
Preventing Arithmetic Overflows in Alloy

Aleksandar Milicevic Daniel Jackson
(aleks@csail.mit.edu) (dnj@csail.mit.edu)

Software Design Group
Massachusetts Institute of Technology

Cambridge, MA

International Conference of Alloy, ASM, B, VDM, and Z Users
Pisa, Italy, June 2012

1

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

Prim’s algorithm for finding
minimum spanning tree in a graph

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selectedF

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

Prim’s algorithm for finding
minimum spanning tree in a graph

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selectedF

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

Prim’s algorithm for finding
minimum spanning tree in a graph

D

select an arbitrary node to start with
5

9

15

6

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selectedF

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

Prim’s algorithm for finding
minimum spanning tree in a graph

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selectedF

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

Prim’s algorithm for finding
minimum spanning tree in a graph

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

7

9

15

6

repeat until all nodes have been selected

F

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

Prim’s algorithm for finding
minimum spanning tree in a graph

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selectedF

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

Prim’s algorithm for finding
minimum spanning tree in a graph

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selectedF

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selected

F

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selected

F

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selected

F

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selected

F

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selected

F

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selected

F

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

counterexample: leftSum = -5; rightSum = 24

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selected

F

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

counterexample: leftSum = -5; rightSum = 24

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges] and (sum e: edges | e.weight) > 0

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selected

F

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges] and (sum e: edges | e.weight) > 0

counterexample: leftSum = 2; rightSum = 28

2

Checking Prim’s Algorithm

A

B

C

D
E

F G

7 8

7 5
5

9

15

6

8 9

11

D

select an arbitrary node to start with

find edges from selected to unselected nodes

A

select the edge with the smallest weight

repeat until all nodes have been selected

F

B

C

E

G

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

} {

weight >= 0 && #nodes = 2

}

open util/ordering[Time]

sig Time {}

sig Node {}

sig Edge {

weight: Int,

nodes: set Node,

chosen: set Time

} {

weight >= 0 && #nodes = 2

}

fact prim { /* model of execution of Prim’s algorithm */ }

pred spanningTree(edges: set Edges) { /* checks whether a given set of

edges forms a spanning tree */ }

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges]

(sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}}

/* no set of edges is a spanning tree with a smaller total weight

than the one returned by Prim’s algorithm */

smallest: check {

no edges: set Edge {

spanningTree[edges] and (sum e: edges | e.weight) > 0

causes arithmetic overflows!

2

Soundness of Alloy

reason for overflows
wraparound semantics for arithmetic operations

Int = {-4, -3, ..., 2, 3}Ô⇒ 3 + 1 = -4

alloy
first order relational modeling language

the alloy analyzer
fully automated, bounded model finder for alloy

consequences of the bounded analysis
not sound with respect to proof
→ if no counterexample is found, one may still exist in a larger scope

not sound w.r.t. counterexamples when integers are used
→ arithmetic operations can overflow⇒ spurious counterexamples

sound w.r.t. counterexamples if no integers are used
→ i.e., if a counterexample is found, the property does not hold
→ reason: relational operators are closed under finite universe

3

Soundness of Alloy

reason for overflows
wraparound semantics for arithmetic operations

Int = {-4, -3, ..., 2, 3}Ô⇒ 3 + 1 = -4

alloy
first order relational modeling language

the alloy analyzer
fully automated, bounded model finder for alloy

consequences of the bounded analysis
not sound with respect to proof
→ if no counterexample is found, one may still exist in a larger scope

not sound w.r.t. counterexamples when integers are used
→ arithmetic operations can overflow⇒ spurious counterexamples

sound w.r.t. counterexamples if no integers are used
→ i.e., if a counterexample is found, the property does not hold
→ reason: relational operators are closed under finite universe

3

Soundness of Alloy

reason for overflows
wraparound semantics for arithmetic operations

Int = {-4, -3, ..., 2, 3}Ô⇒ 3 + 1 = -4

alloy
first order relational modeling language

the alloy analyzer
fully automated, bounded model finder for alloy

consequences of the bounded analysis
not sound with respect to proof
→ if no counterexample is found, one may still exist in a larger scope

not sound w.r.t. counterexamples when integers are used
→ arithmetic operations can overflow⇒ spurious counterexamples

sound w.r.t. counterexamples if no integers are used
→ i.e., if a counterexample is found, the property does not hold
→ reason: relational operators are closed under finite universe

