CSAIL

Preventing Arithmetic Overflows in Alloy

Aleksandar Milicevic
(aleks@csail.mit.edu)
Daniel Jackson
(dnj@csail.mit.edu)

Software Design Group
Massachusetts Institute of Technology
Cambridge, MA

International Conference of Alloy, ASM, B, VDM, and Z Users Pisa, Italy, June 2012

Checking Prim's Algorithm

Prim's algorithm for finding minimum spanning tree in a graph

Checking Prim's Algorithm

Prim's algorithm for finding
minimum spanning tree in a graph
- select an arbitrary node to start with

Checking Prim's Algorithm

Prim's algorithm for finding minimum spanning tree in a graph

- select an arbitrary node to start with
- find edges from selected to unselected nodes

Checking Prim's Algorithm

Prim's algorithm for finding minimum spanning tree in a graph

- select an arbitrary node to start with
- find edges from selected to unselected nodes
- select the edge with the smallest weight

Checking Prim's Algorithm

Prim's algorithm for finding minimum spanning tree in a graph

- select an arbitrary node to start with
- find edges from selected to unselected nodes
- select the edge with the smallest weight
- repeat until all nodes have been selected

Checking Prim's Algorithm

Prim's algorithm for finding minimum spanning tree in a graph

- select an arbitrary node to start with
- find edges from selected to unselected nodes
- select the edge with the smallest weight
- repeat until all nodes have been selected

Checking Prim's Algorithm

Prim's algorithm for finding minimum spanning tree in a graph

- select an arbitrary node to start with
- find edges from selected to unselected nodes
- select the edge with the smallest weight
- repeat until all nodes have been selected

Checking Prim's Algorithm

Checking Prim's Algorithm


```
open util/ordering[Time]
sig Time {}
sig Node {}
sig Edge {
    weight: Int,
    nodes: set Node,
    chosen: set Time
} {
    weight >= 0 && #nodes = 2
}
```


Checking Prim's Algorithm


```
open util/ordering[Time]
sig Time \{\}
sig Node \{\}
sig Edge \{
    weight: Int,
    nodes: set Node,
    chosen: set Time
\} \{
    weight >= 0 \&\& \#nodes = 2
\}
```

fact prim \{ /* model of execution of Prim's algorithm */ \}

Checking Prim's Algorithm


```
open util/ordering[Time]
sig Time \{\}
sig Node \{\}
sig Edge \{
    weight: Int,
    nodes: set Node,
    chosen: set Time
\} \{
    weight >= 0 \&\& \#nodes = 2
\}
```

fact prim \{ /* model of execution of Prim's algorithm */ \}
pred spanningTree(edges: set Edges) \{ /* checks whether a given set of
edges forms a spanning tree */ \}

Checking Prim's Algorithm


```
open util/ordering[Time]
sig Time \{\}
sig Node \{\}
sig Edge \{
    weight: Int,
    nodes: set Node,
    chosen: set Time
\} \{
    weight >= 0 \&\& \#nodes = 2
\}
```

fact prim \{ /* model of execution of Prim's algorithm */ \}
pred spanningTree(edges: set Edges) \{ /* checks whether a given set of edges forms a spanning tree */ \}
/* no set of edges is a spanning tree with a smaller total weight than the one returned by Prim's algorithm */
smallest: check \{
no edges: set Edge \{ spanningTree[edges] (sum e: edges | e.weight) < (sum e: chosen.last | e.weight)\}\}

Checking Prim's Algorithm


```
open util/ordering[Time]
sig Time \{\}
sig Node \{\}
sig Edge \{
    weight: Int,
    nodes: set Node,
    chosen: set Time
\} \{
    weight >= 0 \&\& \#nodes = 2
\}
```

fact prim \{ /* model of execution of Prim's algorithm */ \}
pred spanningTree(edges: set Edges) \{ /* checks whether a given set of edges forms a spanning tree */ \}
/* no set of edges is a spanning tree with a smaller total weight than the one returned by Prim's algorithm */ smallest: check \{
no edges: set Edge \{
counterexample: leftSum $=-5$; rightSum $=24$ spanningTree[edges] (sum e: edges | e.weight) < (sum e: chosen.last | e.weight)\}\}

