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Checking Prim’s Algorithm
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Prim’s algorithm for finding
minimum spanning tree in a graph

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selectedF

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}
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causes arithmetic overflows!

2



Soundness of Alloy

reason for overflows
wraparound semantics for arithmetic operations

Int = {-4, -3, ..., 2, 3}Ô⇒ 3 + 1 = -4

alloy
first order relational modeling language

the alloy analyzer
fully automated, bounded model finder for alloy

consequences of the bounded analysis
not sound with respect to proof
→ if no counterexample is found, one may still exist in a larger scope

not sound w.r.t. counterexamples when integers are used
→ arithmetic operations can overflow⇒ spurious counterexamples

sound w.r.t. counterexamples if no integers are used
→ i.e., if a counterexample is found, the property does not hold
→ reason: relational operators are closed under finite universe
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Goal & Approach

goal
eliminate spurious counterexamples caused by overflows

→ makes the analyzer sound w.r.t. to counterexamples

idea
treat arithmetic operations that overflow as undefined (⊥)
use a standard 3-valued logic for boolean propositions [VDM]

true ∧ ⊥ = ⊥, false ∧ ⊥ = false, . . .

change the semantics of quantifiers

Jall x: Int | p(x)K = ∀x ∈ Int ● (p(x) =⊥) ∨ p(x)
Jsome x: Int | p(x)K = ∃x ∈ Int ● (p(x) ≠⊥) ∧ p(x)

result: returned models are always defined

challenge: translation to existing SAT-based engine
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Example Using the New Semantics
semantics of quantifiers

Jall x: Int | p(x)K = ∀x ∈ Int ● (p(x) =⊥) ∨ p(x)
Jsome x: Int | p(x)K = ∃x ∈ Int ● (p(x) ≠⊥) ∧ p(x)

example
pred p[x, y: Int] {

x > 0 && y > 0 => x.plus[y] > 0 }

check { all x, y: Int | p[x, y] }

for 3 Int

scope

Int = {-4, -3, ..., 2, 3}

interpretation
p(−4,−4) ⋯ p(1,1) ⋯ p(3,3)

7

4

p(x,y) =⊥ :
p(x,y) :

7

4
∧ ⋯ ∧ 4

7
∧ ⋯ ∧ = true
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Implementation Challenges

implementation options
enumerate values of bound variables and evaluate quantifiers
→ extremely inefficient

directly encode to SAT
→ 3-valued logic must be used throughout
→ 2 bits required to represent 1 boolean variable
→ likely to adversely affect models that don’t involve integers

translate to classical logic and existing SAT-based back-end
→ models without integers remain unaffected

alloy architecture

Alloy Kodkod SAT Solver

relational formula boolean formula

boolean modelrelational model
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Translation to Classical Logic (1)

key requirement
every boolean formula must denote (evaluate to true or false)

consequence
a truth value must be assigned to predicates involving
undefined terms [Farmer’95]

all x: Int |

x > 0 => x.plus[x] > x

Ð→ x=3: J x.plus[x] > x K = true

some x: Int |

x > 0 && x.plus[x] < x

Ð→ x=3: J x.plus[x] < x K = false

approach
only integer functions can result in an undefined integer value (⊥)
→ use textbook overflow circuits to detect such cases

single link from integers to boolean formulas: comparison predicates
→ adjust the semantics of integer comparison predicates
→ when either term is ⊥, evaluate to make the outer binding irrelevant
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Translation to Classical Logic (2)

definition

Jx < yKσ = { x < y ∧ x ≠ ⊥ ∧ y ≠ ⊥, if σ=σ∃ (in existential context)
x < y ∨ x = ⊥ ∨ y = ⊥, if σ=σ∀ (in universal context)

what about negation: J¬(x < y)Kσ∃ =?

compositional

J¬(x < y)Kσ∃ = ¬Jx < yKσ∃

= ¬(x < y ∧ x ≠ ⊥ ∧ y ≠ ⊥)
= x ≥ y ∨ x = ⊥ ∨ y = ⊥
≠Jx ≥ yKσ∃

semantics preserving

J¬(x < y)Kσ∃ = Jx ≥ yKσ∃

= x ≥ y ∧ x ≠ ⊥ ∧ y ≠ ⊥

= ¬(x < y ∨ x = ⊥ ∨ y = ⊥)
= ¬(Jx < yKσ∀)

rule for negation: J¬pKσ∃ = ¬JpKσ∀

J¬pKσ∀ = ¬JpKσ∃
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Translation to Classical Logic (2)

definition

Jρ(x,y)Kσ = { ρ(x,y) ∧ x ≠ ⊥ ∧ y ≠ ⊥, if σ=σ∃ (in existential context)
ρ(x,y) ∨ x = ⊥ ∨ y = ⊥, if σ=σ∀ (in universal context)