3

Soundness of Alloy

reason for overflows
wraparound semantics for arithmetic operations

Int = {-4, -3, ..., 2, 3}Ô⇒ 3 + 1 = -4

alloy
first order relational modeling language

the alloy analyzer
fully automated, bounded model finder for alloy

consequences of the bounded analysis
not sound with respect to proof
→ if no counterexample is found, one may still exist in a larger scope

not sound w.r.t. counterexamples when integers are used
→ arithmetic operations can overflow⇒ spurious counterexamples

sound w.r.t. counterexamples if no integers are used
→ i.e., if a counterexample is found, the property does not hold
→ reason: relational operators are closed under finite universe

3

Soundness of Alloy

reason for overflows
wraparound semantics for arithmetic operations

Int = {-4, -3, ..., 2, 3}Ô⇒ 3 + 1 = -4

alloy
first order relational modeling language

the alloy analyzer
fully automated, bounded model finder for alloy

consequences of the bounded analysis
not sound with respect to proof
→ if no counterexample is found, one may still exist in a larger scope

not sound w.r.t. counterexamples when integers are used
→ arithmetic operations can overflow⇒ spurious counterexamples

sound w.r.t. counterexamples if no integers are used
→ i.e., if a counterexample is found, the property does not hold
→ reason: relational operators are closed under finite universe

3

Goal & Approach

goal
eliminate spurious counterexamples caused by overflows

→ makes the analyzer sound w.r.t. to counterexamples

idea
treat arithmetic operations that overflow as undefined (⊥)
use a standard 3-valued logic for boolean propositions [VDM]

true ∧ ⊥ = ⊥, false ∧ ⊥ = false, . . .

change the semantics of quantifiers

Jall x: Int | p(x)K = ∀x ∈ Int ● (p(x) =⊥) ∨ p(x)
Jsome x: Int | p(x)K = ∃x ∈ Int ● (p(x) ≠⊥) ∧ p(x)

result: returned models are always defined

challenge: translation to existing SAT-based engine

4

Goal & Approach

goal
eliminate spurious counterexamples caused by overflows

→ makes the analyzer sound w.r.t. to counterexamples

idea
treat arithmetic operations that overflow as undefined (⊥)
use a standard 3-valued logic for boolean propositions [VDM]

true ∧ ⊥ = ⊥, false ∧ ⊥ = false, . . .

change the semantics of quantifiers

Jall x: Int | p(x)K = ∀x ∈ Int ● (p(x) =⊥) ∨ p(x)
Jsome x: Int | p(x)K = ∃x ∈ Int ● (p(x) ≠⊥) ∧ p(x)

result: returned models are always defined

challenge: translation to existing SAT-based engine

4

Goal & Approach

goal
eliminate spurious counterexamples caused by overflows

→ makes the analyzer sound w.r.t. to counterexamples

idea
treat arithmetic operations that overflow as undefined (⊥)
use a standard 3-valued logic for boolean propositions [VDM]

true ∧ ⊥ = ⊥, false ∧ ⊥ = false, . . .

change the semantics of quantifiers

Jall x: Int | p(x)K = ∀x ∈ Int ● (p(x) =⊥) ∨ p(x)
Jsome x: Int | p(x)K = ∃x ∈ Int ● (p(x) ≠⊥) ∧ p(x)

result: returned models are always defined

challenge: translation to existing SAT-based engine

4

Goal & Approach

goal
eliminate spurious counterexamples caused by overflows

→ makes the analyzer sound w.r.t. to counterexamples

idea
treat arithmetic operations that overflow as undefined (⊥)
use a standard 3-valued logic for boolean propositions [VDM]

true ∧ ⊥ = ⊥, false ∧ ⊥ = false, . . .

change the semantics of quantifiers

Jall x: Int | p(x)K = ∀x ∈ Int ● (p(x) =⊥) ∨ p(x)
Jsome x: Int | p(x)K = ∃x ∈ Int ● (p(x) ≠⊥) ∧ p(x)

result: returned models are always defined

challenge: translation to existing SAT-based engine
4

Example Using the New Semantics
semantics of quantifiers

Jall x: Int | p(x)K = ∀x ∈ Int ● (p(x) =⊥) ∨ p(x)
Jsome x: Int | p(x)K = ∃x ∈ Int ● (p(x) ≠⊥) ∧ p(x)

example
pred p[x, y: Int] {

x > 0 && y > 0 => x.plus[y] > 0 }

check { all x, y: Int | p[x, y] }

for 3 Int

scope

Int = {-4, -3, ..., 2, 3}

interpretation
p(−4,−4) ⋯ p(1,1) ⋯ p(3,3)

7

4

p(x,y) =⊥ :
p(x,y) :