Checking Prim's Algorithm


```
open util/ordering[Time]
sig Time \{\}
sig Node \{\}
sig Edge \{
    weight: Int,
    nodes: set Node,
    chosen: set Time
\} \{
    weight >= 0 \&\& \#nodes = 2
\}
```

fact prim \{ /* model of execution of Prim's algorithm */ \}
pred spanningTree(edges: set Edges) \{ /* checks whether a given set of edges forms a spanning tree */ \}
/* no set of edges is a spanning tree with a smaller total weight than the one returned by Prim's algorithm */ smallest: check \{
no edges: set Edge \{
counterexample: leftSum =-5; rightSum $=24$ spanningTree[edges] and (sum e: edges | e.weight) > 0 (sum e: edges | e.weight) < (sum e: chosen.last | e.weight)\}\}

Checking Prim's Algorithm


```
open util/ordering[Time]
sig Time \{\}
sig Node \{\}
sig Edge \{
    weight: Int,
    nodes: set Node,
    chosen: set Time
\} \{
    weight >= 0 \&\& \#nodes = 2
\}
```

fact prim \{ /* model of execution of Prim's algorithm */ \}
pred spanningTree(edges: set Edges) \{ /* checks whether a given set of edges forms a spanning tree */ \}
/* no set of edges is a spanning tree with a smaller total weight than the one returned by Prim's algorithm */ smallest: check \{
no edges: set Edge \{
counterexample: leftSum = 2; rightSum = 28 spanningTree[edges] and (sum e: edges | e.weight) > 0 (sum e: edges | e.weight) < (sum e: chosen.last | e.weight)\}\}

Checking Prim's Algorithm


```
open util/ordering[Time]
sig Time \{\}
sig Node \{\}
sig Edge \{
    weight: Int,
    nodes: set Node,
    chosen: set Time
\} \{
    weight >= 0 \&\& \#nodes = 2
\}
```

fact prim \{ /* model of execution of Prim's algorithm */ \}
pred spanningTree(edges: set Edges) \{ /* checks whether a given set of edges forms a spanning tree */ \}
/* no set of edges is a spanning tree with a smaller total weight than the one returned by Prim's algorithm */ smallest: check \{ no edges: set Edge \{

causes arithmetic overflows!

 spanningTree[edges] and (sum e: edges | e.weight) > 0$$
\text { (sum e: edges | e.weight) }<\text { (sum e: chosen.last | e.weight)\}\} }
$$

Soundness of Alloy

reason for overflows

- wraparound semantics for arithmetic operations

$$
\text { Int }=\{-4,-3, \ldots, 2,3\} \Longrightarrow 3+1=-4
$$

Soundness of Alloy

reason for overflows

- wraparound semantics for arithmetic operations

$$
\text { Int }=\{-4,-3, \ldots, 2,3\} \Longrightarrow 3+1=-4
$$

alloy

- first order relational modeling language
the alloy analyzer
- fully automated, bounded model finder for alloy

Soundness of Alloy

reason for overflows

- wraparound semantics for arithmetic operations

$$
\text { Int }=\{-4,-3, \ldots, 2,3\} \Longrightarrow 3+1=-4
$$

alloy

- first order relational modeling language
the alloy analyzer
- fully automated, bounded model finder for alloy
consequences of the bounded analysis
- not sound with respect to proof
\rightarrow if no counterexample is found, one may still exist in a larger scope

Soundness of Alloy

reason for overflows

- wraparound semantics for arithmetic operations

$$
\text { Int }=\{-4,-3, \ldots, 2,3\} \Longrightarrow 3+1=-4
$$

alloy

- first order relational modeling language
the alloy analyzer
- fully automated, bounded model finder for alloy
consequences of the bounded analysis
- not sound with respect to proof
\rightarrow if no counterexample is found, one may still exist in a larger scope
- not sound w.r.t. counterexamples when integers are used
\rightarrow arithmetic operations can overflow \Rightarrow spurious counterexamples

Soundness of Alloy

reason for overflows

- wraparound semantics for arithmetic operations

$$
\text { Int }=\{-4,-3, \ldots, 2,3\} \Longrightarrow 3+1=-4
$$

alloy

- first order relational modeling language
the alloy analyzer
- fully automated, bounded model finder for alloy
consequences of the bounded analysis
- not sound with respect to proof
\rightarrow if no counterexample is found, one may still exist in a larger scope
- not sound w.r.t. counterexamples when integers are used
\rightarrow arithmetic operations can overflow \Rightarrow spurious counterexamples
- sound w.r.t. counterexamples if no integers are used
\rightarrow i.e., if a counterexample is found, the property does not hold
\rightarrow reason: relational operators are closed under finite universe

Goal \& Approach

goal

- eliminate spurious counterexamples caused by overflows
\rightarrow makes the analyzer sound w.r.t. to counterexamples

