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Abstract

In this thesis, we present a unified environment for running declarative specifications
in the context of an imperative object-oriented programming language. Specifica-
tions are Alloy-like, written in first-order relational logic with transitive closure, and
the imperative language for this purpose is Java. By being able to mix imperative
code with executable declarative specifications, the user can easily express constraint
problems in-place, i.e. in terms of the existing data structures and objects on the
heap. After a solution is found, our framework will automatically update the heap to
reflect the solution, so the user can continue to manipulate the program heap in the
usual imperative way, without ever having to manually translate the problem back
and forth between the host programming environment and the solver language. We
show that this approach is not only convenient, but, for certain problems, like puzzles
or NP-complete graph algorithms, it can also outperform the manual implementation.
We also present an optimization technique that allowed us to run our tool on heaps
with almost 2000 objects.

Thesis Supervisor: Daniel N. Jackson
Title: Professor
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Chapter 1

Introduction

Squander is a framework that provides a unified environment for writing declarative
constraints and imperative statements in the context of a single program. This is
particularly useful for implementing programs that involve computations that are
relatively easy to specify but hard to solve algorithmically. In such cases, declarative
constraints can be a natural way to express the core computation, whereas imperative
code is a natural choice for reading the input parameters, populating the working data
structures, setting up the problem, and presenting the solution back to the user. The
ability to switch smoothly back and forth between declarative logic and imperative
programming makes it possible to implement this kind of program more elegantly
and with less effort on the programmer’s part.

We propose a technology that can execute declarative specifications without re-
quiring the programmer to write a single line of imperative implementation. The sup-
ported specification language is JFSL [35], an Alloy-like [15] language, that supports
first-order relational logic with transitive closure, together with Java expressions. The
expressive power of JFSL makes it easy to succinctly write complex relational proper-
ties in terms of a program’s data structures and reachable objects on the heap. Even
when the performance of such execution doesn’t match a carefully written manual
implementation, we have suggested a variety of other applications in which the ability
to run declarative specifications is useful [27].

This thesis presents the implementation of our framework for executing declara-
tive specifications, discusses the benefits of the unified environment, and shows several
illustrative examples in which the direct execution of a declarative specification out-
performs a hand-written implementation. The framework is affectionately named
Squander, since it squanders computational resources, running an NP-complete
boolean satisfiability (SAT) algorithm to execute all programs – including those that
have much lower complexity.

1.1 Motivation for having executable specifications

In software development, specifications are traditionally used to formally define a
desired behavior of a program, and thus eliminate any ambiguities that a natural-
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language description might have. Afterwards, it is entirely up to the programmer
to implement the system such that it adheres to the given specification. After the
implementation has been done, one of the many existing tools can be used to check
(to some extent) the implementation against the given formal specification and either
verify that the program is correct or discover places where the code violates the
specification (i.e. find bugs).

We argue that in the presence of modern hardware and state-of-the-art satisfiabil-
ity solvers, the performance issues are not the limiting factor anymore. Furthermore,
we don’t have to sacrifice the expressive power of the specification language either.
Instead of trying to derive an imperative code for the given declarative JFSL spec-
ification, we translate the problem into a set of boolean constraints, and then run
an off-the-shelf SAT solver to search for a solution. Since JFSL is fully translatable
into boolean logic, we achieve the full expressive power of the executable specification
language.

By being able to mix imperative code with executable declarative specifications,
the user can easily express constraint problems in-place, i.e. in terms of the existing
data structures and objects on the heap. They can then run our solver, which will
find a solution to the given set of constraints (if one exists) and automatically update
the heap to reflect the solution. Afterwards, the user can continue to manipulate the
program heap in the usual imperative way. Without a technology like this one, the
standard solution would be to manually translate the problem into the language of
an external solver, run the solver, and then again, manually translate the solution
back to the native programming language. This obviously requires more work, it is
cumbersome, and after all, it is more error-prone.

1.2 Variety of applications

1.2.1 Specifying and solving constraint problems

Squander provides a unified environment for writing both declarative constraints
and imperative statements. This is particularly useful for implementing algorithmi-
cally complex constraint problems within larger programs. Declarative constraints
are used to conveniently specify the problem, i.e. to formally state what the de-
sired solution should look like and not how the solution is to be computed (which
is typically difficult for this kind of problems). On the other side, imperative code
is a natural choice for the rest of the program, e.g. reading the input parameters,
populating the working data structures, setting up the problem, and eventually pre-
senting the solution back to the user. The ability to switch smoothly back and forth
between declarative logic and imperative programming, makes it possible to imple-
ment this type of programs faster, more elegantly, and with much less effort on the
programmer’s part.