7

4
∧ ⋯ ∧ 4

7
∧ ⋯ ∧ = true

5

Example Using the New Semantics
semantics of quantifiers

Jall x: Int | p(x)K = ∀x ∈ Int ● (p(x) =⊥) ∨ p(x)
Jsome x: Int | p(x)K = ∃x ∈ Int ● (p(x) ≠⊥) ∧ p(x)

example
pred p[x, y: Int] {

x > 0 && y > 0 => x.plus[y] > 0 }

check { all x, y: Int | p[x, y] }

for 3 Int

scope

Int = {-4, -3, ..., 2, 3}

interpretation
p(−4,−4) ⋯ p(1,1) ⋯ p(3,3)

7

4

p(x,y) =⊥ :
p(x,y) :

7

4
∧ ⋯ ∧ 4

7
∧ ⋯ ∧ = true

5

Example Using the New Semantics
semantics of quantifiers

Jall x: Int | p(x)K = ∀x ∈ Int ● (p(x) =⊥) ∨ p(x)
Jsome x: Int | p(x)K = ∃x ∈ Int ● (p(x) ≠⊥) ∧ p(x)

example
pred p[x, y: Int] {

x > 0 && y > 0 => x.plus[y] > 0 }

check { all x, y: Int | p[x, y] }

for 3 Int

scope

Int = {-4, -3, ..., 2, 3}

interpretation
p(−4,−4) ⋯ p(1,1) ⋯ p(3,3)

7

4

p(x,y) =⊥ :
p(x,y) :

7

4
∧ ⋯ ∧ 4

7
∧ ⋯ ∧ = true

5

Example Using the New Semantics
semantics of quantifiers

Jall x: Int | p(x)K = ∀x ∈ Int ● (p(x) =⊥) ∨ p(x)
Jsome x: Int | p(x)K = ∃x ∈ Int ● (p(x) ≠⊥) ∧ p(x)

example
pred p[x, y: Int] {

x > 0 && y > 0 => x.plus[y] > 0 }

check { all x, y: Int | p[x, y] }

for 3 Int

scope

Int = {-4, -3, ..., 2, 3}

interpretation
p(−4,−4) ⋯ p(1,1) ⋯ p(3,3)

7

4

p(x,y) =⊥ :
p(x,y) :

7

4
∧ ⋯ ∧

4

7
∧ ⋯ ∧ = true

5

Example Using the New Semantics
semantics of quantifiers

Jall x: Int | p(x)K = ∀x ∈ Int ● (p(x) =⊥) ∨ p(x)
Jsome x: Int | p(x)K = ∃x ∈ Int ● (p(x) ≠⊥) ∧ p(x)

example
pred p[x, y: Int] {

x > 0 && y > 0 => x.plus[y] > 0 }

check { all x, y: Int | p[x, y] }

for 3 Int

scope

Int = {-4, -3, ..., 2, 3}

interpretation
p(−4,−4) ⋯ p(1,1) ⋯ p(3,3)

7

4

p(x,y) =⊥ :
p(x,y) :

7

4
∧ ⋯ ∧ 4

7
∧ ⋯ ∧

= true

5

Example Using the New Semantics
semantics of quantifiers

Jall x: Int | p(x)K = ∀x ∈ Int ● (p(x) =⊥) ∨ p(x)
Jsome x: Int | p(x)K = ∃x ∈ Int ● (p(x) ≠⊥) ∧ p(x)

example
pred p[x, y: Int] {

x > 0 && y > 0 => x.plus[y] > 0 }

check { all x, y: Int | p[x, y] }

for 3 Int

scope

Int = {-4, -3, ..., 2, 3}

interpretation
p(−4,−4) ⋯ p(1,1) ⋯ p(3,3)

7

4

p(x,y) =⊥ :
p(x,y) :

7

4
∧ ⋯ ∧ 4

7
∧ ⋯ ∧ = true

5

Implementation Challenges

implementation options
enumerate values of bound variables and evaluate quantifiers
→ extremely inefficient

directly encode to SAT
→ 3-valued logic must be used throughout
→ 2 bits required to represent 1 boolean variable
→ likely to adversely affect models that don’t involve integers

translate to classical logic and existing SAT-based back-end
→ models without integers remain unaffected

alloy architecture

Alloy Kodkod SAT Solver

relational formula boolean formula

boolean modelrelational model

6

Implementation Challenges

implementation options
enumerate values of bound variables and evaluate quantifiers
→ extremely inefficient

directly encode to SAT
→ 3-valued logic must be used throughout
→ 2 bits required to represent 1 boolean variable
→ likely to adversely affect models that don’t involve integers