Goal \& Approach

goal

- eliminate spurious counterexamples caused by overflows
\rightarrow makes the analyzer sound w.r.t. to counterexamples
idea
- treat arithmetic operations that overflow as undefined (\perp)
- use a standard 3-valued logic for boolean propositions [VDM]

$$
\text { true } \wedge \perp=\perp, \quad \text { false } \wedge \perp=\text { false, } \quad \ldots
$$

- change the semantics of quantifiers

$$
\begin{aligned}
& \llbracket \text { all } x \text { : Int } \mid p(x) \rrbracket=\forall x \in \operatorname{Int} \bullet(p(x)=\perp) \vee p(x) \\
& \llbracket \text { some } x \text { : Int } \mid p(x) \rrbracket=\exists x \in \text { Int } \bullet(p(x) \neq \perp) \wedge p(x)
\end{aligned}
$$

Goal \& Approach

goal

- eliminate spurious counterexamples caused by overflows
\rightarrow makes the analyzer sound w.r.t. to counterexamples
idea
- treat arithmetic operations that overflow as undefined (\perp)
- use a standard 3-valued logic for boolean propositions [VDM]

$$
\text { true } \wedge \perp=\perp, \quad \text { false } \wedge \perp=\text { false, } \quad \ldots
$$

- change the semantics of quantifiers

$$
\begin{array}{ll}
\llbracket \text { all } x \text { : Int } \mid p(x) \rrbracket & =\forall x \in \operatorname{Int} \bullet(p(x)=\perp) \vee p(x) \\
\llbracket \text { some } x \text { : Int } \mid p(x) \rrbracket & =\exists x \in \operatorname{Int} \bullet(p(x) \neq \perp) \wedge p(x)
\end{array}
$$

- result: returned models are always defined

Goal \& Approach

goal

- eliminate spurious counterexamples caused by overflows
\rightarrow makes the analyzer sound w.r.t. to counterexamples
idea
- treat arithmetic operations that overflow as undefined (\perp)
- use a standard 3-valued logic for boolean propositions [VDM]

$$
\text { true } \wedge \perp=\perp, \quad \text { false } \wedge \perp=\text { false, } \quad \ldots
$$

- change the semantics of quantifiers

$$
\begin{array}{ll}
\llbracket \text { all } x \text { : Int } \mid p(x) \rrbracket & =\forall x \in \operatorname{Int} \bullet(p(x)=\perp) \vee p(x) \\
\llbracket \text { some } x \text { : Int } \mid p(x) \rrbracket & =\exists x \in \operatorname{Int} \bullet(p(x) \neq \perp) \wedge p(x)
\end{array}
$$

- result: returned models are always defined
challenge: translation to existing SAT-based engine

Example Using the New Semantics

semantics of quantifiers

$$
\begin{aligned}
& \llbracket \text { all } x \text { : Int } \mid p(x) \rrbracket=\forall x \in \operatorname{Int} \bullet(p(x)=\perp) \vee p(x) \\
& \llbracket \text { some } x \text { : Int } \mid p(x) \rrbracket=\exists x \in \operatorname{Int} \bullet(p(x) \neq \perp) \wedge p(x)
\end{aligned}
$$

example

```
pred p[x, y: Int] {
    x > 0 && y > 0 => x.plus[y] > 0 }
check { all x, y: Int | p[x, y] }
for 3 Int
```

```
        scope
Int = {-4, -3, ..., 2, 3}
```


Example Using the New Semantics

semantics of quantifiers

$$
\begin{array}{ll}
\llbracket \text { all } x \text { : Int } \mid p(x) \rrbracket & =\forall x \in \operatorname{Int} \bullet(p(x)=\perp) \vee p(x) \\
\llbracket \text { some } x \text { : Int } \mid p(x) \rrbracket & =\exists x \in \operatorname{Int} \bullet(p(x) \neq \perp) \wedge p(x)
\end{array}
$$

example

```
pred p[x, y: Int] {
    x > 0 && y > 0 => x.plus[y] > 0 }
check { all x, y: Int | p[x, y] }
for 3 Int
```

interpretation

$$
p(-4,-4) \quad \cdots \quad p(1,1) \quad \cdots \quad p(3,3)
$$

Example Using the New Semantics

semantics of quantifiers

$$
\begin{array}{ll}
\llbracket \text { all } x \text { : Int } \mid p(x) \rrbracket & =\forall x \in \operatorname{Int} \bullet(p(x)=\perp) \vee p(x) \\
\llbracket \text { some } x \text { : Int } \mid p(x) \rrbracket & =\exists x \in \operatorname{Int} \bullet(p(x) \neq \perp) \wedge p(x)
\end{array}
$$

