## Unifying Execution of Imperative and Declarative Code

# Aleksandar Milicevic <br>  



Derek
Rayside


Kuat
Yessenov


Daniel
Jackson

Massachusetts Institute of Technology Cambridge, MA
$33^{\text {rd }}$ International Conference on Software Engineering May 27, 2011

## Solving Sudoku

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

Sudoku puzzle: fill in the empty cells s.t.:

1. all rows contain all values from 1 to 9
2. all columns contain all values from 1 to 9
3. all sub-grids contain all values from 1 to 9

## Solving Sudoku

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

Sudoku puzzle: fill in the empty cells s.t.: 1. all rows contain all values from 1 to 9
2. all columns contain all values from 1 to 9
3. all sub-grids contain all values from 1 to 9

Approaches:

- write a custom (heuristic-based) algorithm
[imperative]
- write a set of constraints and use a constraint solver
[declarative]


## Solving Sudoku

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

Sudoku puzzle: fill in the empty cells s.t.: 1. all rows contain all values from 1 to 9
2. all columns contain all values from 1 to 9
3. all sub-grids contain all values from 1 to 9

Approaches:

- write a custom (heuristic-based) algorithm
[imperative]
- write a set of constraints and use a constraint solver


## Sudoku with Squander

```
public class Sudoku {
    private int[][] grid = new int[9][9];
    public void solve() { ??? }
    public static void main(String[] args) {
        Sudoku s = new Sudoku();
        s.grid [0][3] = 1; ...; s.grid [8][5] = 1;
        s.solve();
        System.out.println(s);
    }
}
```

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

## Sudoku with Squander


public class Sudoku \{ private int[][] grid = new int[9][9];

```
    public void solve() { ??? }
    public static void main(String[] args) {
        Sudoku s = new Sudoku();
        s.grid [0][3] = 1; ...; s.grid [8][5] = 1;
        s.solve();
        System.out.println(s);
    }
```

\}

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

## Sudoku with Squander


public class Sudoku \{ private int[][] grid = new int[9][9];

```
    public void solve() { ??? }
    public static void main(String[] args) {
        Sudoku s = new Sudoku();
        s.grid [0][3] = 1; ...; s.grid [8][5] = 1;
        s.solve();
        System.out.println(s);
    }
}
```

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

## Sudoku with Squander


public class Sudoku \{ private int[][] grid = new int[9][9];

```
    public void solve() { ??? }
    public static void main(String[] args) {
        Sudoku s = new Sudoku();
        s.grid[0][3] = 1; ...; s.grid [8][5] = 1;
        s.solve ();
        System.out.println(s);
    }
```

\}

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

## Sudoku with Squander



1. all rows contain all values from 1 to 9
2. all columns contain all values from 1 to 9
3. all sub-grids contain all values from 1 to 9
```
public class Sudoku {
    private int[][] grid = new int[9][9];
```

    3. all sub-grids contain all values from 1 to 9
    @Ensures ( \(\{\)
        "all row in \(\{0 \ldots 8)\) | this.grid [row][int] \(=\left\{\begin{array}{lll}1 & \ldots & 9\end{array}\right\}\) ",
    
" all $r$, $c$ in $\{0,1,2\} \mid$ this.grid $[\{r * 3 \ldots r * 3+2\}][\{c * 3 \ldots c * 3+2\}]=\{1 \ldots 9\} "\})$
@Modifies("this.grid[int].elems | _<2> = 0")
public void solve() \{ Squander.exe(this); \}
public static void main(String[] args) \{
Sudoku $\mathrm{s}=$ new Sudoku();
s.grid $[0][3]=1 ; \ldots ;$ s.grid $[8][5]=1$;
s.solve ();
System. out. println(s);
\}
\}

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

## Sudoku with Squander



```
public class Sudoku \{
    private int[][] grid \(=\) new int[9][9];
    @Ensures (\{
        "all row in \(\{0 . \ldots 8)\) | this.grid \([\) row \(][\) int \(]=\left\{\begin{array}{lll}1 & \ldots & 9\end{array}\right\}\) ",
        "all col in \(\{0 \ldots 8)\) | this.grid[int][col] \(=\left\{\begin{array}{lll}1 & \ldots & 9\} " \text { ", }\end{array}\right.\)
        "all \(r\), \(c\) in \(\{0,1,2\} \mid\) this.grid \([\{r * 3 \ldots r * 3+2\}][\{c * 3 \ldots c * 3+2\}]=\{1 \ldots 9\} "\})\)
    @Modifies("this.grid[int].elems | _<2> = 0")
    public void solve() \{ Squander.exe(this); \}
    public static void main(String[] args) \{
        Sudoku \(\mathrm{s}=\) new Sudoku();
        s.grid [0][3] \(=1 ; \ldots ;\) s.grid \([8][5]=1\);
        s.solve ();
        System. out. println(s);
    \}
\}
```

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

## Sudoku with Squander


public class Sudoku \{ private int[][] grid = new int[9][9];
@Ensures (\{
"all row in $\left\{\begin{array}{lll}0 & \ldots & 8\end{array}\right\}$ | this.grid $[$ row $][$ int $]=\left\{\begin{array}{lll}1 & \ldots & 9\end{array}\right\}$ ",
"all col in $\{0 \ldots 8\} \mid$ this. grid $[$ int $][\mathrm{col}]=\left\{\begin{array}{lll}1 & \ldots & 9\end{array}\right\}$ ",
"all $r$, $c$ in $\{0,1,2\}$ | this.grid $[\{r * 3 \ldots . r * 3+2\}][\{c * 3 \ldots c * 3+2\}]=\{1 \ldots 9\} "\})$
@Modifies("this.grid[int].elems | _<2> = 0")
public void solve() \{ Squander.exe(this); \}
public static void main(String[] args) \{
Sudoku s = new Sudoku();
s.grid $[0][3]=1 ; \ldots$; s.grid $[8][5]=1$;
s. solve ();

System.out. println(s);
\}
\}

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

## Sudoku with Squander


public class Sudoku \{ private int[][] grid = new int[9][9];
@Ensures ( $\{$
"all row in $\{0 \ldots 8)$ | this.grid[row][int] $=\left\{\begin{array}{lll}11 & \ldots & 9\end{array}\right\}$ ",
"all col in $\{0 \ldots 8\} \mid$ this.grid[int][col] $=\{1 \ldots 9\} "$,
"all $r$, $c$ in $\{0,1,2\}$ | this.grid $[\{r * 3 \ldots r * 3+2\}][\{c * 3 \ldots c * 3+2\}]=\{1 \ldots 9\}$ " $\ldots$ )
@Modifies("this.grid[int].elems | _ <2> = 0")
public void solve() \{ Squander.exe(this); \}
public static void main(String[] args) \{
Sudoku $\mathrm{s}=$ new Sudoku();
s.grid $[0][3]=1 ; \ldots ;$ s.grid $[8][5]=1$;
s.solve ();

System. out. println(s);
\}
\}

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

## Sudoku with Squander



```
public class Sudoku {
    private int[][] grid = new int[9][9];
```

    @Ensures (\{
    "all row in \(\{0 \ldots 8\} \mid\) this.grid[row][int] \(=\left\{\begin{array}{lll}1 & \ldots & 9\end{array}\right\}\) ",
    "all col in \(\{0 \ldots 8)\) | this.grid[int][col] \(=\left\{\begin{array}{lll}1 & \ldots & 9\} " \text { ", }\end{array}\right.\)
    " all \(r\), \(c\) in \(\{0,1,2\}\) | this.grid \([\{r * 3 \ldots \quad r * 3+2\}][\{c * 3 \ldots c * 3+2\}]=\left\{\begin{array}{llll}1 & \ldots & 9\}\end{array}\right\}\) )
    @Modifies("this.grid[int].elems | _ <2> = 0")
    public void solve() \{ Squander.exe(this); \}
    public static void main(String[] args) \{
        Sudoku \(\mathrm{s}=\) new Sudoku();
        s.grid \([0][3]=1 ; \ldots ;\) s.grid \([8][5]=1\);
        s.solve ();
        System. out. println(s);
    \}
    \}