As an example, consider a simple Sudoku solver. The solver is given a partially
filled puzzle (e.g. as in Figure 1-1), and is expected to fill out the empty cells with
integer numbers such that the following constraints hold:
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1. cell values must be in {1, 2, · · · , n} (where n is the dimension of the puzzle –
n = 9 in this example);

2. all cells within a given row, column, or highlighted sub-grid have distinct values.

Figure 1-1: A random Sudoku puzzle

A suitable Java data model for this problem is given in Figure 1-2. A CellGroup

contains an array of Cells with no duplicate values; overlapping CellGroups are then
defined in the class Sudoku for each row, column and sub-grid. The init() method
(invoked from the Sudoku’s constructor) has the task of creating exactly n × n Cell

objects, n+ n+ n CellGroup objects, and properly establishing the sharing of Cells
between CellGroups.

Now, onto the solving part. The invariant for CellGroups, given above, can be
expressed in a single line of JFSL (Listing 1.4). The exact notation will be explained
in one of the later sections, but basically, it says that for all integer values v differ-
ent from 0, select all Cell objects from the CellGroup.cells field with the value v
(this.cells.elems.value.v), and ensure that their count is either 0 or 1 (lone).

@Invariant ( ” a l l v : i n t | v != 0 => l one t h i s . c e l l s . e lems . va lue . v” )
stat ic class CellGroup {

Listing 1.4: CellGroup invariant

Class invariants assert properties of all members of a class, but cannot be executed
per se. To establish a constraint, we define a standard Java method and annotate it
with a specification, which includes:

• a precondition (@Requires), on the state before method invocation, assumed
true if not specified;

• a postcondition (@Ensures), on the state after the method has been executed;

• a frame condition (@Modifies), indicating what parts of the state the method
is allowed to modify.

11



In this case, the specification for the solve() method (Listing 1.5) simply says
that in the post-state (i.e. after the method has been executed by Squander), all
cells must be filled out with non-zero values. The frame condition limits modifications
to those Cell.value fields that are currently empty ([{c: Cell | c.value == 0}]),
since we don’t want to modify values given up-front. These constraints, implicitly
conjoined with the class invariant, are sufficient to solve the Sudoku puzzle. The
method body is simply a call to a utility method, namely Squander.exe(), which
invokes the solver and attempts to satisfy the specification, by updating the cell
values. Following execution of solve, assuming a solution is found, the program
may proceed to, for example, print out the solved puzzle, using the usual imperative
paradigm. Otherwise, an exception is thrown to signal that the specification could
not be satisfied.

@Ensures ( ” a l l c : Ce l l | c . va lue > 0 && c . va lue <= th i s . n” )
@Modifies ( ” Ce l l . va lue [{ c : Ce l l | c . va lue == 0} ] ” )
public void s o l v e ( ) {

Squander . exe ( this ) ;
}

Listing 1.5: Spec for Sudoku.solve() method

1.2.2 Specifying data structures

Due to their high expressive power, first-order declarative specifications can be used
to succinctly and formally specify operations on data structures. On the other side
of the spectrum, there is a low-level, imperative implementation of the corresponding
program, an algorithm that enumerates the steps needed to satisfy the high-level
specification – this is usually a non-trivial task. For example, operations like deletion
from a balanced tree or finding the longest path in a graph are much easier to specify
in a declarative manner than to implement in Java.

Here we show how a Binary Search Tree (BST) can be implemented with Squan-
der. A BST has a single root node. Every node contains an integer key and pointers
to its left and right nodes (pointers may be null). In order to be a valid BST, the
representation invariant must hold: (1) there are no loops, and (2) for every node n
in the BST, the key of n is strictly greater than all keys of all nodes in its left subtree
and strictly less than all keys of all nodes in its right subtree.

@SpecField ( ” t h i s . nodes = th i s . root . ∗ ( l e f t+r i gh t ) − nu l l ” )
public class BST {

@Invariant ({
/∗ form a t r e e ∗/ ” t h i s ! in t h i s . ˆ parent ” ,
/∗ l e f t s o r t ed ∗/ ” a l l x : t h i s . l e f t . ∗ ( l e f t+r i gh t ) − nu l l | x . key < t h i s . key” ,
/∗ r i g h t so r t ed ∗/ ” a l l x : t h i s . r i g h t . ∗ ( l e f t+r i gh t ) − nu l l | x . key > t h i s . key”
})
public stat ic class Node {

Node l e f t , r i g h t ;
int key ;

}

private Node root ;
}

Listing 1.6: Binary Search Tree skeletal code
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The structure of the BST example is given in Listing 1.6. Specification statements
(written as Java annotations) define class specific properties and contracts. The
specification field named this.nodes is introduced here as a shortcut and will be
used later to refer to all reachable nodes for a given tree. Reflexive transitive closure
operator (.*) is used to conveniently specify all reachable nodes starting from the root

node. The representation invariant for the class Node is written next. Note that this
formal definition written in JFSL follows quite closely the informal, natural-language
definition given above.