translate to classical logic and existing SAT-based back-end
→ models without integers remain unaffected

alloy architecture

Alloy Kodkod SAT Solver

relational formula boolean formula

boolean modelrelational model

6

Implementation Challenges

implementation options
enumerate values of bound variables and evaluate quantifiers
→ extremely inefficient

directly encode to SAT
→ 3-valued logic must be used throughout
→ 2 bits required to represent 1 boolean variable
→ likely to adversely affect models that don’t involve integers

translate to classical logic and existing SAT-based back-end
→ models without integers remain unaffected

alloy architecture

Alloy Kodkod SAT Solver

relational formula boolean formula

boolean modelrelational model

6

Implementation Challenges

implementation options
enumerate values of bound variables and evaluate quantifiers
→ extremely inefficient

directly encode to SAT
→ 3-valued logic must be used throughout
→ 2 bits required to represent 1 boolean variable
→ likely to adversely affect models that don’t involve integers

translate to classical logic and existing SAT-based back-end
→ models without integers remain unaffected

alloy architecture

Alloy Kodkod SAT Solver

relational formula boolean formula

boolean modelrelational model

6

Translation to Classical Logic (1)

key requirement
every boolean formula must denote (evaluate to true or false)

consequence
a truth value must be assigned to predicates involving
undefined terms [Farmer’95]

all x: Int |

x > 0 => x.plus[x] > x

Ð→ x=3: J x.plus[x] > x K = true

some x: Int |

x > 0 && x.plus[x] < x

Ð→ x=3: J x.plus[x] < x K = false

approach
only integer functions can result in an undefined integer value (⊥)
→ use textbook overflow circuits to detect such cases

single link from integers to boolean formulas: comparison predicates
→ adjust the semantics of integer comparison predicates
→ when either term is ⊥, evaluate to make the outer binding irrelevant

7

Translation to Classical Logic (1)

key requirement
every boolean formula must denote (evaluate to true or false)

consequence
a truth value must be assigned to predicates involving
undefined terms [Farmer’95]

all x: Int |

x > 0 => x.plus[x] > x

Ð→ x=3:

J x.plus[x] > x K = true

some x: Int |

x > 0 && x.plus[x] < x

Ð→ x=3: J x.plus[x] < x K = false

approach
only integer functions can result in an undefined integer value (⊥)
→ use textbook overflow circuits to detect such cases

single link from integers to boolean formulas: comparison predicates
→ adjust the semantics of integer comparison predicates
→ when either term is ⊥, evaluate to make the outer binding irrelevant

7

Translation to Classical Logic (1)

key requirement
every boolean formula must denote (evaluate to true or false)

consequence
a truth value must be assigned to predicates involving
undefined terms [Farmer’95]

all x: Int |

x > 0 => x.plus[x] > x

Ð→ x=3: J x.plus[x] > x K = true

some x: Int |

x > 0 && x.plus[x] < x

Ð→ x=3: J x.plus[x] < x K = false

approach
only integer functions can result in an undefined integer value (⊥)
→ use textbook overflow circuits to detect such cases

single link from integers to boolean formulas: comparison predicates
→ adjust the semantics of integer comparison predicates
→ when either term is ⊥, evaluate to make the outer binding irrelevant

7

Translation to Classical Logic (1)

key requirement
every boolean formula must denote (evaluate to true or false)

consequence
a truth value must be assigned to predicates involving
undefined terms [Farmer’95]

all x: Int |

x > 0 => x.plus[x] > x

Ð→ x=3: J x.plus[x] > x K = true

some x: Int |

x > 0 && x.plus[x] < x

Ð→ x=3: J x.plus[x] < x K = false

approach
only integer functions can result in an undefined integer value (⊥)
→ use textbook overflow circuits to detect such cases

single link from integers to boolean formulas: comparison predicates
→ adjust the semantics of integer comparison predicates
→ when either term is ⊥, evaluate to make the outer binding irrelevant

7

Translation to Classical Logic (1)

key requirement
every boolean formula must denote (evaluate to true or false)

consequence
a truth value must be assigned to predicates involving
undefined terms [Farmer’95]

all x: Int |

x > 0 => x.plus[x] > x

Ð→ x=3: J x.plus[x] > x K = true

some x: Int |

x > 0 && x.plus[x] < x

Ð→ x=3: J x.plus[x] < x K = false

approach
only integer functions can result in an undefined integer value (⊥)
→ use textbook overflow circuits to detect such cases

single link from integers to boolean formulas: comparison predicates
→ adjust the semantics of integer comparison predicates
→ when either term is ⊥, evaluate to make the outer binding irrelevant