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

## Sudoku with Squander


public class Sudoku \{
private int[][] grid = new int[9][9];
@Ensures(\{
"all row in $\left.\left\{\begin{array}{lll}0 & \ldots & 8\end{array}\right\} \right\rvert\,$ this.grid $[$ row $][$ int $]=\left\{\begin{array}{lll}1 & \ldots & 9\end{array}\right\} "$,
"all col in $\{0 \ldots 8\} \mid$ this.grid[int $][$ col $]=\left\{\begin{array}{lll}1 & \ldots & 9\end{array}\right\} "$,
"all $r$, $c$ in $\{0,1,2\}$ | this.grid $[\{r * 3 \ldots r * 3+2\}][\{c * 3 \ldots c * 3+2\}]=\{1 \ldots 9\} "\})$
@Modifies("this.grid[int].elems | _<2> = 0")
public void solve() \{ Squander.exe(this); \}
public static void main(String [] args) \{
Sudoku s = new Sudoku();
s.grid $[0][3]=1 ; \ldots$; s.grid $[8][5]=1$;
s.solve();

## System.out. println(s);

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

## Sudoku with Squander



```
public class Sudoku {
    private int[][] grid = new int[9][9];
    @Ensures({
        "all row in {0 ... 8} | this.grid[row][int] = {\begin{array}{llll}{1}&{\ldots}&{9}",}\end{array},
```



```
    @Modifies
    public void solve() { Squander.exe(this); }
    public static void main(String[] args) {
        Sudoku s = new Sudoku();
        s.grid [0][3] = 1; ...; s.grid[8][5] = 1;
        s.solve();
        System.out.println(s);
    }
}
```


## Sudoku with Squander



```
public class Sudoku {
    private int[][] grid = new int[9][9];
    @Ensures({
        "all row in {0 _.. 8} | this.grid[row][int] = {1 ... 9}",
        "all c
    @Modifies
    public void solve() { Squander.exe(this); }
    public static void main(String[] args) {
        Sudoku s = new Sudoku();
        s.grid [0][3] = 1; ...; s.grid[8][5] = 1;
        s.solve();
        System.out.println(s);
    }
}
```


## Sudoku with Squander



```
public class Sudoku \{
    private int[][] grid = new int[9][9];
    @Ensures (\{
        "all row in \(\left\{\begin{array}{lll}0 & \ldots & 8\end{array}\right\}\) | this.grid [row][int] \(=\left\{\begin{array}{lll}1 & \ldots & 9\end{array}\right\}\) ",
    @Modifies
    public void solve() \{ Squander.exe(this);
    public static void main(String [] args) ?
        Sudoku s = new Sudoku();
        s.grid \([0][3]=1\); ...; s.grid[8][5] = 1;
        s.solve();
        System.out. println(s);
    \}
\}
```


no manual translation to/from an external solver
specify and solve constraint problems in place

## SQuANDER vs Manual Search

## N -Queens

- place $N$ queens on an $N \times N$ chess board such that no two queens attack each other



## SQUANDER vs Manual Search

## N -Queens

- place $N$ queens on an $N \times N$ chess board such that no two queens attack each other


## A backtracking with pruning solution

```
static boolean solveNQueens(int n, int col, int[] queenCols,
                        boolean[] bRow, boolean[] bD45, boolean[] bD135) {
    if (col >= n)
        return true;
    for (int row = 0; row < n; row++) {
        if (bRow[row] || bD45[row + col] || bD135[col - row + n - 1])
                continue;
        queenCols[col] = row;
        bRow[row] = true;
        bD45[row + col] = true;
        bD135[col - row + n - 1] = true;
        if (solveNQueens(n, col+1, queenCols, bRow, bD45, bD135))
            return true;
        bRow[row] = false;
        bD45[row + col] = false;
        bD135[col - row + n - 1] = false;
    }
    return false;
}
```


## SQUANDER vs Manual Search

## N -Queens

- place $N$ queens on an $N \times N$ chess board such that no two queens attack each other


## A backtracking with pruning solution



```
static boolean solveNQueens(int n, int col, int[] queenCols,
                        boolean[] bRow, boolean[] bD45, boolean[] bD135) {
    if (col >= n)
        return true;
    for (int row = 0; row < n; row++) {
        if (bRow[row] || bD45[row + col] || bD135[col - row + n - 1])
                continue;
        queenCols[col] = row;
        bRow[row] = true;
        bD45[row + col] = true;
        bD135[col - row + n - 1] = true;
        if (solveNQueens(n, col+1, queenCols, bRow, bD45, bD135))
            return true;
        bRow[row] = false;
        bD45[row + col] = false;
        bD135[col - row + n - 1] = false;
    }
```

    return false;
    doesn't look terribly bad, but fairly complicated
    \}

## SQUANDER vs Manual Search

## N -Queens

- place $N$ queens on an $N \times N$ chess board such that no two queens attack each other


## A backtracking with pruning solution



```
static boolean solveNQueens(int n, int col, int[] queenCols,
                        boolean[] bRow, boolean[] bD45, boolean[] bD135) {
    if (col >= n)
        return true;
    for (int row = 0; row < n; row++) {
        if (bRow[row] || bD45[row + col] || bD135[col - row + n - 1])
                continue;
        queenCols[col] = row;
        bRow[row] = true;
        bD45[row + col] = true;
        bD135[col - row + n - 1] = true;
        if (solveNQueens(n, col +1, queenCols, bRow, bD45, bD135))
            return true;
        bRow[row] = false;
        bD45[row + col] = false;
        bD135[col - row + n - 1] = false;
    }
```

    return false;
    doesn't look terribly bad, but fairly complicated
    \}

## SQuANDER vs Manual Search

## N-Queens

- place $N$ queens on an $N \times N$ chess board such that no two queens attack each other


## A solution with Squander



```
@Ensures({
    "all disj q, r: result.elts | " + /| for every two different queens q and r ensure that they are
    " q.i != r.i && " + // not in the same row
    " q.j != r.j && " + // not in the same column
    " q.i - q.j != r.i - r.j && " + // not in the same }\\mathrm{ diagonal
    " q.i + q.j != r.i + r.j" }) // not in the same « diagonal
@Modifies({
    "result.elts.i from {0 \ldots.n-1}", // modify fields i and j of all elements of
    "result.elts.j from {0 \ldots.n-1}" }) // the result set, but only assign values from {0,\ldots,n-1}
static void solveNQueens(int n, Set<Queen> result) {
    Squander.exe(null, n, result);
}
```


## SQuANDER vs Manual Search

## N-Queens

- place $N$ queens on an $N \times N$ chess board such that no two queens attack each other


## A solution with SQUANDER



```
@Ensures({
    " q.i != r.i && " + // not in the same row
    " q.j != r.j && " + // not in the same column
    " q.i - q.j != r.i - r.j && " + // not in the same }\\mathrm{ diagonal
    " q.i + q.j != r.i + r.j" }) // not in the same « diagonal
@Modifies({
    "result.elts.i from {0 \ldotsn-1}", // modify fields i and j of all elements of
static void solveNQueens(int n, Set<Queen> result) {
        Squander.exe(null, n, result);
}
```

    "all disj \(q\), \(r\) : result. elts | " \(+/ /\) for every two different queens \(q\) and \(r\) ensure that they are
    "result.elts.j from \(\{0 \ldots n-1\} "\}\) ) // the result set, but only assign values from \(\{0, \ldots, n-1\}\)
    
## SQuANDER vs Manual Search

## N -Queens

- place $N$ queens on an $N \times N$ chess board such that no two queens attack each other


## A solution with Squander



```
@Ensures({
    " q.i != r.i && " + // not in the same row
    " q.j != r.j && " + // not in the same column
    " q.i - q.j != r.i - r.j && " + // not in the same इ diagonal
    " q.i + q.j != r.i + r.j" }) // not in the same ఒ diagonal
@Modifies({
    "result.elts.i from {0 \ldots. n-1}", // modify fields i and j of all elements of
static void solveNQueens(int n, Set<Queen> result) {
    Squander.exe(null, n, result);
}
```

    "all disj \(q, r\) : result. elts | " \(+/ /\) for every two different queens \(q\) and \(r\) ensure that they are
    "result.elts.j from \(\{0 \ldots n-1\} "\}\) ) // the result set, but only assign values from \(\{0, \ldots, n-1\}\)
    (almost) correct by construction!