Having defined class invariants, we can now write specifications for some methods.
Formal specifications for node insertion and node deletion are shown in Listing 1.7.
They are both quite obvious and intuitive. In order to insert a node in a tree, before
the insertion, a node with the same key may not exist in the tree, and after the
insertion, the tree must contain the given node. Deletion is defined similarly. It is
implicitly taken that the class invariant must hold before and after the execution of
any method.

@Requires ( ”z . key ! in t h i s . nodes . key” )
@Ensures ( ” t h i s . nodes = @old ( t h i s . nodes + z ) ” )
@Modifies ( ”Node . l e f t , Node . r i ght , t h i s . root ” )
public void i n s e r t (Node z ) {

Squander . exe ( this , z ) ;
}

@Requires ( ”z in t h i s . nodes ” )
@Ensures ( ” t h i s . nodes = @old ( t h i s . nodes ) − z” )
@Modifies ( ”Node . l e f t , Node . r i ght , t h i s . root ” )
public void remove (Node z ) {

Squander . exe ( this , z ) ;
}

Listing 1.7: Specification for the insert and delete methods

In case of complex data structures, like this one, the class invariant is what makes
the manual implementation tricky. Complex data structures have non-trivial in-
variants, and the task of writing the implementation that maintains the invariant
throughout the program execution (after every method invocation) is known to be
difficult and prone to errors [20]. For example, implementing the insertion in a BST
is certainly not trivial, but it is not too difficult either, because we know that the
new node ought to be inserted at one of the leaf positions. However, an imperative
procedure for the node removal operation is be notoriously painful, because of so
many corner cases, all of which must be handled separately. With Squander, the
specifications given in Listing 1.7 are sufficient to execute node insertion or deletion
on any binary tree.

Clearly, neither the specification for insert nor delete method can be executed as
efficiently a carefully written imperative algorithm. However, performance is usually
acceptable for unit-test size examples. For example, given a tree with 15 nodes, it
takes a couple of seconds for Squander to insert or delete a node, which can be quite
useful during the early stages of the development process, including design, testing,
fast prototyping, and similar.
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1.2.3 Other applications

The technology that allows us to execute specifications in the context of an imperative
programming language, also permits many other applications. To name a few, the
same technology can be used for:

• test input generation: to generate test inputs (say valid Binary Search Trees),
one could define a method that returns a BST, and optionally add additional
constraints in the postcondition part of the specification (e.g. the resulting
tree must have between n and m nodes). Typically, Squander would non-
deterministically find a solution that satisfies all constraints, but for this pur-
pose, the implementation could easily be altered so that it keeps finding all
possible solutions, or at least up to some number of satisfying solutions.

• differential testing: once we have both a specification for a method and
an implementation, we would like to check whether they correspond to each
other. One way would be to use a verification tool to prove that the two match.
However, that might be too slow, or even intractable if the implementation
is quite complicated. A more lightweight approach would be to run both the
specification and the implementation on a suite of test cases and check whether
the results match.

• specification validation: this is another interesting practical application.
Specification can also contain errors, and the most intuitive way to test a spec-
ification would be to execute it on some concrete input and see if the result
makes sense or not.

• runtime assertion checking: obviously, Squander can be used just to check
whether a given rich property holds at an arbitrary point during the execution
of a program.

14



stat ic class Ce l l {
int value = 0 ; // 0 means empty

}

Listing 1.1: class Cell

stat ic class CellGroup {
Ce l l [ ] c e l l s ;
public CellGroup ( int n) {

this . c e l l s = new Ce l l [ n ] ;
}

}

Listing 1.2: class CellGroup

public class Sudoku {
private f ina l int n ;
private CellGroup [ ] rows ;
private CellGroup [ ] c o l s ;
private CellGroup [ ] g r i d s ;

public Sudoku ( int n) {
a s s e r t Math . s q r t (n) ∗ Math . sq r t (n) == n : ”n must be a square number” ;
this . n = n ;
i n i t ( ) ;

}

private void i n i t ( ) {
this . rows = new CellGroup [ n ] ;
this . c o l s = new CellGroup [ n ] ;
this . g r i d s = new CellGroup [ n ] ;
for ( int i = 0 ; i < n ; i++) {

rows [ i ] = new CellGroup (n ) ;
c o l s [ i ] = new CellGroup (n ) ;
g r i d s [ i ] = new CellGroup (n ) ;

