642917

5383

2776
24422470

21122156

3358

R
R

 R
un

tim
e

[m
s]

MapReduce Jobs

Hadoop Hadoop ++ HAIL

Cartilage

Cartilage

Hadoop Stack

54

HDFS

MapReduce

Cartilage Query Engine

Cartilage Upload Pipeline

Hive
HBase

Pig

Data File 1 Data File 2 Data File n...

Hadoop Stack

55

HDFS

Cartilage Query Engine

Cartilage Upload Pipeline

Input Data

Queried Data

Upload Plans

56

UDFs. �e Cartilage upload pipeline consists of a sequence of
UDFs, i.e. the atomic units of processing, to preprocess the data.
A UDF in Cartilage is an iterator which iterates over a set of input
datums, transforms them, and outputs a set of processed datums.
Label. Each UDF assigns an ID to every output datum. �e ID
uniquely identi�es the processing applied by the given UDF.We de-
note the combination of a UDF and an ID assigned by it as a label.
Stage. A Cartilage stage consists of a UDF and a label. When pro-
cessing a stage, Cartilage applies the UDF to all input datums hav-
ing a given label. Furthermore, a stage may have one or more next
stages chained to it. Cartilage passes the output datums of a stage as
the inputs datums to the next chained stage.
Block. A block consists of a set of chained stages. Each stage passes
the output datum as soon as it is produced to the next chained stage.
However, the block collects all output datums (i.e. blocks the data
�ow) before passing them to the next chained block.

Overall, the Cartilage upload pipeline takes a dataset as an input,
applies a chain of UDFs to transform the data, and assigns a label for
every transformation. Successive UDF stages can selectively trans-
form a datum based on the labels already assigned to it by the pre-
vious stages. Cartilage has a streaming data �ow across all stages in
the same block, i.e. a datum is passed on to the next stage as soon as
it is generated. However, the data �ow between blocks is blocking,
i.e. all output datums are collected before being passed to the next
block. �e �nal output of all blocks in the upload pipeline is then
actually uploaded to the HDFS.

With the above primitives, users can de�ned arbitrary data �ow
to preprocess and upload their data. We call these upload data �ows
as upload plans. For example, let us see how a user can de�ne an
upload plan to mimic the HDFS upload steps in Cartilage. Figure �
shows the HDFS upload plan in Cartilage.

Parser

Replicator

Data

Locator

Physical Partitioner

Uploader

HDFS

Stage 5

Stage 4

Stage 3

Stage 2

Stage 1

Block 2

Block 1

Figure �: Default HDFS Upload Plan in Cartilage

�e upload plan in Figure � consists of two blocks and �ve stages.
�e �rst stage parses the input data �les into tuples, assigning a tuple
ID to each tuple. �e second stage creates, for each replica, physical
partitions of size ��MB, the default block size inHDFS. To do so, the
physical partitioner assigns the same physical partition IDs to tuples
which �t in the same block of the same replica. �e data �ows tuple
by tuple in the �rst block from stage � to stage �� . However, the �rst
block collects all tuples into physical �les, one for each physical par-
tition, before passing them to the second block. �e replicator UDF
in the second block replicates each physical partition three times
and assigns a replica ID to it. �en the locater UDF assigns location
IDs (corresponding to node IDs) to each replica of each physical
��is is to make sure that records do not cut across blocks.

partition. Here we assign the location IDs such that two replicas of
the same physical partition are not on the same node. Once all lo-
cation IDs have been assigned, the �nal uploader stage uploads the
physical �les into the HDFS. Note that we upload each physical �le
with replication factor of one (since here we do the replication from
outside) and we specify the node locations of the physical �les.
We saw in the above example that the users can reproduce

HDFS upload behavior in Cartilage. However, the advantage of
using Cartilage is that the users now have the �exibility to: (i) re-
order/rearrange theUDFs in the upload plan, (ii) add/removeUDFs
in the upload plan, and (iii) provide their own custom functionality
for each of theUDFs. For example, we can add a logical partitioner in
addition to the physical partitioner to create logical partitions based
on a key, we can add a serializer UDF to de�ne customer serializa-
tion of each physical partition, andwe can remove the replicator and
locator UDFs to let HDFS handle these two functionalities. Figure �
shows the resulting upload pipeline.

Serializer

Parser

Data

Physical Partitioner

Uploader

HDFS

Stage 5

Stage 3

Stage 2

Stage 1

Block 3

Block 1 Logical Partitioner

Stage 4Block 2

Figure �: Modi�ed HDFS Upload Plan in Cartilage

We can see that the upload pipeline in Figure � is way di�erent from
that in Figure �. �us, Cartilage allows users to arbitrarily prepro-
cess their data when uploading it. Furthermore, users can also pre-
process certain pieces of the data conditionally using �lter labels (
the combination of UDF and ID). Cartilage applies a UDF only to
those data items which have the required labels. For example, con-
sider the data upload pipeline in Figure �.