ρ ∈ {<,≤,=,≠,>,≥}
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Evaluation

how does the new encoding affect performance?
extra clauses are generated to detect and prevent overflows
→ (only when arithmetic operations are used)

no extra primary variables are used

possible effects of extra clauses on solving time:
→ speedup: because search space smaller (more constrained)
→ slowdown: SAT solver can get stuck more easily
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Experiment

flash filesystem [Kang, ABZ’08]

heavy use of arithmetic (for computing memory addresses)
we ran 10 simulations and 6 checks
total time decreased from 12 hours to 8 hours
this result is not meant to be conclusive!
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Summary

summary
alloy made sound with respect to counterexamples

applications that can benefit
program verifications
test case generation
specification execution

ideas for future work
user-defined partial functions

Thank You!
http://alloy.mit.edu
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Spurious Counterexamples due to Overflows

reason for overflows
wraparound semantics for arithmetic operations
→ Int = {-4, -3, ..., 2, 3}Ô⇒ 3 + 1 = -4

prototypical anomalies

sum of two positive integers is not necessarily positive!
check {

all x, y: Int |

x > 0 && y > 0 => x.plus[y] > 0

} for 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

a = 3; b = 1;

a.plus[b] = -4

cardinality of a non-empty set is not necessarily positive!
check {

all s: set univ |

some s iff #s > 0

} for 4 but 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

s = {S0, S1, S2, S3}

#s = -4
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Example

rules

Jρ(x,y)Kσ = { ρ(x,y) ∧ x ≠ ⊥ ∧ y ≠ ⊥, if σ=σ∃

ρ(x,y) ∨ x = ⊥ ∨ y = ⊥, if σ=σ∀

ρ∈{<,≤,=,≠,>,≥}

J¬pKσ∃ = ¬JpKσ∀
J¬pKσ∀ = ¬JpKσ∃

example

all x: Int |

x > 0 => x.plus[x] > x

Ð→ x = 3 ∶

Jx+x > xKσ∀

= 3+3 > 0 ∨ 3+3 =⊥ ∨ 0 =⊥
= false ∨ true ∨ false

= true

some x: Int |

x > 0 && !(x.plus[x] > x)

Ð→ x = 3 ∶

J!(x+x > x)Kσ∃

= ¬Jx+x > xKσ∀

= ¬true
= false
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Law of the Excluded Middle

is law of the excluded middle still preserved?
the non-compositional rule for negation suggests it’s not

in a bounded setting of alloy, that is usually not a problem
→ all integers when multiplied by 2 are either negative or non-negative?

check {

all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)

} for 4 Int

all integers x such that x times 2 does not overflow,
x times 2 is either negative or non-negative

violation of the law is still observable

check { 4.plus[5] = 6.plus[3] } for 4 Int

check { 4.plus[5] != 6.plus[3] } for 4 Int

→ the violation is visible if truth is associated with a check yields a
counterexample at all
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check { 4.plus[5] = 6.plus[3] } for 4 Int

check { 4.plus[5] != 6.plus[3] } for 4 Int

→ the violation is visible if truth is associated with a check yields a
counterexample at all
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Partial Functions in Logic
overflows in alloy

instance of a more general problem: handling partial functions in logic

existing solutions/approaches
logic of partial functions (LPF) [C. B. Jones]

→ both integer functions and boolean formulas may be undefined
→ uses a 3-valued logic

traditional approach [Farmer’95]

→ functions may be partial, but formulas must be denoting
→ if any term is undefined, formula evaluates to false

→ leaves open whether ¬(a = a) ≡ a ≠ a given that a is undefined

totalize all functions
→ wraparound semantics for integer arithmetic in old alloy
→ out-of-bounds applications result in unknown (but determined) value [B, Z]

differentiating characteristics of our approach
customized for the bounded setting
masking quantifier bindings that produce undefinedness
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