7

Translation to Classical Logic (1)

key requirement
every boolean formula must denote (evaluate to true or false)

consequence
a truth value must be assigned to predicates involving
undefined terms [Farmer’95]

all x: Int |

x > 0 => x.plus[x] > x

Ð→ x=3: J x.plus[x] > x K = true

some x: Int |

x > 0 && x.plus[x] < x

Ð→ x=3: J x.plus[x] < x K = false

approach
only integer functions can result in an undefined integer value (⊥)
→ use textbook overflow circuits to detect such cases

single link from integers to boolean formulas: comparison predicates
→ adjust the semantics of integer comparison predicates
→ when either term is ⊥, evaluate to make the outer binding irrelevant

7

Translation to Classical Logic (2)

definition

Jx < yKσ = { x < y ∧ x ≠ ⊥ ∧ y ≠ ⊥, if σ=σ∃ (in existential context)
x < y ∨ x = ⊥ ∨ y = ⊥, if σ=σ∀ (in universal context)

what about negation: J¬(x < y)Kσ∃ =?

compositional

J¬(x < y)Kσ∃ = ¬Jx < yKσ∃

= ¬(x < y ∧ x ≠ ⊥ ∧ y ≠ ⊥)
= x ≥ y ∨ x = ⊥ ∨ y = ⊥
≠Jx ≥ yKσ∃

semantics preserving

J¬(x < y)Kσ∃ = Jx ≥ yKσ∃

= x ≥ y ∧ x ≠ ⊥ ∧ y ≠ ⊥

= ¬(x < y ∨ x = ⊥ ∨ y = ⊥)
= ¬(Jx < yKσ∀)

rule for negation: J¬pKσ∃ = ¬JpKσ∀

J¬pKσ∀ = ¬JpKσ∃

8

Translation to Classical Logic (2)

definition

Jx < yKσ = { x < y ∧ x ≠ ⊥ ∧ y ≠ ⊥, if σ=σ∃ (in existential context)
x < y ∨ x = ⊥ ∨ y = ⊥, if σ=σ∀ (in universal context)

what about negation: J¬(x < y)Kσ∃ =?

compositional

J¬(x < y)Kσ∃ = ¬Jx < yKσ∃

= ¬(x < y ∧ x ≠ ⊥ ∧ y ≠ ⊥)
= x ≥ y ∨ x = ⊥ ∨ y = ⊥
≠Jx ≥ yKσ∃

semantics preserving

J¬(x < y)Kσ∃ = Jx ≥ yKσ∃

= x ≥ y ∧ x ≠ ⊥ ∧ y ≠ ⊥

= ¬(x < y ∨ x = ⊥ ∨ y = ⊥)
= ¬(Jx < yKσ∀)

rule for negation: J¬pKσ∃ = ¬JpKσ∀

J¬pKσ∀ = ¬JpKσ∃

8

Translation to Classical Logic (2)

definition

Jx < yKσ = { x < y ∧ x ≠ ⊥ ∧ y ≠ ⊥, if σ=σ∃ (in existential context)
x < y ∨ x = ⊥ ∨ y = ⊥, if σ=σ∀ (in universal context)

what about negation: J¬(x < y)Kσ∃ =?

compositional

J¬(x < y)Kσ∃ = ¬Jx < yKσ∃

= ¬(x < y ∧ x ≠ ⊥ ∧ y ≠ ⊥)
= x ≥ y ∨ x = ⊥ ∨ y = ⊥
≠Jx ≥ yKσ∃

semantics preserving

J¬(x < y)Kσ∃ = Jx ≥ yKσ∃

= x ≥ y ∧ x ≠ ⊥ ∧ y ≠ ⊥

= ¬(x < y ∨ x = ⊥ ∨ y = ⊥)
= ¬(Jx < yKσ∀)

rule for negation: J¬pKσ∃ = ¬JpKσ∀

J¬pKσ∀ = ¬JpKσ∃

8

Translation to Classical Logic (2)

definition

Jx < yKσ = { x < y ∧ x ≠ ⊥ ∧ y ≠ ⊥, if σ=σ∃ (in existential context)
x < y ∨ x = ⊥ ∨ y = ⊥, if σ=σ∀ (in universal context)

what about negation: J¬(x < y)Kσ∃ =?