## SQUANDER vs Manual Search

## N -Queens

- place $N$ queens on an $N \times N$ chess board such that no two queens attack each other


## A solution with Squander



```
@Ensures({
    " q.i != r.i && " + // not in the same row
    " q.j != r.j && " + // not in the same column
    " q.i - q.j != r.i - r.j && " + // not in the same इ diagonal
    " q.i + q.j != r.i + r.j" }) // not in the same ఒ diagonal
@Modifies({
    "result.elts.i from {0 \ldots. n-1}", // modify fields i and j of all elements of
static void solveNQueens(int n, Set<Queen> result) {
        Squander.exe(null, n, result);
}
```

    "all disj \(q, r\) : result. elts | " \(+/ /\) for every two different queens \(q\) and \(r\) ensure that they are
    "result. elts.j from \(\{0 \ldots n-1\} "\}\) ) // the result set, but only assign values from \(\{0, \ldots, n-1\}\)
    (almost) correct by construction!

## What about performance?

## SQuANDER vs Manual Search

## N -Queens

- place $N$ queens on an $N \times N$ chess board such that no two queens attack each other


## A solution with SQUANDER



```
@Ensures({
    " q.i != r.i && " + // not in the same row
    " q.j != r.j && " + // not in the same column
    " q.i - q.j != r.i - r.j && " + /l not in the same & diagonal
    " q.i + q.j != r.i + r.j" }) // not in the same « diagonal
@Modifies({
    "result.elts.i from {0 \ldots.n-1}", // modify fields i and j of all elements of
static void solveNQueens(int n, Set<Queen> result) {
        Squander.exe(null, n, result);
}
```

    "all disj \(q\), \(r\) : result.elts | " + // for every two different queens \(q\) and \(r\) ensure that they are
    "result.elts.j from \(\{0 \ldots n-1\} "\}\) ) // the result set, but only assign values from \(\{0, \ldots, n-1\}\)
    
## What about performance?

- It even outperforms the backtracking algorithm in this case!


## Outline

## Framework Overview

- specification language
- SQUANDER architecture



## Outline

## Framework Overview

- specification language
- SQUANDER architecture



## Translation

- from Java heap + specs to Kodkod
- minimizing the universe size


| BST1: | $\left\{t_{1}\right\}$ | N3: $\left\{n_{3}\right\}$ | BST_this: $\left\{t_{1}\right\}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| N1: | $\left\{n_{1}\right\}$ | N4: $\left\{n_{4}\right\}$ | z: | $\left\{n_{4}\right\}$ |
| N2: | $\left\{n_{2}\right\}$ | null: $\{$ null $\}$ | ints: | $\{0,1,5,6\}$ |
| key_pre: | $\left\{\left(n_{1} \rightarrow 5\right),\left(n_{2} \rightarrow 0\right),\left(n_{3} \rightarrow 6\right),\left(n_{4} \rightarrow 1\right)\right\}$ |  |  |  |
| root_pre: | $\left\{\left(t_{1} \rightarrow n_{1}\right)\right\}$ |  |  |  |
| left_pre: | $\left\{\left(n_{1} \rightarrow n_{2}\right),\left(n_{2} \rightarrow n u l l\right),\left(n_{3} \rightarrow\right.\right.$ null $),\left(n_{4} \rightarrow\right.$ null $\left.)\right\}$ |  |  |  |
| right_pre: $\left\{\left(n_{1} \rightarrow n_{3}\right),\left(n_{2} \rightarrow n u l l\right),\left(n_{3} \rightarrow n u l l\right),\left(n_{4} \rightarrow\right.\right.$ null $\left.)\right\}$ |  |  |  |  |
| root: | $\}$, | $\left\{t_{1}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}$ |  |  |
| left: | $\}$, | $\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}$ |  |  |
| right: | $\}$, | $\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}$ |  |  |

## Outline

## Framework Overview

- specification language
- SQUANDER architecture



## Translation

- from Java heap + specs to Kodkod
- minimizing the universe size


| BST1: | $\left\{t_{1}\right\}$ | N3: $\left\{n_{3}\right\}$ | BST_this: $\left\{t_{1}\right\}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| N1: | $\left\{n_{1}\right\}$ | N4: $\left\{n_{4}\right\}$ | z: | $\left\{n_{4}\right\}$ |
| N2: | $\left\{n_{2}\right\}$ | null: $\{n u l l\}$ | ints: | $\{0,1,5,6\}$ |
| key_pre: | $\left\{\left(n_{1} \rightarrow 5\right),\left(n_{2} \rightarrow 0\right),\left(n_{3} \rightarrow 6\right),\left(n_{4} \rightarrow 1\right)\right\}$ |  |  |  |
| root_pre: | $\left\{\left(t_{1} \rightarrow n_{1}\right)\right\}$ |  |  |  |
| left_pre: | $\left\{\left(n_{1} \rightarrow n_{2}\right),\left(n_{2} \rightarrow\right.\right.$ null $),\left(n_{3} \rightarrow\right.$ null $),\left(n_{4} \rightarrow\right.$ null $\left.)\right\}$ |  |  |  |
| right_pre: | $\left\{\left(n_{1} \rightarrow n_{3}\right),\left(n_{2} \rightarrow n u l\right),\left(n_{3} \rightarrow\right.\right.$ null $),\left(n_{4} \rightarrow\right.$ null $\left.)\right\}$ |  |  |  |
| root: | $\}$, | $\left\{t_{1}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}$ |  |  |
| left: | $\}$, | $\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}$ |  |  |
| right: | $\}$, | $\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}$ |  |  |

## Treatment of Data Abstractions

- support for third party library classes (e.g. Java collections)



## Outline

## Framework Overview

- specification language
- SQuander architecture



## Treatment of Data Abstractions

- support for third party library classes (e.g. Java collections)



## Translation

- from Java heap + specs to Kodkod
- minimizing the universe size


| BST1: | $\left\{t_{1}\right\}$ | N3: $\left\{n_{3}\right\}$ | BST_this: $\left\{t_{1}\right\}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| N1: | $\left\{n_{1}\right\}$ | N4: $\left\{n_{4}\right\}$ | z: | $\left\{n_{4}\right\}$ |
| N2: | $\left\{n_{2}\right\}$ | null: $\{$ null $\}$ | ints: | $\{0,1,5,6\}$ |
| key_pre: | $\left\{\left(n_{1} \rightarrow 5\right),\left(n_{2} \rightarrow 0\right),\left(n_{3} \rightarrow 6\right),\left(n_{4} \rightarrow 1\right)\right\}$ |  |  |  |
| root_pre: $\left\{\left(t_{1} \rightarrow n_{1}\right)\right\}$ |  |  |  |  |
| left_pre: | $\left\{\left(n_{1} \rightarrow n_{2}\right),\left(n_{2} \rightarrow\right.\right.$ null $),\left(n_{3} \rightarrow\right.$ null $),\left(n_{4} \rightarrow\right.$ null $\left.)\right\}$ |  |  |  |
| light_pre: $\left\{\left(n_{1} \rightarrow n_{3}\right),\left(n_{2} \rightarrow\right.\right.$ null $),\left(n_{3} \rightarrow n u l l\right),\left(n_{4} \rightarrow\right.$ null $\left.)\right\}$ |  |  |  |  |
| right | $\left\},\left\{t_{1}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}\right.$ |  |  |  |
| root: | $\}$, |  |  |  |
| left: | $\left\},\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}\right.$ |  |  |  |
| right: | $\left\},\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}\right.$ |  |  |  |

## Evaluation/Case Study

- performance advantages for some puzzles and graph algorithms
- case study: MIT course scheduler



## Framework Overview

## Framework Overview

- specification language
- Squander architecture



## Specification Language

## Example - Binary Search Tree

```
public class Tree {
    private Node root;
```

public class Node \{
private Node left, right;
private int key;
\}

## Specification Language

## Example - Binary Search Tree

```
public class Tree {
    private Node root;
```

public class Node \{
private Node left, right;
private int key;
\}

## Annotations

class specification field @SpecField ("<fld_decl> | <abs_func>")

## Specification Language

## Example - Binary Search Tree

```
public class Tree {
    private Node root;
}
```

```
public class Node {
    private Node left, right;
    private int key;
}
```


## Annotations

```
class specification field @SpecField ("<fld_decl> | <abs_func>")
    @SpecField("this.nodes: set Node | this.nodes = this.root.*(left+right) - null")
    public class Tree {
```


## Specification Language

## Example - Binary Search Tree

```
public class Tree {
    private Node root;
}
```

```
public class Node {
    private Node left, right;
    private int key;
}
```