example

```
pred p[x, y: Int] {
    x > 0 && y > 0 => x.plus[y] > 0 }
check { all x, y: Int | p[x, y] }
for 3 Int
```

interpretation

$$
\begin{array}{cccccc}
& p(-4,-4) & \cdots & p(1,1) & \cdots & p(3,3) \\
& \downarrow & & & & \\
p(x, y)=\perp: & x & & & & \\
p(x, y): & \swarrow & & & & \\
\hline
\end{array}
$$

Example Using the New Semantics

semantics of quantifiers

$$
\begin{array}{ll}
\llbracket \text { all } x \text { : Int } \mid p(x) \rrbracket & =\forall x \in \operatorname{Int} \bullet(p(x)=\perp) \vee p(x) \\
\llbracket \text { some } x \text { : Int } \mid p(x) \rrbracket & =\exists x \in \operatorname{Int} \bullet(p(x) \neq \perp) \wedge p(x)
\end{array}
$$

example

```
pred p[x, y: Int] {
    x > 0 && y > 0 => x.plus[y] > 0 }
check { all x, y: Int | p[x, y] }
for 3 Int
```

 scope
 Int $=\{-4,-3, \ldots, 2,3\}$
interpretation

Example Using the New Semantics

semantics of quantifiers

$$
\begin{array}{ll}
\llbracket \text { all } x \text { : Int } \mid p(x) \rrbracket & =\forall x \in \operatorname{Int} \bullet(p(x)=\perp) \vee p(x) \\
\llbracket \text { some } x \text { : Int } \mid p(x) \rrbracket & =\exists x \in \operatorname{Int} \bullet(p(x) \neq \perp) \wedge p(x)
\end{array}
$$

example

```
pred p[x, y: Int] {
    x > 0 && y > 0 => x.plus[y] > 0 }
check { all x, y: Int | p[x, y] }
for 3 Int
```

interpretation

Example Using the New Semantics

semantics of quantifiers

$$
\begin{array}{ll}
\llbracket \text { all } x \text { : Int } \mid p(x) \rrbracket & =\forall x \in \operatorname{Int} \bullet(p(x)=\perp) \vee p(x) \\
\llbracket \text { some } x \text { : Int } \mid p(x) \rrbracket & =\exists x \in \operatorname{Int} \bullet(p(x) \neq \perp) \wedge p(x)
\end{array}
$$

example

```
pred p[x, y: Int] {
    x > 0 && y > 0 => x.plus[y] > 0 }
check { all x, y: Int | p[x, y] }
for 3 Int
```

interpretation

Implementation Challenges

implementation options

- enumerate values of bound variables and evaluate quantifiers
\rightarrow extremely inefficient

Implementation Challenges

implementation options

- enumerate values of bound variables and evaluate quantifiers
\rightarrow extremely inefficient
- directly encode to SAT
\rightarrow 3-valued logic must be used throughout
$\rightarrow 2$ bits required to represent 1 boolean variable
\rightarrow likely to adversely affect models that don't involve integers

alloy architecture

Implementation Challenges

implementation options

- enumerate values of bound variables and evaluate quantifiers
\rightarrow extremely inefficient
- directly encode to SAT
\rightarrow 3-valued logic must be used throughout
$\rightarrow 2$ bits required to represent 1 boolean variable
\rightarrow likely to adversely affect models that don't involve integers
- translate to classical logic and existing SAT-based back-end
\rightarrow models without integers remain unaffected

alloy architecture

Implementation Challenges

implementation options

- enumerate values of bound variables and evaluate quantifiers
\rightarrow extremely inefficient
- directly encode to SAT
\rightarrow 3-valued logic must be used throughout
$\rightarrow 2$ bits required to represent 1 boolean variable
\rightarrow likely to adversely affect models that don't involve integers
- translate to classical logic and existing SAT-based back-end
\rightarrow models without integers remain unaffected

alloy architecture

Translation to Classical Logic (1)

key requirement

- every boolean formula must denote (evaluate to true or false)

consequence

- a truth value must be assigned to predicates involving undefined terms [Farmer'95]

Translation to Classical Logic (1)

key requirement

- every boolean formula must denote (evaluate to true or false)

consequence

- a truth value must be assigned to predicates involving undefined terms [Farmer'95]

```
all x: Int |
    x > 0 => x.plus[x] > x
```