Parser

Replicator 1

Data

Block 2

Locator 2

Physical
Partitioner 2

Logical Partitioner

Serializer 3

Locator 1

Uploader

HDFS

Physical
Partitioner 1

Serializer 2Serializer 1

Replicator 2

replica 1 replica 2

replica 1a replica 1b

Block 1

Block 4
Block 3

Block 5

Figure �: Conditional Data Preprocessing in Cartilage

�e �rst block (Block �) of this pipeline replicates the data two
times, labelled replica � and replica �. We apply physical partitioning

�

Upload Plans

57

UDFs. �e Cartilage upload pipeline consists of a sequence of
UDFs, i.e. the atomic units of processing, to preprocess the data.
A UDF in Cartilage is an iterator which iterates over a set of input
datums, transforms them, and outputs a set of processed datums.
Label. Each UDF assigns an ID to every output datum. �e ID
uniquely identi�es the processing applied by the given UDF.We de-
note the combination of a UDF and an ID assigned by it as a label.
Stage. A Cartilage stage consists of a UDF and a label. When pro-
cessing a stage, Cartilage applies the UDF to all input datums hav-
ing a given label. Furthermore, a stage may have one or more next
stages chained to it. Cartilage passes the output datums of a stage as
the inputs datums to the next chained stage.
Block. A block consists of a set of chained stages. Each stage passes
the output datum as soon as it is produced to the next chained stage.
However, the block collects all output datums (i.e. blocks the data
�ow) before passing them to the next chained block.

Overall, the Cartilage upload pipeline takes a dataset as an input,
applies a chain of UDFs to transform the data, and assigns a label for
every transformation. Successive UDF stages can selectively trans-
form a datum based on the labels already assigned to it by the pre-
vious stages. Cartilage has a streaming data �ow across all stages in
the same block, i.e. a datum is passed on to the next stage as soon as
it is generated. However, the data �ow between blocks is blocking,
i.e. all output datums are collected before being passed to the next
block. �e �nal output of all blocks in the upload pipeline is then
actually uploaded to the HDFS.

With the above primitives, users can de�ned arbitrary data �ow
to preprocess and upload their data. We call these upload data �ows
as upload plans. For example, let us see how a user can de�ne an
upload plan to mimic the HDFS upload steps in Cartilage. Figure �
shows the HDFS upload plan in Cartilage.

Parser

Replicator

Data

Locator

Physical Partitioner

Uploader

HDFS

Stage 5

Stage 4

Stage 3

Stage 2

Stage 1

Block 2

Block 1

Figure �: Default HDFS Upload Plan in Cartilage

�e upload plan in Figure � consists of two blocks and �ve stages.
�e �rst stage parses the input data �les into tuples, assigning a tuple
ID to each tuple. �e second stage creates, for each replica, physical
partitions of size ��MB, the default block size inHDFS. To do so, the
physical partitioner assigns the same physical partition IDs to tuples
which �t in the same block of the same replica. �e data �ows tuple
by tuple in the �rst block from stage � to stage �� . However, the �rst
block collects all tuples into physical �les, one for each physical par-
tition, before passing them to the second block. �e replicator UDF
in the second block replicates each physical partition three times
and assigns a replica ID to it. �en the locater UDF assigns location
IDs (corresponding to node IDs) to each replica of each physical
��is is to make sure that records do not cut across blocks.

partition. Here we assign the location IDs such that two replicas of
the same physical partition are not on the same node. Once all lo-
cation IDs have been assigned, the �nal uploader stage uploads the
physical �les into the HDFS. Note that we upload each physical �le
with replication factor of one (since here we do the replication from
outside) and we specify the node locations of the physical �les.
We saw in the above example that the users can reproduce

HDFS upload behavior in Cartilage. However, the advantage of
using Cartilage is that the users now have the �exibility to: (i) re-
order/rearrange theUDFs in the upload plan, (ii) add/removeUDFs
in the upload plan, and (iii) provide their own custom functionality
for each of theUDFs. For example, we can add a logical partitioner in
addition to the physical partitioner to create logical partitions based
on a key, we can add a serializer UDF to de�ne customer serializa-
tion of each physical partition, andwe can remove the replicator and
locator UDFs to let HDFS handle these two functionalities. Figure �
shows the resulting upload pipeline.

Serializer

Parser

Data

Physical Partitioner

Uploader

HDFS

Stage 5

Stage 3

Stage 2

Stage 1

Block 3

Block 1 Logical Partitioner

Stage 4Block 2

Figure �: Modi�ed HDFS Upload Plan in Cartilage

We can see that the upload pipeline in Figure � is way di�erent from
that in Figure �. �us, Cartilage allows users to arbitrarily prepro-
cess their data when uploading it. Furthermore, users can also pre-
process certain pieces of the data conditionally using �lter labels (
the combination of UDF and ID). Cartilage applies a UDF only to
those data items which have the required labels. For example, con-
sider the data upload pipeline in Figure �.

Parser

Replicator 1

Data

Block 2

Locator 2

Physical
Partitioner 2

Logical Partitioner

Serializer 3

Locator 1

Uploader

HDFS

Physical
Partitioner 1

Serializer 2Serializer 1

Replicator 2

replica 1 replica 2

replica 1a replica 1b

Block 1

Block 4
Block 3

Block 5

Figure �: Conditional Data Preprocessing in Cartilage

�e �rst block (Block �) of this pipeline replicates the data two
times, labelled replica � and replica �. We apply physical partitioning

�

Summary

58

59

ONE SIZE DOES NOT FIT ALL

CIDR 2011

HYRISE
WWHow! Layer

CIDR 2013

VLDB 2013

CIDR 2013

VLDB 2010

SOCC 2011

VLDB 2012 SIGMOD (demo)

Acknowledgements
• Jens Dittrich

• Jorge Quiane

• Felix Martin Schuhknecht

• Endre Palatinus

• Karen Khachatryan

• Stefan Richter

• Alexander Bunte

60

• Sam Madden

• Stefan Richter

• Stefan Schuh

• Joerg Schad

• Yagiz Kargin

• Vinay Setty

• Vladimir Pavlov