## Annotations

```
class specification field @SpecField ("<fld_decl> | <abs_func>")
    @SpecField("this.nodes: set Node | this.nodes = this.root.*(left+right) - null")
    public class Tree {
class invariant
@Invariant ("<expr>")
```


## Specification Language

## Example - Binary Search Tree

```
public class Tree {
    private Node root;
}
```

```
public class Node {
    private Node left, right;
    private int key;
}
```


## Annotations

```
class specification field @SpecField ("<fld_decl> | <abs_func>")
    @SpecField("this.nodes: set Node | this.nodes = this.root.*(left+right) - null")
    public class Tree {
```

```
class invariant
```

class invariant
@Invariant({
@Invariant({
/* left sorted */ "all x: this.left.*(left+right) - null | x.key < this.key",
/* left sorted */ "all x: this.left.*(left+right) - null | x.key < this.key",
/* right sorted */ "all x: this.right.*(left+right) - null | x.key > this.key"})
/* right sorted */ "all x: this.right.*(left+right) - null | x.key > this.key"})
public class Node {

```
    public class Node {
```


## Specification Language

## Example - Binary Search Tree

```
public class Tree {
    private Node root;
}
```

```
public class Node {
    private Node left, right;
    private int key;
}
```


## Annotations

```
class specification field @SpecField ("<fld_decl> | <abs_func>")
    @SpecField("this.nodes: set Node | this.nodes = this.root.*(left+right) - null")
    public class Tree {
```

```
class invariant
    @Invariant({
    /* left sorted */ "all x: this.left.*(left+right) - null | x.key < this.key",
    /* right sorted */ "all x: this.right.*(left+right) - null | x.key > this.key"})
    public class Node {
```

method pre-condition @Requires ("<expr>")
method post-condition @Ensures ("<expr>")
method frame condition @Modifies ("<fld> | < filter > from <domain>")

## Specification Language

## Example - Binary Search Tree

```
public class Tree {
    private Node root;
}
```

```
public class Node {
    private Node left, right;
    private int key;
}
```


## Annotations

class specification field @SpecField ("<fld_decl> | <abs_func>")
@SpecField("this.nodes: set Node | this.nodes = this.root.*(left+right) - null") public class Tree \{
class invariant
@Invariant (\{
/* left sorted */ "all x: this.left.*(left+right) - null | x.key < this.key",
/* right sorted */ "all x: this.right.*(left+right) - null | x.key > this.key"\}) public class Node \{
method pre-condition @Requires ("<expr>")
method post-condition @Ensures ("<expr>")
method frame condition @Modifies ("<fld> | < filter > from <domain>")
@Invariant ("<expr>")
@Requires("z.key !in this.nodes.key")
@Ensures ("this.nodes = @old(this.nodes) + z")
@Modifies("this.root, this.nodes.left | _<1> = null, this.nodes.right | _<1> = null")
public void insertNode(Node z) \{ Squander.exe(this, z); \}

## Framework Overview



## Execution steps

- traverse the heap and assemble the relevant constraints
- translate to Kodkod
- translate the heap to relations and bounds
- collect all the specs and assemble a single relational formula
- if a solution is found, update the heap to reflect the solution


## Translation

## Translation

- from Java heap + specs to Kodkod
- minimizing the universe size


| BST1: | $\left\{t_{1}\right\}$ | N3: $\left\{n_{3}\right\}$ | BST_this: $\left\{t_{1}\right\}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| N1: | $\left\{n_{1}\right\}$ | N4: $\left\{n_{4}\right\}$ | z: | $\left\{n_{4}\right\}$ |
| N2: | $\left\{n_{2}\right\}$ | null: $\{$ null $\}$ | ints: | $\{0,1,5,6\}$ |
| key_pre: | $\left\{\left(n_{1} \rightarrow 5\right),\left(n_{2} \rightarrow 0\right),\left(n_{3} \rightarrow 6\right),\left(n_{4} \rightarrow 1\right)\right\}$ |  |  |  |
| root_pre: | $\left\{\left(t_{1} \rightarrow n_{1}\right)\right\}$ |  |  |  |
| left_pre: | $\left\{\left(n_{1} \rightarrow n_{2}\right),\left(n_{2} \rightarrow n u l l\right),\left(n_{3} \rightarrow\right.\right.$ null $),\left(n_{4} \rightarrow\right.$ null $\left.)\right\}$ |  |  |  |
| right_pre: $\left\{\left(n_{1} \rightarrow n_{3}\right),\left(n_{2} \rightarrow n u l l\right),\left(n_{3} \rightarrow\right.\right.$ null $),\left(n_{4} \rightarrow\right.$ null $\left.)\right\}$ |  |  |  |  |
| root: | $\}$, | $\left\{t_{1}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}$ |  |  |
| left: | $\}$, | $\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}$ |  |  |
| right: | $\}$, | $\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right\}$ |  |  |

## From Objects to Relations

The back-end solver - Kodkod

- constraint solver for first-order logic with relations
- SAT-based finite relational model finder
- finite bounds must be provided for all relations
- designed to be efficient for partial models
- partial instances are encoded using bounds


## From Objects to Relations

## Translation of the BST.insert method

@Requires("z.key !in this.nodes.key")
@Ensures ("this.nodes = @old(this.nodes) + z")
@Modifies("this.root, this.nodes.left | _<1> = null, this.nodes.right | _<1> = null") public void insertNode(Node z) \{ Squander.exe(this, z); \}

n4
key: 1

## From Objects to Relations

## Translation of the BST.insert method

@Requires("z.key !in this.nodes.key")
@Ensures ("this.nodes = @old(this.nodes) + z")
@Modifies("this.root, this.nodes.left | _<1> = null, this.nodes.right | _<1> = null") public void insertNode(Node z) \{ Squander.exe(this, z); \}

n4
key: 1

## From Objects to Relations

## Translation of the BST.insert method

@Requires("z.key !in this.nodes.key")
@Ensures ("this.nodes = @old(this.nodes) + z")
@Modifies("this.root, this.nodes.left | _<1> = null, this.nodes.right | _<1> = null") public void insertNode(Node z) \{ Squander.exe(this, z); \}



## From Objects to Relations

## Translation of the BST.insert method

@Requires("z.key !in this.nodes.key")
@Ensures ("this.nodes = @old(this.nodes) + z")
@Modifies("this.root, this.nodes.left | < $1>=$ null, this.nodes.right | _<1> = null") public void insertNode(Node z) \{ Squander.exe(this, z); \}


- lower bound: tuples that must be included
- upper bound: tuples that may be included
- shrinking the bounds (instead of adding more constraints) leads to more efficient solving


## From Objects to Relations

## Translation of the BST.insert method

```
@Requires("z.key !in this.nodes.key")
@Ensures ("this.nodes = @old(this.nodes) + z")
@Modifies("this.root, this.nodes.left | _<1> = null, this.nodes.right | _<1> = null")
public void insertNode(Node z) { Squander.exe(this, z); }
```



| BST1 <br> N1: <br> N2: | $\begin{aligned} & \left\{t_{1}\right\} \\ & \left\{n_{1}\right\} \\ & \left\{n_{2}\right\} \end{aligned}$ | N3: $\left\{n_{3}\right\}$ <br> N4: $\left\{n_{4}\right\}$ <br> null: $\{$ null $\}$ | $\begin{aligned} & \text { BST_1 } \\ & \text { z: } \\ & \text { ints: } \end{aligned}$ | $\begin{aligned} & :\left\{t_{1}\right\} \\ & \left\{n_{4}\right\} \\ & \{0,1,5,6\} \end{aligned}$ | reachable objects |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{ll} \text { key_pre: } & \left\{\left(n_{1} \rightarrow 5\right),\left(n_{2} \rightarrow 0\right),\left(n_{3} \rightarrow 6\right),\left(n_{4} \rightarrow 1\right)\right\} \\ \text { root_pre: } & \left\{\left(t_{1} \rightarrow n_{1}\right)\right\} \\ \text { left_pre: } & \left\{\left(n_{1} \rightarrow n_{2}\right),\left(n_{2} \rightarrow \text { null }\right),\left(n_{3} \rightarrow \text { null }\right),\left(n_{4} \rightarrow \text { null }\right)\right\} \\ \text { right_pre: } & \left\{\left(n_{1} \rightarrow n_{3}\right),\left(n_{2} \rightarrow \text { null }\right),\left(n_{3} \rightarrow \text { null }\right),\left(n_{4} \rightarrow \text { null }\right)\right\} \end{array}$ |  |  |  |  | pre-state |
| root: $\}$, $\left\{t_{1}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right.$, null $\}$ <br> left: $\left\{n_{1} \rightarrow n_{2}\right\}$, $\left\{n_{2}, n_{3}, n_{4}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right.$, null $\}$ <br> right: $\left\{n_{1} \rightarrow n_{3}\right\}$, $\left\{n_{2}, n_{3}, n_{4}\right\} \times\left\{n_{1}, n_{2}, n_{3}, n_{4}\right.$, null $\}$ |  |  |  |  | post-state |
| lower bound upper bound |  |  |  |  |  |