$\longrightarrow x=3$:

Translation to Classical Logic (1)

key requirement

- every boolean formula must denote (evaluate to true or false)

consequence

- a truth value must be assigned to predicates involving undefined terms [Farmer'95]

```
all x: Int |
    x > 0 => x.plus[x] > x
```

$\longrightarrow x=3: \llbracket x . p l u s[x]>x \rrbracket=$ true

Translation to Classical Logic (1)

key requirement

- every boolean formula must denote (evaluate to true or false)

consequence

- a truth value must be assigned to predicates involving undefined terms [Farmer'95]

$$
\begin{aligned}
& \text { all } x: \text { Int } \mid \\
& x>0 \text { => } x . p l u s[x]>x
\end{aligned}
$$

$\longrightarrow x=3: \llbracket x . p l u s[x]>x \rrbracket=$ true

```
some x: Int |
    x > 0 && x.plus[x] < x
```

$\longrightarrow x=3: \llbracket x . p l u s[x]<x \rrbracket=$ false

Translation to Classical Logic (1)

key requirement

- every boolean formula must denote (evaluate to true or false)

consequence

- a truth value must be assigned to predicates involving undefined terms [Farmer'95]

```
all x: Int |
    x > 0 => x.plus[x] > x
```

some x : Int |
$x>0$ \&\& x.plus $[x]<x$
$\longrightarrow \mathrm{x}=3: \llbracket \mathrm{x}$. plus $[\mathrm{x}]>\mathrm{x} \rrbracket=$ true
$\longrightarrow x=3: \llbracket x . p l u s[x]<x \rrbracket=$ false

approach

- only integer functions can result in an undefined integer value (\perp)
\rightarrow use textbook overflow circuits to detect such cases

Translation to Classical Logic (1)

key requirement

- every boolean formula must denote (evaluate to true or false)

consequence

- a truth value must be assigned to predicates involving undefined terms [Farmer'95]

```
all x: Int |
    x > 0 => x.plus[x] > x
```

```
some x: Int |
    x > 0 && x.plus[x] < x
```

$\longrightarrow x=3: \llbracket x . p l u s[x]<x \rrbracket=$ false

approach

- only integer functions can result in an undefined integer value (\perp)
\rightarrow use textbook overflow circuits to detect such cases
- single link from integers to boolean formulas: comparison predicates
\rightarrow adjust the semantics of integer comparison predicates
\rightarrow when either term is \perp, evaluate to make the outer binding irrelevant

Translation to Classical Logic (2)

definition

$$
\llbracket x<y \rrbracket \sigma=\left\{\begin{array}{lll}
x<y \wedge x \neq \perp \wedge y \neq \perp, & \text { if } \sigma=\sigma_{\exists} & \text { (in existential context) } \\
x<y \vee x=\perp \vee y=\perp, & \text { if } \sigma=\sigma_{\forall} & \text { (in universal context) }
\end{array}\right.
$$

Translation to Classical Logic (2)

definition

$$
\llbracket x<y \rrbracket \sigma=\left\{\begin{array}{lll}
x<y \wedge x \neq \perp \wedge y \neq \perp, & \text { if } \sigma=\sigma_{\exists} & \text { (in existential context) } \\
x<y \vee x=\perp \vee y=\perp, & \text { if } \sigma=\sigma_{\forall} & \text { (in universal context) }
\end{array}\right.
$$

what about negation: $\llbracket \neg(x<y) \rrbracket \sigma_{\exists}=$?

Translation to Classical Logic (2)

definition

$$
\llbracket x<y \rrbracket \sigma=\left\{\begin{array}{lll}
x<y \wedge x \neq \perp \wedge y \neq \perp, & \text { if } \sigma=\sigma_{\exists} & \text { (in existential context) } \\
x<y \vee x=\perp \vee y=\perp, & \text { if } \sigma=\sigma_{\forall} & \text { (in universal context) }
\end{array}\right.
$$

what about negation: $\llbracket \neg(x<y) \rrbracket \sigma_{\exists}=$?

compositional

$$
\begin{aligned}
& \llbracket \neg(x<y) \rrbracket \sigma_{\exists}=\neg \llbracket x<y \rrbracket \sigma_{\exists} \\
& \quad=\neg(x<y \wedge x \neq \perp \wedge y \neq \perp) \\
& \quad=x \geq y \vee x=\perp \vee y=\perp \\
& \quad \neq \llbracket x \geq y \rrbracket \sigma_{\exists}
\end{aligned}
$$