compositional

J¬(x < y)Kσ∃ = ¬Jx < yKσ∃

= ¬(x < y ∧ x ≠ ⊥ ∧ y ≠ ⊥)
= x ≥ y ∨ x = ⊥ ∨ y = ⊥
≠Jx ≥ yKσ∃

semantics preserving

J¬(x < y)Kσ∃ = Jx ≥ yKσ∃

= x ≥ y ∧ x ≠ ⊥ ∧ y ≠ ⊥

= ¬(x < y ∨ x = ⊥ ∨ y = ⊥)
= ¬(Jx < yKσ∀)

rule for negation: J¬pKσ∃ = ¬JpKσ∀

J¬pKσ∀ = ¬JpKσ∃

8

Translation to Classical Logic (2)

definition

Jx < yKσ = { x < y ∧ x ≠ ⊥ ∧ y ≠ ⊥, if σ=σ∃ (in existential context)
x < y ∨ x = ⊥ ∨ y = ⊥, if σ=σ∀ (in universal context)

what about negation: J¬(x < y)Kσ∃ =?

compositional

J¬(x < y)Kσ∃ = ¬Jx < yKσ∃

= ¬(x < y ∧ x ≠ ⊥ ∧ y ≠ ⊥)
= x ≥ y ∨ x = ⊥ ∨ y = ⊥
≠Jx ≥ yKσ∃

semantics preserving

J¬(x < y)Kσ∃ = Jx ≥ yKσ∃

= x ≥ y ∧ x ≠ ⊥ ∧ y ≠ ⊥
= ¬(x < y ∨ x = ⊥ ∨ y = ⊥)
= ¬(Jx < yKσ∀)

rule for negation: J¬pKσ∃ = ¬JpKσ∀

J¬pKσ∀ = ¬JpKσ∃

8

Translation to Classical Logic (2)

definition

Jρ(x,y)Kσ = { ρ(x,y) ∧ x ≠ ⊥ ∧ y ≠ ⊥, if σ=σ∃ (in existential context)
ρ(x,y) ∨ x = ⊥ ∨ y = ⊥, if σ=σ∀ (in universal context)

ρ ∈ {<,≤,=,≠,>,≥}

what about negation: J¬(x < y)Kσ∃ =?

compositional

J¬(x < y)Kσ∃ = ¬Jx < yKσ∃

= ¬(x < y ∧ x ≠ ⊥ ∧ y ≠ ⊥)
= x ≥ y ∨ x = ⊥ ∨ y = ⊥
≠Jx ≥ yKσ∃

semantics preserving

J¬(x < y)Kσ∃ = Jx ≥ yKσ∃

= x ≥ y ∧ x ≠ ⊥ ∧ y ≠ ⊥
= ¬(x < y ∨ x = ⊥ ∨ y = ⊥)
= ¬(Jx < yKσ∀)

rule for negation: J¬pKσ∃ = ¬JpKσ∀

J¬pKσ∀ = ¬JpKσ∃

8

Evaluation

how does the new encoding affect performance?
extra clauses are generated to detect and prevent overflows
→ (only when arithmetic operations are used)

no extra primary variables are used

possible effects of extra clauses on solving time:
→ speedup: because search space smaller (more constrained)
→ slowdown: SAT solver can get stuck more easily

9

Evaluation

how does the new encoding affect performance?
extra clauses are generated to detect and prevent overflows
→ (only when arithmetic operations are used)

no extra primary variables are used
possible effects of extra clauses on solving time:
→ speedup: because search space smaller (more constrained)
→ slowdown: SAT solver can get stuck more easily

9

Experiment

flash filesystem [Kang, ABZ’08]

heavy use of arithmetic (for computing memory addresses)
we ran 10 simulations and 6 checks
total time decreased from 12 hours to 8 hours
this result is not meant to be conclusive!

 1

 10

 100

 1,000

 10,000

 100,000

ru
n
1

ru
n
2

ru
n
3

ru
n
4

ru
n
5

ru
n
6

ru
n
7

ru
n
8

ru
n
9

ru
n
1
0

ch
ec

k
1

ch
ec

k
2

ch
ec

k
3

ch
ec

k
4

ch
ec

k
5

ch
ec

k
6

ti
m

e
(s

)

translation time (old)

translation time (new)

solving time (old)

solving time (new)