- lower bound: tuples that must be included
- upper bound: tuples that may be included
- shrinking the bounds (instead of adding more constraints) leads to more efficient solving


## From Objects to Relations

## Translation of the BST.insert method

```
@Requires("z.key !in this.nodes.key")
@Ensures ("this.nodes = @old(this.nodes) + z")
@Modifies("this.root, this.nodes.left | _<1> = null, this.nodes.right | _<1> = null")
public void insertNode(Node z) { Squander.exe(this, z); }
```




- lower bound: tuples that must be included
- upper bound: tuples that may be included
- shrinking the bounds (instead of adding more constraints) leads to more efficient solving


## Performance of Tree.insertNode

## What about performance now?

```
@Requires("z.key !in this.nodes.key")
@Ensures ("this.nodes = @old(this.nodes) + z")
@Modifies("this.root, this.nodes.left | _<1> = null, this.nodes.right | _<1> = null")
public void insertNode(Node z) { Squander.exe(this, z); }
```


## Performance of Tree.insertNode

## What about performance now?

```
@Requires("z.key !in this.nodes.key")
@Ensures ("this.nodes = @old(this.nodes) + z")
@Modifies("this.root, this.nodes.left | _<1> = null, this.nodes.right | _<1> = null")
public void insertNode(Node z) { Squander.exe(this, z); }
```

- can only handle trees up to about 100 nodes
- reason: tree insertion is algorithmically simple
$\rightarrow$ imperative algorithm scales better than NP-complete SAT solving


## Performance of Tree.insertNode

## What about performance now?

```
@Requires("z.key !in this.nodes.key")
@Ensures ("this.nodes = @old(this.nodes) + z")
@Modifies("this.root, this.nodes.left | _<1> = null, this.nodes.right | _<1> = null")
public void insertNode(Node z) { Squander.exe(this, z); }
```

- can only handle trees up to about 100 nodes
- reason: tree insertion is algorithmically simple
$\rightarrow$ imperative algorithm scales better than NP-complete SAT solving
"Squander": wasting CPU cycles for programmer's cycles


## Performance of Tree. insertNode

## What about performance now?

```
@Requires("z.key !in this.nodes.key")
@Ensures ("this.nodes = @old(this.nodes) + z")
@Modifies("this.root, this.nodes.left | _<1> = null, this.nodes.right | _<1> = null")
public void insertNode(Node z) { Squander.exe(this, z); }
```

- can only handle trees up to about 100 nodes
- reason: tree insertion is algorithmically simple
$\rightarrow$ imperative algorithm scales better than NP-complete SAT solving
"Squander": wasting CPU cycles for programmer's cycles
Saving programmer's cycles
- fast prototyping: get a correct working solution early on
- differential testing: compare the results of imperative and declarative implementations
- test input generation: use SQUANDER to generate some binary trees


## Generating Binary Search Trees with Squander

```
@Ensures("#this.nodes = size")
@Modifies("this.root, Node.left, Node.right, Node.key")
@FreshObjects(cls=Node.class, num = size),
@Options(solveAll = true)
public void gen(int size) { Squander.exe(this); }
```

- to generate many different trees
- the caller can use the SQUANDER API to request a different solution for the same specification


## Treatment of Data Abstractions

## Treatment of Data Abstractions

- support for third party library classes (e.g. Java collections)



## User-Defined Abstractions for Library Types

## Why is it important to be able to specify library types?

- library classes are ubiquitous
- specs need to be able to talk about them

```
class Graph {
    class Node { public int key; }
    class Edge { public Node src, dest; }
    private Set<Node> nodes = new LinkedHashSet<Node>();
    private Set<Edge> edges = new LinkedHashSet<Edge>();
    // how to write a spec for the k-Coloring
    // problem for a graph like this?
    public Map<Node, Integer> color(int k) {
        return Squander.exe(this, k);
    }
}
```


## User-Defined Abstractions for Library Types

## Why is it important to be able to specify library types?

- library classes are ubiquitous
- specs need to be able to talk about them

```
class Graph {
    class Node { public int key; }
    class Edge { public Node src, dest; }
    private Set<Node> nodes = new LinkedHashSet<Node>();
    private Set<Edge> edges = new LinkedHashSet<Edge>();
    // how to write a spec for the k-Coloring
    // problem for a graph like this?
    public Map<Node, Integer> color(int k) {
        return Squander.exe(this, k);
    }
}
```

- solution:
- use @SpecField to specify abstract data types


## User-Defined Abstractions for Library Types

How to support a third party class?

- write a spec file

```
interface Map<K,V> {
    @SpecField(" elts: K -> V")
    @SpecField("size: one int | this.size = #this.elts")
    @SpecField("keys: set K | this.keys = this.elts.(V)")
    @SpecField("vals: set V | this.vals = this.elts[K]")
    @Invariant({"all k: K | k in this.elts.V => one this.elts[k]"})}
```


## User-Defined Abstractions for Library Types

## How to support a third party class?

- write a spec file

```
    interface Map<K,V> {
    @SpecField(" elts: K -> V")
    @SpecField("size: one int | this.size = #this.elts")
    @SpecField("keys: set K | this.keys = this.elts.(V)")
    @SpecField("vals: set V | this.vals = this.elts[K]")
```

    @Invariant (\{"all k: K | k in this.elts.V => one this.elts [k]"\})\}
    - write an abstraction and a concretization function
public class MapSer implements IObjSer \{
public List <FieldValue> absFunc(JavaScene javaScene, Object obj) \{ // return values for the field "elts": Map $\rightarrow$ K $\rightarrow$ V
\}
public Object concrFunc(Object obj, FieldValue fieldValue) \{
// update and return the given object "obj" from
// the given values of the given abstract field
\}\}


## Using Collections: Example

## Now we can specify the k-Coloring problem

class Graph \{
class Node \{ public int key; \}
class Edge \{ public Node src, dest; \}
private Set<Node> nodes = new LinkedHashSet<Node>(); private Set<Edge> edges = new LinkedHashSet<Edge>();
@Ensures(\{
"return.keys $=$ this.nodes.elts",
"return.vals in \{1 ... k\}",
"all e: this.edges.elts | return.elts[e.src] != return.elts[e.dst]"\}) @Modifies("return.elts")
@FreshObjects(cls = Map.class, num = 1)
public Map<Node, Integer> color(int k) \{return Squander.exe(this, k);\} \}

```
interface Set<K> {
    @SpecField("elts: set K")
    @SpecField("size: one int
        this.size=#this.elts ")
}
```

```
interface Map<K,V> {
    @SpecField(" elts: K >> V")
    @SpecField("size: one int | this.size = #this.elts")
    @SpecField("keys: set K | this.keys = this.elts.(V)")
    @SpecField("vals: set V | this.vals = this.elts[K]")
    @Invariant({"all k: K | k in this.elts.V => one this.elts[k]"})}
```


## Evaluation/Case Study

## Evaluation/Case Study

- performance advantages for some puzzles and graph algorithms
- case study: MIT course scheduler



## SQuANDER vs Manual Search

## N -Queens

- place N queens on an $\mathrm{N} \times \mathrm{N}$ chess board such that no two queens attack each other




## SQuANDER vs Manual Search

## N -Queens

- place N queens on an $\mathrm{N} \times \mathrm{N}$ chess board such that no two queens attack each other




## SQuANDER vs Manual Search

## Hamiltonian Path

- find a path in a graph that visits all nodes exactly once


Graphs with Hamiltonian path


Graphs with no Hamiltonian path


## SQuANDER vs Manual Search

## Hamiltonian Path

- find a path in a graph that visits all nodes exactly once


Graphs with Hamiltonian path


Graphs with no Hamiltonian path


## SQUANDER vs Manual Search

So, is SQuANDER always better than backtracking?