Translation to Classical Logic (2)

definition

$$
\llbracket x<y \rrbracket \sigma=\left\{\begin{array}{lll}
x<y \wedge x \neq \perp \wedge y \neq \perp, & \text { if } \sigma=\sigma_{\exists} & \text { (in existential context) } \\
x<y \vee x=\perp \vee y=\perp, & \text { if } \sigma=\sigma_{\forall} & \text { (in universal context) }
\end{array}\right.
$$

what about negation: $\llbracket \neg(x<y) \rrbracket \sigma_{\exists}=$?

$$
\begin{gathered}
\text { semantics preserving } \\
\llbracket \neg(x<y) \rrbracket \sigma_{\exists}=\llbracket x \geq y \rrbracket \sigma_{\exists} \\
=x \geq y \wedge x \neq \perp \wedge y \neq \perp
\end{gathered}
$$

Translation to Classical Logic (2)

definition

$$
\llbracket x<y \rrbracket \sigma=\left\{\begin{array}{lll}
x<y \wedge x \neq \perp \wedge y \neq \perp, & \text { if } \sigma=\sigma_{\exists} & \text { (in existential context) } \\
x<y \vee x=\perp \vee y=\perp, & \text { if } \sigma=\sigma_{\forall} & \text { (in universal context) }
\end{array}\right.
$$

what about negation: $\llbracket \neg(x<y) \rrbracket \sigma_{\exists}=$?

$$
\begin{gathered}
\text { semantics preserving } \\
\begin{aligned}
& \llbracket \neg(x<y) \rrbracket \sigma_{\exists}=\llbracket x \geq y \rrbracket \sigma_{\exists} \\
&= x \geq y \wedge x \neq \perp \wedge y \neq \perp \\
&= \neg(x<y \vee x=\perp \vee y=\perp) \\
&= \neg\left(\llbracket x<y \rrbracket \sigma_{\forall}\right)
\end{aligned}
\end{gathered}
$$

Translation to Classical Logic (2)

definition

$$
\begin{gathered}
\llbracket \rho(x, y) \rrbracket \sigma=\left\{\begin{array}{lll}
\rho(x, y) \wedge x \neq \perp \wedge y \neq \perp, & \text { if } \sigma=\sigma_{\exists} & \text { (in existential context) } \\
\rho(x, y) \vee x=\perp \vee y=\perp, & \text { if } \sigma=\sigma_{\Downarrow} & \text { (in universal context) }
\end{array}\right. \\
\rho \in\{<, \leq,=, \neq,>, \geq\}
\end{gathered}
$$

what about negation: $\llbracket \neg(x<y) \rrbracket \sigma_{\exists}=$?

semantics preserving

$\llbracket \neg(x<y) \rrbracket \sigma_{\exists}=\llbracket x \geq y \rrbracket \sigma_{\exists}$
$=x \geq y \wedge x \neq \perp \wedge y \neq \perp$
$=\neg(x<y \vee x=\perp \vee y=\perp)$
$=\neg\left(\llbracket x<y \rrbracket \sigma_{\forall}\right)$

rule for negation:	$\llbracket \neg p \rrbracket \sigma_{\exists}=\neg \llbracket p \rrbracket \sigma_{\forall}$
	$\llbracket \neg p \rrbracket \sigma_{\forall}=\neg \llbracket p \rrbracket \sigma_{\exists}$

Evaluation

how does the new encoding affect performance?

- extra clauses are generated to detect and prevent overflows
\rightarrow (only when arithmetic operations are used)
- no extra primary variables are used

Evaluation

how does the new encoding affect performance?

- extra clauses are generated to detect and prevent overflows
\rightarrow (only when arithmetic operations are used)
- no extra primary variables are used
- possible effects of extra clauses on solving time:
\rightarrow speedup: because search space smaller (more constrained)
\rightarrow slowdown: SAT solver can get stuck more easily

Experiment

flash filesystem ${ }^{\text {[Kang, ABZ’08] }}$

- heavy use of arithmetic (for computing memory addresses)
- we ran 10 simulations and 6 checks
- total time decreased from 12 hours to 8 hours
- this result is not meant to be conclusive!