10

Summary

summary
alloy made sound with respect to counterexamples

applications that can benefit
program verifications
test case generation
specification execution

ideas for future work
user-defined partial functions

Thank You!
http://alloy.mit.edu

11

Spurious Counterexamples due to Overflows

reason for overflows
wraparound semantics for arithmetic operations
→ Int = {-4, -3, ..., 2, 3}Ô⇒ 3 + 1 = -4

prototypical anomalies

sum of two positive integers is not necessarily positive!
check {

all x, y: Int |

x > 0 && y > 0 => x.plus[y] > 0

} for 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

a = 3; b = 1;

a.plus[b] = -4

cardinality of a non-empty set is not necessarily positive!
check {

all s: set univ |

some s iff #s > 0

} for 4 but 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

s = {S0, S1, S2, S3}

#s = -4

12

Spurious Counterexamples due to Overflows

reason for overflows
wraparound semantics for arithmetic operations
→ Int = {-4, -3, ..., 2, 3}Ô⇒ 3 + 1 = -4

prototypical anomalies

sum of two positive integers is not necessarily positive!
check {

all x, y: Int |

x > 0 && y > 0 => x.plus[y] > 0

} for 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

a = 3; b = 1;

a.plus[b] = -4

cardinality of a non-empty set is not necessarily positive!
check {

all s: set univ |

some s iff #s > 0

} for 4 but 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

s = {S0, S1, S2, S3}

#s = -4

12

Spurious Counterexamples due to Overflows

reason for overflows
wraparound semantics for arithmetic operations
→ Int = {-4, -3, ..., 2, 3}Ô⇒ 3 + 1 = -4

prototypical anomalies

sum of two positive integers is not necessarily positive!
check {

all x, y: Int |

x > 0 && y > 0 => x.plus[y] > 0

} for 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

a = 3; b = 1;

a.plus[b] = -4

cardinality of a non-empty set is not necessarily positive!
check {

all s: set univ |

some s iff #s > 0

} for 4 but 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

s = {S0, S1, S2, S3}

#s = -4

12

Example

rules

Jρ(x,y)Kσ = { ρ(x,y) ∧ x ≠ ⊥ ∧ y ≠ ⊥, if σ=σ∃

ρ(x,y) ∨ x = ⊥ ∨ y = ⊥, if σ=σ∀

ρ∈{<,≤,=,≠,>,≥}

J¬pKσ∃ = ¬JpKσ∀
J¬pKσ∀ = ¬JpKσ∃

example

all x: Int |

x > 0 => x.plus[x] > x

Ð→ x = 3 ∶

Jx+x > xKσ∀

= 3+3 > 0 ∨ 3+3 =⊥ ∨ 0 =⊥
= false ∨ true ∨ false

= true

some x: Int |

x > 0 && !(x.plus[x] > x)

Ð→ x = 3 ∶

J!(x+x > x)Kσ∃

= ¬Jx+x > xKσ∀

= ¬true
= false

13

Example

rules

Jρ(x,y)Kσ = { ρ(x,y) ∧ x ≠ ⊥ ∧ y ≠ ⊥, if σ=σ∃

ρ(x,y) ∨ x = ⊥ ∨ y = ⊥, if σ=σ∀

ρ∈{<,≤,=,≠,>,≥}

J¬pKσ∃ = ¬JpKσ∀
J¬pKσ∀ = ¬JpKσ∃

example

all x: Int |

x > 0 => x.plus[x] > x

Ð→ x = 3 ∶
Jx+x > xKσ∀

= 3+3 > 0 ∨ 3+3 =⊥ ∨ 0 =⊥
= false ∨ true ∨ false

= true

some x: Int |

x > 0 && !(x.plus[x] > x)

Ð→ x = 3 ∶

J!(x+x > x)Kσ∃

= ¬Jx+x > xKσ∀

= ¬true
= false

13

Example

rules

Jρ(x,y)Kσ = { ρ(x,y) ∧ x ≠ ⊥ ∧ y ≠ ⊥, if σ=σ∃

ρ(x,y) ∨ x = ⊥ ∨ y = ⊥, if σ=σ∀

ρ∈{<,≤,=,≠,>,≥}

J¬pKσ∃ = ¬JpKσ∀
J¬pKσ∀ = ¬JpKσ∃

example

all x: Int |

x > 0 => x.plus[x] > x

Ð→ x = 3 ∶
Jx+x > xKσ∀

= 3+3 > 0 ∨ 3+3 =⊥ ∨ 0 =⊥
= false ∨ true ∨ false

= true

some x: Int |

x > 0 && !(x.plus[x] > x)

Ð→ x = 3 ∶
J!(x+x > x)Kσ∃

= ¬Jx+x > xKσ∀

= ¬true
= false

13

Law of the Excluded Middle

is law of the excluded middle still preserved?
the non-compositional rule for negation suggests it’s not

in a bounded setting of alloy, that is usually not a problem
→ all integers when multiplied by 2 are either negative or non-negative?