- of course not!

Rather, the takeaway point is

- if the problem is easy to specify, it makes sense to do that first

1. you'll get a correct solution faster
2. if the problem is algorithmically complex, the scalability might be satisfying as well

## Other Evaluation Questions

- usability on a real-world constraint problem
- annotation overhead
- ability to handle large program heaps
- efficiency


## Case Study - Course Scheduler



## Other Evaluation Questions

- usability on a real-world constraint problem

- annotation overhead
- ability to handle large program heaps
- efficiency


## Other Evaluation Questions

- usability on a real-world constraint problem

- an existing implementation retrofitted with SQUANDER
- didn't have to change the local structure, just annotate classes
- ... thanks to the treatment of data abstractions
- annotation overhead
- ability to handle large program heaps
- efficiency


## Other Evaluation Questions

- usability on a real-world constraint problem

- an existing implementation retrofitted with SQUANDER
- didn't have to change the local structure, just annotate classes
- ... thanks to the treatment of data abstractions
- annotation overhead
- only about 30 lines of specs to replace 1500 lines of code
- ... thanks to the unified execution environment
- ability to handle large program heaps
- efficiency


## Other Evaluation Questions

- usability on a real-world constraint problem

- an existing implementation retrofitted with SQUANDER
- didn't have to change the local structure, just annotate classes
- ... thanks to the treatment of data abstractions
- annotation overhead
- only about 30 lines of specs to replace 1500 lines of code
- ... thanks to the unified execution environment
- ability to handle large program heaps
- the heap counted almost 2000 objects
- ... thanks to the clustering algorithm
- efficiency


## Other Evaluation Questions

- usability on a real-world constraint problem

- an existing implementation retrofitted with SQUANDER
- didn't have to change the local structure, just annotate classes
- ... thanks to the treatment of data abstractions
- annotation overhead
- only about 30 lines of specs to replace 1500 lines of code
- ... thanks to the unified execution environment
- ability to handle large program heaps
- the heap counted almost 2000 objects
- ... thanks to the clustering algorithm
- efficiency
- about 5 s as opposed to 1 s of the original implementation


## Limitations

- boundedness - SQUANDER can't generate an arbitrary number of new objects; instead the maximum number of new objects must be explicitly specified by the user
- integers - integers must also be bounded to a small bitwidth
- equality - only referential equality can be used (except for strings)
- no higher-order expressions - e.g. can't specify find the longest path in the graph; instead must specify the minimum length $k$, i.e. find a path in the graph of length at least $k$ nodes
- debugging - if a solution cannot be found, the user is not given any additional information as to why the specification wasn't satisfiable


## Future Work

- optimize translation to Kodkod
- use fewer relations to represent the heap (short-circuit some unmodifiable ones)
- support debugging better
- when no solution can be found, explain why (with the help of unsat core)
- synthesize code from specifications
- especially for methods that only traverse the heap
- combine different solvers in the back end
- SMT solvers would be better at handling large integers


## Summary

## Squander lets you

- execute first-order, relational specifications in Java


C SAIL

## Summary

## SQUANDER lets you

- execute first-order, relational specifications in Java


## Why would you want to do that?

- conveniently express and solve algorithmically complicated problems using declarative constraints
- gain performance in certain cases (e.g. for NP-hard problems)
- during development:
- fast prototyping (get a correct working solution fast)
- generate test inputs
- runtime assertion checking



## Summary

## SQUANDER lets you

- execute first-order, relational specifications in Java


## Why would you want to do that?

- conveniently express and solve algorithmically complicated problems using declarative constraints
- gain performance in certain cases (e.g. for NP-hard problems)
- during development:
- fast prototyping (get a correct working solution fast)
- generate test inputs
- runtime assertion checking


## Thank You!

http://people.csail.mit.edu/aleks/squander


C SAIL

## Solving Sudoku with Alloy Analyzer

```
abstract sig Number {}
one sig N1,N2,N3,N4,N5,N6,N7,N8,N9 extends Number {}
one sig Global {
    data: Number -> Number -> one Number
}
pred complete [rows:set Number, cols:set Number]{
    Number = Global.data[rows][cols]
}
pred rules {
    all row: Number { complete[row,Number] }
    all col: Number { complete[Number,col] }
    let r1=N1+N2+N3, r2=N4+N5+N6, r3=N7+N8+N9
        complete[r1,r1] and complete[r1,r2] and complete[r1,r3] and
        complete[r2,r1] and complete[r2,r2] and complete[r2,r3] and
        complete[r3,r1] and complete[r3,r2] and complete[r3,r3]
}
pred puzzle {
    N1->N4->N1 + N1->N8->N9 +
    N9->N2->N2 + N9 - NN }->\mathrm{ -N1 in Global.data
}
run { rules and puzzle }
```


## Solving Sudoku with Kodkod

```
public class Sudoku {
    private Relation Number = Relation.unary("Number");
    private Relation data = Relation.ternary("data");
    private Relation[] regions = new Relation[] {
        Relation.unary("Region1"),
        Relation.unary("Region2"),
        Relation.unary("Region3") };
    public Formula complete(Expression rows, Expression cols) {
        // Number = data[rows][cols]
        return Number.eq(cols.join(rows.join(data))); }
public Formula rules() {
    // all x,y: Number | lone data[x][y]
    Variable x = Variable.unary("x");
    Variable y = Variable.unary("y");
    Formula f1 = y.join(x.join(data)).Ione().
        forAll (x.oneOf(Number). and (y.oneOf(Number)));
    // all row: Number | complete[row, Number]
    Variable row = Variable.unary("row");
    Formula f2 = complete(row, Number).
        forAll (row . oneOf(Number));
    // all col: Number | complete[Number, col]
    Variable col = Variable.unary("col");
    Formula f3 = complete(Number, col).
        forAll (col.oneOf(Number));
    // complete[r1,r1] and complete[r1,r2] and complete[r1,r3] and
    // complete[r2,r1] and complete[r2,r2] and complete[r2,r3] and
    / complete[r3,r1] and complete[r3,r2] and complete[r3,r3]
    Formula rules = f1. and(f2). and(f3);
    for(Relation rx: regions)
        for(Relation ry: regions)
            rules = rules.and(complete(rx,ry));
    return rules;
}
    Set<Integer> atoms = new LinkedHashSet<Integer >(9);
    for(int i = 1; i <= 9; i++) { atoms.add(i); }
    Universe u = new Universe(atoms);
    Bounds b = new Bounds(u);
```

public Bounds puzzle() \{
public class Sudoku \{
private Relation Number = Relation. unary ("Number");
private Relation data = Relation.ternary("data");
private Relation [] regions $=$ new Relation [] \{
Relation. unary("Region2"),
Relation. unary ("Region3") \};
public Formula complete(Expression rows, Expression cols) \{
return Number.eq(cols.join(rows.join(data))); \}
public Formula rules() \{
// all $x, y$ : Number | lone data $[x][y]$
Variable $x=$ Variable.unary ("x")
Formula $f 1=y$.join( $x$. join(data)). Ione(). forAll (x. oneOf (Number). and (y . oneOf (Number))) ;
// all row: Number | complete[row, Number]
Variable row $=$ Variable.unary("row");
Formula f2 $=$ complete (row, Number).
for All(row.oneOf(Number))
arin, col]
Formula 13 =
forAll (col. oneOf (Number));
/ complete $[\mathrm{r} 1, \mathrm{r} 1]$ and complete $[\mathrm{r} 1, \mathrm{r} 2]$ and complete $[\mathrm{r} 1, \mathrm{r} 3]$ and
// complete $[r 2, r 1]$ and complete $[r 2, r 2]$ and complete $[r 2, r 3]$ and
Formula rules $=f 1$. and $(f 2)$. and $(f 3)$;
for(Relation $r x:$ regions)
for(Relation ry: regions)
rules $=$ rules.and(complete(rx,ry));
return rules;
\}
public Bounds puzzle () $\{$
et<lnteger > atoms $=$ new LinkedHashSet<Integer >(9);
Universe $u=$ new Universe (atoms)
Bounds $b=$ new Bounds $(u)$;