Summary

summary

- alloy made sound with respect to counterexamples
applications that can benefit
- program verifications
- test case generation
- specification execution
ideas for future work
- user-defined partial functions

Thank You!

http://alloy.mit.edu

Spurious Counterexamples due to Overflows

reason for overflows

- wraparound semantics for arithmetic operations

$$
\rightarrow \text { Int }=\{-4,-3, \ldots, 2,3\} \Longrightarrow 3+1=-4
$$

Spurious Counterexamples due to Overflows

reason for overflows

- wraparound semantics for arithmetic operations

$$
\rightarrow \text { Int }=\{-4,-3, \ldots, 2,3\} \Longrightarrow 3+1=-4
$$

prototypical anomalies

- sum of two positive integers is not necessarily positive!

```
check {
    all x, y: Int |
        x > 0 && y > 0 => x.plus[y] > 0
} for 3 Int
```

counterexample

```
Int = {-4, -3, ..., 2, 3}
a = 3; b = 1;
a.plus[b] = -4
```


Spurious Counterexamples due to Overflows

reason for overflows

- wraparound semantics for arithmetic operations

$$
\rightarrow \text { Int }=\{-4,-3, \ldots, 2,3\} \Longrightarrow 3+1=-4
$$

prototypical anomalies

- sum of two positive integers is not necessarily positive!

```
check {
    all x, y: Int |
        x > 0 && y > 0 => x.plus[y] > 0
} for 3 Int
```

$$
\begin{aligned}
& \text { Int }=\{-4,-3, \ldots, 2,3\} \\
& a=3 ; b=1 ; \\
& \text { a.plus }[b]=-4
\end{aligned}
$$

- cardinality of a non-empty set is not necessarily positive!

```
check {
    all s: set univ |
    some s iff #s > 0
} for 4 but 3 Int
```

```
Int ={-4, -3, ..., 2, 3}
s = {S0, S1, S2, S3}
#s = -4
```


Example

rules

$$
\llbracket \rho(x, y) \rrbracket \sigma=\left\{\begin{array}{r}
\rho(x, y) \wedge x \neq \perp \wedge y \neq \perp, \quad \text { if } \sigma=\sigma_{\exists} \\
\rho(x, y) \vee x=\perp \vee y=\perp, \quad \text { if } \sigma=\sigma_{\forall} \\
\rho \in\{<, \leq,=, \neq,>, \geq\}
\end{array}\right.
$$

$$
\begin{array}{ll}
\llbracket \neg p \rrbracket \sigma_{\exists} & =\neg \llbracket p \rrbracket \sigma_{\forall} \\
\llbracket \neg p \rrbracket \sigma_{\forall} & =\neg \llbracket p \rrbracket \sigma_{\exists}
\end{array}
$$

example

$$
\left[\begin{array}{l}
\text { all } x: \text { Int } \mid \\
\quad x>0 \text { => } x . p l u s[x]>x
\end{array}\right.
$$

$$
\text { some } \mathrm{x}: \text { Int | }
$$

$$
x>0 \& \&!(x . p l u s[x]>x)
$$

$\longrightarrow x=3:$

Example

rules

$$
\llbracket \rho(x, y) \rrbracket \sigma=\left\{\begin{array}{r}
\rho(x, y) \wedge x \neq \perp \wedge y \neq \perp, \quad \text { if } \sigma=\sigma_{\exists} \\
\rho(x, y) \vee x=\perp \vee y=\perp, \quad \text { if } \sigma=\sigma_{\forall} \\
\rho \in\{<, \leq,=, \neq,>, \geq\}
\end{array}\right.
$$

$$
\begin{array}{ll}
\llbracket \neg p \rrbracket \sigma_{\exists} & =\neg \llbracket p \rrbracket \sigma_{\forall} \\
\llbracket \neg p \rrbracket \sigma_{\forall} & =\neg \llbracket p \rrbracket \sigma_{\exists}
\end{array}
$$

example

```
some x: Int |
    x > 0 && !(x.plus[x] > x)
```

$\longrightarrow x=3:$

$$
\begin{aligned}
& \text { all } x \text { : Int | } \\
& x>0 \text { => x.plus[x] > } x \\
& \longrightarrow x=3 \text { : } \\
& \llbracket x+x>x \rrbracket \sigma_{\forall} \\
& =3+3>0 \vee 3+3=\perp \vee 0=\perp \\
& =\text { false } \vee \text { true } \vee \text { false } \\
& \text { = true }
\end{aligned}
$$