check {

all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)

} for 4 Int

all integers x such that x times 2 does not overflow,
x times 2 is either negative or non-negative

violation of the law is still observable

check { 4.plus[5] = 6.plus[3] } for 4 Int

check { 4.plus[5] != 6.plus[3] } for 4 Int

→ the violation is visible if truth is associated with a check yields a
counterexample at all

14

Law of the Excluded Middle

is law of the excluded middle still preserved?
the non-compositional rule for negation suggests it’s not
in a bounded setting of alloy, that is usually not a problem
→ all integers when multiplied by 2 are either negative or non-negative?

check {

all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)

} for 4 Int

all integers x such that x times 2 does not overflow,
x times 2 is either negative or non-negative

violation of the law is still observable

check { 4.plus[5] = 6.plus[3] } for 4 Int

check { 4.plus[5] != 6.plus[3] } for 4 Int

→ the violation is visible if truth is associated with a check yields a
counterexample at all

14

Law of the Excluded Middle

is law of the excluded middle still preserved?
the non-compositional rule for negation suggests it’s not
in a bounded setting of alloy, that is usually not a problem
→ all integers when multiplied by 2 are either negative or non-negative?

check {

all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)

} for 4 Int

all integers x such that x times 2 does not overflow,
x times 2 is either negative or non-negative

violation of the law is still observable

check { 4.plus[5] = 6.plus[3] } for 4 Int

check { 4.plus[5] != 6.plus[3] } for 4 Int

→ the violation is visible if truth is associated with a check yields a
counterexample at all

14

Law of the Excluded Middle

is law of the excluded middle still preserved?
the non-compositional rule for negation suggests it’s not
in a bounded setting of alloy, that is usually not a problem
→ all integers when multiplied by 2 are either negative or non-negative?

check {

all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)

} for 4 Int

all integers x such that x times 2 does not overflow,
x times 2 is either negative or non-negative

violation of the law is still observable

check { 4.plus[5] = 6.plus[3] } for 4 Int

check { 4.plus[5] != 6.plus[3] } for 4 Int

→ the violation is visible if truth is associated with a check yields a
counterexample at all

14

Law of the Excluded Middle

is law of the excluded middle still preserved?
the non-compositional rule for negation suggests it’s not
in a bounded setting of alloy, that is usually not a problem
→ all integers when multiplied by 2 are either negative or non-negative?

check {

all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)

} for 4 Int

all integers x such that x times 2 does not overflow,
x times 2 is either negative or non-negative

violation of the law is still observable

check { 4.plus[5] = 6.plus[3] } for 4 Int

check { 4.plus[5] != 6.plus[3] } for 4 Int

→ the violation is visible if truth is associated with a check yields a
counterexample at all

14

Law of the Excluded Middle

is law of the excluded middle still preserved?
the non-compositional rule for negation suggests it’s not
in a bounded setting of alloy, that is usually not a problem
→ all integers when multiplied by 2 are either negative or non-negative?

check {

all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)

} for 4 Int

all integers x such that x times 2 does not overflow,
x times 2 is either negative or non-negative

violation of the law is still observable

check { 4.plus[5] = 6.plus[3] } for 4 Int

check { 4.plus[5] != 6.plus[3] } for 4 Int

→ the violation is visible if truth is associated with a check yields a
counterexample at all

14

Partial Functions in Logic
overflows in alloy

instance of a more general problem: handling partial functions in logic

existing solutions/approaches
logic of partial functions (LPF) [C. B. Jones]

→ both integer functions and boolean formulas may be undefined
→ uses a 3-valued logic

traditional approach [Farmer’95]

→ functions may be partial, but formulas must be denoting
→ if any term is undefined, formula evaluates to false

→ leaves open whether ¬(a = a) ≡ a ≠ a given that a is undefined

totalize all functions
→ wraparound semantics for integer arithmetic in old alloy
→ out-of-bounds applications result in unknown (but determined) value [B, Z]

differentiating characteristics of our approach
customized for the bounded setting
masking quantifier bindings that produce undefinedness

15

	Motivation
	Checking Prim's Algorithm

	Motivation
	Soundness of Alloy
	Goal & Approach
	Example Using the New Semantics

	Technical Difficulties
	Implementation Challenges

	Translation into Classical Logic
	Translation to Classical Logic (1)
	Translation to Classical Logic (2)

	Evaluation
	Evaluation
	Experiment

	Conclusions
	Summary

	Extra
	Spurious Counterexamples due to Overflows
	Example
	Law of the Excluded Middle

	Related Work
	Partial Functions in Logic