$\dot{\gamma}$
TupleFactory $f=u . f$ factory ();
b. boundExactly (Number, f.allOf(1));
b. boundExactly (regions[0], f.setOf (1, 2, 3));
b.boundExactly (regions[1], f.setOf(4, 5, 6));
b. boundExactly(regions [2], f.setOf(7, 8, 9));

TupleSet givens $=\mathrm{f}$. noneOf(3);
givens.add(f.tuple (1, 4, 1));
givens.add(f.tuple (1, 8, 9));
givens.add(f.tuple (9, 6, 1));
b.bound(data, givens, f.allOf(3));
return b;
\}
public static void main(String[] args) \{
Solver solver = new Solver();
solver. options (). setSolver (SATFactory. MiniSat);
Sudoku sudoku = new Sudoku();
Solution sol = solver.solve(sudoku.rules(), sudoku.puzzle()); System. out. println(sol);

## Mixing Imperative and Declarative with SQUANDER

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

## Mixing Imperative and Declarative with SQUANDER

```
static class Cell { int num = 0; } // 0 means empty
@Invariant("all v: int - 0 | lone {c: this.cells.vals | c.num = v}")
static class CellGroup {
    Cell[] cells;
    public CellGroup(int n) { this.cells = new Cell[n]; }
}
```

|  |  |  | 1 |  |  |  | 9 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 6 | 7 | 9 | 2 |  |  | 4 | 5 |
|  |  |  |  | 7 | 3 | 2 |  |  |
|  | 1 |  |  |  |  | 4 | 8 | 9 |
|  | 7 |  |  |  |  |  | 5 |  |
| 4 | 3 | 6 |  |  |  |  | 2 |  |
|  |  | 1 | 7 | 9 |  |  |  |  |
| 7 | 4 |  |  | 3 | 2 | 9 | 1 |  |
|  | 9 |  |  |  | 1 |  |  |  |

## Mixing Imperative and Declarative with SQUANDER

```
static class Cell { int num = 0; } // 0 means empty
@Invariant("all v: int - 0 | lone {c: this.cells.vals | c.num = v}")
static class CellGroup {
    Cell[] cells;
    public CellGroup(int n) { this.cells = new Cell[n]; }
}
public class Sudoku {
    int n;
    CellGroup[] rows, cols, grids;
    public Sudoku(int n) {
```

```
        // (1) create CellGroup and Cell objects,
```

        // (1) create CellGroup and Cell objects,
        // (2) establish sharing of Cells between CellGroups
        // (2) establish sharing of Cells between CellGroups
        init(n);
        init(n);
    }
    ```
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline & & & 1 & & & & 9 & \\
\hline & 6 & 7 & 9 & 2 & & & 4 & 5 \\
\hline & & & & 7 & 3 & 2 & & \\
\hline & 1 & & & & & 4 & 8 & 9 \\
\hline & 7 & & & & & & 5 & \\
\hline 4 & 3 & 6 & & & & & 2 & \\
\hline & & 1 & 7 & 9 & & & & \\
\hline 7 & 4 & & & 3 & 2 & 9 & 1 & \\
\hline & 9 & & & & 1 & & & \\
\hline
\end{tabular}

\section*{Mixing Imperative and Declarative with SQUANDER}
```

static class Cell { int num = 0; } // 0 means empty
@Invariant("all v: int - 0 | lone {c: this.cells.vals | c.num = v}")
static class CellGroup {
Cell[] cells;
public CellGroup(int n) { this.cells = new Cell[n]; }
}
public class Sudoku {
int n;
CellGroup[] rows, cols, grids;
public Sudoku(int n) {
// (1) create CellGroup and Cell objects,
// (2) establish sharing of Cells between CellGroups
init(n);
}
@Ensures("all c:Cell | c.num > 0 \&\& c.num <= this.n")
@Modifies("Cell.num | _<1> = 0")
public void solve() { Squander.exe(this); }

```
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline & & & 1 & & & & 9 & \\
\hline & 6 & 7 & 9 & 2 & & & 4 & 5 \\
\hline & & & & 7 & 3 & 2 & & \\
\hline & 1 & & & & & 4 & 8 & 9 \\
\hline & 7 & & & & & & 5 & \\
\hline 4 & 3 & 6 & & & & & 2 & \\
\hline & & 1 & 7 & 9 & & & & \\
\hline 7 & 4 & & & 3 & 2 & 9 & 1 & \\
\hline & 9 & & & & 1 & & & \\
\hline
\end{tabular}

\section*{Mixing Imperative and Declarative with SQUANDER}
```

static class Cell { int num = 0; } // 0 means empty
@Invariant("all v: int - 0 | lone {c: this.cells.vals | c.num = v}")
static class CellGroup {
Cell[] cells;
public CellGroup(int n) { this.cells = new Cell[n]; }
}
public class Sudoku {
int n;
CellGroup[] rows, cols, grids;
public Sudoku(int n) {
// (1) create CellGroup and Cell objects,
// (2) establish sharing of Cells between CellGroups
init(n);
}
@Ensures("all c:Cell | c.num > 0 \&\& c.num <= this.n")
@Modifies("Cell.num | _<1> = 0")
public void solve() { Squander.exe(this); }
public static void main(String[] args) {
Sudoku s = new Sudoku();
s.rows[0][3].num = 1; s.rows[0][7].num = 9;
s.rows[8][1].num = 9; s.rows[8][5].num = 1;
s.solve();
System.out.println(s);
}
}

```
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline & & & 1 & & & & 9 & \\
\hline & 6 & 7 & 9 & 2 & & & 4 & 5 \\
\hline & & & & 7 & 3 & 2 & & \\
\hline & 1 & & & & & 4 & 8 & 9 \\
\hline & 7 & & & & & & 5 & \\
\hline 4 & 3 & 6 & & & & & 2 & \\
\hline & & 1 & 7 & 9 & & & & \\
\hline 7 & 4 & & & 3 & 2 & 9 & 1 & \\
\hline & 9 & & & & 1 & & & \\
\hline
\end{tabular}

\section*{Mixing Imperative and Declarative with SQUANDER}
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline & & & 1 & & & & 9 & \\
\hline & 6 & 7 & 9 & 2 & & & 4 & 5 \\
\hline & & & & 7 & 3 & 2 & & \\
\hline & 1 & & & & & 4 & 8 & 9 \\
\hline & 7 & & & & & & 5 & \\
\hline 4 & 3 & 6 & & & & & 2 & \\
\hline & & 1 & 7 & 9 & & & & \\
\hline 7 & 4 & & & 3 & 2 & 9 & 1 & \\
\hline & 9 & & & & 1 & & & \\
\hline
\end{tabular}
    public Sudoku(int n) {
        // (1) create CellGroup and Cell objects,
        // (2) establish sharing of Cells between CellGroups
        init(n);
    }
    @Ensures("all c:Cell | c.num > 0 && c.num <= this.n")
    @Modifies("Cell.num | _<1> = 0")
    public void solve() { Squander.exe(this); }
    public static void main(String[] args) {
        Sudoku s = new Sudoku();
        s.rows[0][3].num = 1; s.rows[0][7].num = 9;
    Write more imperative code
        to make constraints simpler
```

```
```

static class Cell { int num = 0; } // 0 means empty

```
```

static class Cell { int num = 0; } // 0 means empty
@Invariant("all v: int - 0 | lone {c: this.cells.vals | c.num = v}")
@Invariant("all v: int - 0 | lone {c: this.cells.vals | c.num = v}")
static class CellGroup {
static class CellGroup {
Cell[] cells;
Cell[] cells;
public CellGroup(int n) { this.cells = new Cell[n]; }
public CellGroup(int n) { this.cells = new Cell[n]; }
}
}
public class Sudoku {
public class Sudoku {
int n;
int n;
CellGroup[] rows, cols, grids;