Example

rules

$$
\begin{aligned}
& \llbracket \rho(x, y) \rrbracket \sigma=\left\{\begin{array}{rrr}
\rho(x, y) \wedge x \neq \perp \wedge y \neq \perp, & \text { if } \sigma=\sigma_{\exists} \\
\rho(x, y) \vee x=\perp \vee y=\perp, & \text { if } \sigma=\sigma_{\forall} \\
\rho \in\{<, \leq,=, \neq,>, \geq\}
\end{array}\right.
\end{aligned}
$$

example

```
all x: Int |
    x > 0 => x.plus[x] > x
```

 \(\longrightarrow x=3:\)
 $$
\begin{aligned}
\llbracket x+x & >x \rrbracket \sigma_{\forall} \\
& =3+3>0 \vee 3+3=\perp \vee 0=\perp \\
& =\text { false } \quad \vee \text { true } \quad \vee \text { false } \\
& =\text { true }
\end{aligned}
$$

$$
\left\lvert\, \begin{aligned}
& \text { some } x: \text { Int } \mid \\
& x>0 \& \&!(x . p l u s[x]>x)
\end{aligned}\right.
$$

$$
\longrightarrow x=3:
$$

$$
\begin{aligned}
\llbracket!(x+x & >x) \rrbracket \sigma_{\exists} \\
& =\neg \llbracket x+x>x \rrbracket \sigma_{\forall} \\
& =\neg \text { true } \\
& =\text { false }
\end{aligned}
$$

Law of the Excluded Middle

is law of the excluded middle still preserved?

- the non-compositional rule for negation suggests it's not

Law of the Excluded Middle

is law of the excluded middle still preserved?

- the non-compositional rule for negation suggests it's not
- in a bounded setting of alloy, that is usually not a problem
\rightarrow all integers when multiplied by 2 are either negative or non-negative?

```
check {
    all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)
} for 4 Int
```


Law of the Excluded Middle

is law of the excluded middle still preserved?

- the non-compositional rule for negation suggests it's not
- in a bounded setting of alloy, that is usually not a problem
\rightarrow all integers when multiplied by 2 are either negative or non-negative?

```
check {
    all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)
} for 4 Int
```

all integers x such that x times 2 does not overflow, x times 2 is either negative or non-negative

Law of the Excluded Middle

is law of the excluded middle still preserved?

- the non-compositional rule for negation suggests it's not
- in a bounded setting of alloy, that is usually not a problem
\rightarrow all integers when multiplied by 2 are either negative or non-negative?

```
check {
    all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)
} for 4 Int
```

all integers x such that x times 2 does not overflow, x times 2 is either negative or non-negative

- violation of the law is still observable

```
check { 4.plus[5] = 6.plus[3] } for 4 Int
```


Law of the Excluded Middle

is law of the excluded middle still preserved?

- the non-compositional rule for negation suggests it's not
- in a bounded setting of alloy, that is usually not a problem
\rightarrow all integers when multiplied by 2 are either negative or non-negative?

```
check {
    all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)
} for 4 Int
```

all integers x such that x times 2 does not overflow, x times 2 is either negative or non-negative

- violation of the law is still observable

```
check { 4.plus[5] = 6.plus[3] } for 4 Int
```

```
check { 4.plus[5] != 6.plus[3] } for 4 Int
```


Law of the Excluded Middle

is law of the excluded middle still preserved?

- the non-compositional rule for negation suggests it's not
- in a bounded setting of alloy, that is usually not a problem
\rightarrow all integers when multiplied by 2 are either negative or non-negative?

```
check {
    all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)
} for 4 Int
```

all integers x such that x times 2 does not overflow,
x times 2 is either negative or non-negative

- violation of the law is still observable

```
check { 4.plus[5] = 6.plus[3] } for 4 Int
```

```
check { 4.plus[5] != 6.plus[3] } for 4 Int
```

\rightarrow the violation is visible if truth is associated with a check yields a counterexample at all

Partial Functions in Logic

overflows in alloy

- instance of a more general problem: handling partial functions in logic

existing solutions/approaches

- logic of partial functions (LPF) [C. B. Jones]
\rightarrow both integer functions and boolean formulas may be undefined
\rightarrow uses a 3 -valued logic
- traditional approach [Farmer'95]
\rightarrow functions may be partial, but formulas must be denoting
\rightarrow if any term is undefined, formula evaluates to false
\rightarrow leaves open whether $\neg(a=a) \equiv a \neq a$ given that a is undefined
- totalize all functions
\rightarrow wraparound semantics for integer arithmetic in old alloy
\rightarrow out-of-bounds applications result in unknown (but determined) value ${ }^{[B, Z]}$

differentiating characteristics of our approach

- customized for the bounded setting
- masking quantifier bindings that produce undefinedness