```
    CellGroup[] rows, cols, grids;
```


## Everything is a relation

## Everything is a relation

|  |  |  |  |  |  |  | relation name | relation type |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| classes | $\rightsquigarrow$ unary relations | class $C\}$ | $\rightsquigarrow \mathscr{R}_{C}$ | $: \mathrm{C}$ |  |  |  |  |
| objects | $\rightsquigarrow$ unary relations | new C()$;$ | $\rightsquigarrow \mathscr{R}_{C_{1}}$ | $: \mathrm{C}$ |  |  |  |  |
| fields | $\rightsquigarrow$ binary relations | class $\mathrm{C}\{\mathrm{A} \mathrm{fld} ;\}$ | $\rightsquigarrow \mathscr{R}_{\text {fld }}$ | $: \mathrm{C} \rightarrow \mathrm{A} \cup\{$ null $\}$ |  |  |  |  |
| arrays | $\rightsquigarrow$ ternary relations | T[] | $\rightsquigarrow \mathscr{R}_{T[] \_ \text {elems }}$ | $: \mathrm{T}[] \rightarrow$ int $\rightarrow \mathrm{T} \cup\{$ null $\}$ |  |  |  |  |

## Minimizing the Universe Size

## Relations in Kodkod



## Minimizing the Universe Size

## Relations in Kodkod



$$
\begin{aligned}
& \text { SO } \\
& \text { if } \mid \text { univ } \mid>1291 \wedge\left(\exists r_{k} \mid k \geq 3\right)
\end{aligned}
$$

## Minimizing the Universe Size

## Relations in Kodkod



$$
\begin{aligned}
& \text { SO } \\
& \qquad \begin{array}{l}
\text { if } \mid \text { univ } \mid>1291 \wedge\left(\exists_{r_{k}} \mid k \geq 3\right) \\
\quad \Longrightarrow \operatorname{dim}(M)>1291^{3}=2151685171>\text { Integer.MAX_VALUE }
\end{array}
\end{aligned}
$$

## Minimizing the Universe Size

## Relations in Kodkod



SO
if $|u n i v|>1291 \wedge\left(\exists_{r_{k}} \mid k \geq 3\right)$
$\Longrightarrow \operatorname{dim}(M)>1291^{3}=2151685171>$ Integer.MAX_VALUE
$\Longrightarrow$ can't be represented in Kodkod

## Minimizing the Universe Size

## Relations in Kodkod


so

$$
\text { if } \begin{aligned}
\mid \text { univ } \mid>1291 & \wedge\left(\exists_{r_{k}} \mid k \geq 3\right) \\
\quad \Longrightarrow \operatorname{dim}(M) & >1291^{3}=2151685171>\text { Integer.MAX_VALUE }
\end{aligned}
$$

$\Longrightarrow$ can't be represented in Kodkod

- ternary relations are not uncommon in SQUANDER (e.g. arrays)
- MIT course scheduler case study: almost 2000 objects
- solution:
- partitioning algorithm that allows atoms to be shared


## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects


## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective


## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms


## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not infective
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms
restoring field values (e.g. $a_{0}$ for the field BSTNode.left)


## $n_{3}$

(ns)

$t_{1}$
(6)

## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not infective
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms
restoring field values (e.g. $a_{0}$ for the field BSTNode. left)

(n)

## $n_{3}$

$n_{4}$
(0)

## (5)

(6)

## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms

## algorithm

1. discover all used types (clusters)


## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective BSTNode $\cup$ \{null\}
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms

## algorithm

1. discover all used types (clusters)


## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective BSTNode $\cup$ \{null\}
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms

## algorithm

1. discover all used types (clusters)

(5)
(6)

## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective BSTNode $\cup$ \{null\}
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms

## algorithm

1. discover all used types (clusters)
```
BSTNode \cup{null}
```


## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective BSTNode $\cup$ \{null\}
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms

## algorithm

1. discover all used types (clusters)
2. find the largest cluster


## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective BSTNode $\cup$ \{null\}
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms

## algorithm

1. discover all used types (clusters)
2. find the largest cluster
3. create that many atoms

$a_{3}$
$a_{4}$

## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective BSTNode $\cup$ \{null\}
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms

## algorithm

1. discover all used types (clusters)
2. find the largest cluster
3. create that many atoms
4. assign atoms to instances

$\begin{array}{lllll}a_{0} & a_{1} & a_{2} & a_{3} & a_{4}\end{array}$

## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective BSTNode $\cup$ \{null\}
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms

## algorithm

1. discover all used types (clusters)
2. find the largest cluster
3. create that many atoms
4. assign atoms to instances


## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective BSTNode $\cup$ \{null\}
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms

## algorithm

1. discover all used types (clusters)
2. find the largest cluster
3. create that many atoms
4. assign atoms to instances


## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective BSTNode $\cup$ \{null\}
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms

## algorithm

1. discover all used types (clusters)
2. find the largest cluster
3. create that many atoms
4. assign atoms to instances


## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective BSTNode $\cup$ \{null\}
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms

## algorithm

1. discover all used types (clusters)
2. find the largest cluster
3. create that many atoms
4. assign atoms to instances
restoring field values (e.g. $a_{0}$ for the field BSTNode. left)

5. based on the field's type, select its cluster
6. select the instance from that cluster that maps to the given atom


## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective BSTNode $\cup$ \{null\}
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms

## algorithm

1. discover all used types (clusters)
2. find the largest cluster
3. create that many atoms
4. assign atoms to instances
restoring field values (e.g. $a_{0}$ for the field BSTNode. left)

5. based on the field's type, select its cluster
6. select the instance from that cluster that maps to the given atom


## Minimizing the Universe

goal: use fewer Kodkod atoms than heap objects
$\rightarrow$ multiple objects must map to same atoms
$\rightarrow$ mapping from objects to atoms is not injective BSTNode $\cup$ \{null\}
also: must be able to unambiguously restore the heap
$\rightarrow$ instances of the same type must map to distinct atoms

## algorithm

1. discover all used types (clusters)
2. find the largest cluster
3. create that many atoms
4. assign atoms to instances
restoring field values (e.g. $a_{0}$ for the field BSTNode. left)

5. based on the field's type, select its cluster
6. select the instance from that cluster that maps to the given atom


## Partitioning Algorithm - Discussion

## Why is this algorithm sufficient?

- what if we had partitions like this:

- 5 atoms would not be enough!
- the algorithm would have to discover strongly connected components
- but, SQUANDER type checker disallows types like BSTNode $\cup$ BST


## Partitioning Algorithm - Discussion

## Why is this algorithm sufficient?

- what if we had partitions like this:

- 5 atoms would not be enough!
- the algorithm would have to discover strongly connected components
- but, SQUANDER type checker disallows types like BSTNode $\cup$ BST
- or a spec like:
"no BSTNode \& int"
- if nodes and ints shared atoms, then the intersection would not be empty!
- again, in Java, such expressions don't make much sense, so SQUANDER disallows them.


## Partitioning Algorithm - Discussion

## Why is this algorithm sufficient?

- what if we had partitions like this:

- or a spec like:
"no BSTNode \& int"
- 5 atoms would not be enough!
- the algorithm would have to discover strongly connected components
- but, SQuander type checker disallows types like BSTNode $\cup$ BST
- if nodes and ints shared atoms, then the intersection would not be empty!
- again, in Java, such expressions don't make much sense, so SQUANDER disallows them.


## Limitations

- no performance gain


## Partitioning Algorithm - Discussion

## Why is this algorithm sufficient?

- what if we had partitions like this:

- 5 atoms would not be enough!
- the algorithm would have to discover strongly connected components
- but, SQuander type checker disallows types like BSTNode $\cup$ BST
- or a spec like:
"no BSTNode \& int"
- if nodes and ints shared atoms, then the intersection would not be empty!
- again, in Java, such expressions don't make much sense, so SQUANDER disallows them.


## Limitations

- no performance gain
- if a field of type Object is used, this algorithm has no effect
- everything is a subtype of Object so everything has to go to the same partition


## Related Work

## Executable Specifications:

- An Overview of Some Formal Methods for Program Design, C.A.R. Hoare (IEEE Computer 1987)
- Specifications are not (necessarily) executable, I. Hayes et al. (SEJ 1989)
- Specifications are (preferably) executable, N.E. Fuchs (SEJ 1992)
- Programming from Specification, C. Morgan, PrenticeHall, 1998
- Agile Specifications, D. Rayside et al. (Onward! 2009)
- Falling Back on Executable Specifications, H. Samimi et al. (ECOOP 2010)
- Unified Execution of Imperative and Declarative Code, A. Milicevic et al. (ICSE 2011)

Specification Languages

- JFSL: JForge Specification Language, K. Yessenov, MIT 2009
- Software Abstractions: Logic, Language, and Analysis, D. Jackson, MIT Press 2006

Programming Languages with Constraint Programming:

- Jeeves: Programming with Delegation, J. Yang, MIT, 2010
- Programming with Quantifiers, J.P. Near, MIT, 2010