}
int m = ( int ) Math . s q r t (n ) ;
for ( int i = 0 ; i < n ; i++) {

for ( int j = 0 ; j < n ; j++) {
Ce l l c = new Ce l l ( ) ;
rows [ i ] . c e l l s [ j ] = c ;
c o l s [ j ] . c e l l s [ i ] = c ;
int g r i d I = i / m;
int gr idJ = j / m;
int gr id Idx = g r i d I ∗ m + gr idJ ;
int g r i dC e l l I = i % m;
int g r i dCe l l J = j % m;
int g r i dCe l l I dx = g r i dC e l l I ∗ m + gr i dCe l l J ;
g r i d s [ g r id Idx ] . c e l l s [ g r i dCe l l I dx ] = c ;

}
}

}
}

Listing 1.3: class Sudoku

Figure 1-2: Sudoku data model
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Chapter 2

Background

2.1 Kodkod – A solver for relational logic

Kodkod [31–33] is an efficient constraint solver for relational logic. It requires a
bounded universe, a set of untyped relations, bounds for every relation, and a rela-
tional formula. It then translates the given problem to a boolean satisfiability problem
and applies an off-the-shelf SAT solver to search for a satisfying solution, which, if
found, is finally translated back to the relational domain.

When created, relations in Kodkod are untyped, meaning that every relation can
potentially contain any tuple drawn from the finite universe. However, it helps to
think about the relation types from the beginning, just to have a sense of which
atoms each relation can potentially contain. The actual set of tuples that a relation
may contain is defined through Kodkod bounds. Two bounds need to be specified:
lower bound to define tuples that a relation must contain, and upper bound to define
tuples that a relation may contain. The size of these bounds is what primarily
influences the search time – the fewer tuples there are in the difference of the upper
and the lower bound, the smaller the search space is, the faster the solving is.

2.2 JFSL – JForge Specification Language

JFSL [35] is a formal lightweight specification language for Java. It supports rela-
tional and set algebra, as well as common Java operators. With the expressive power
of relational algebra, JFSL makes it easy to succinctly and formally specify complex
properties about Java programs, such as class invariants, method pre and post con-
ditions, as well as method frame conditions (the portion of the heap the method is
allowed to modify). It also supports specification fields which can be particularly
useful for specifying abstract data types.

2.2.1 JFSL expressions

As in Alloy, all expressions in JFSL evaluate to relations. JFSL provides common
relational algebra operators, together with integer and boolean operators. These are
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summarized in Tables 2.1 and 2.2. Quantified expressions are also supported. The
list of supported quantifiers is shown in Table 2.3.

Operator Description

~ relational transpose or bitwise negation
^ transitive closure
* reflexive transitive closure
# set cardinality

no “no” multiplicity (empty)
lone “lone” multiplicity (zero or one)
one “one” multiplicity (exactly one)
some “some” multiplicity (one or more)

! boolean negation
- integer negation
sum integer summation

Table 2.1: Unary expressions supported by JFSL

2.2.2 JFSL annotations

JFSL specifications are written as Java annotations. These annotations are briefly
summarized below:

• @Invariant — attached to classes and used to define conditions that must always
(before and after every execution of a method) hold true for the given class.

• @Requires — attached to methods and used to specify constraints on the state
before method invocation. The method is expected to execute correctly only if
the precondition is satisfied immediately before invocation. Class invariants are
implicitly added to method preconditions.

• @Ensures — attached to methods and used to specify constraints on the state
after method invocation. In other words, it captures all effect the method is
expected to produce. Class invariants are implicitly added to method postcon-
ditions.

• @Modifies — attached to methods and used to specify frame condition. For this
thesis, we enhanced the frame condition annotation to hold up to 4 different
pieces of specification (syntax: @Modifies("f [s][l][u]")). The first, and the
only mandatory piece, is the name of the modifiable field, f. It is optionally
followed by the instance selector (s), the lower bound and the upper bound.
The instance selector specifies instances for which the field may be modified
(assumed “all” if not specified). The lower bound (assumed “empty” if not
specified) contains concrete field values for some objects in the post-state. The
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upper bound of the modification (assumed the extent of the field’s type if not
specified) holds possible fields values in the post-state.

• @SpecField — attached to classes and used to define specification fields. Def-
inition of a specification field consists of a type declaration, and (optionally)
an abstraction function. The abstraction function defines how the field value
is computed in terms of other fields. For example, @SpecField("x: one int

| x = this.y - this.z") defines a singleton integer field x, the value of which
must be equal to the difference of y and z. Specifications fields are inherited
from super-types and sub-types can override the abstraction function (by sim-
ply redefining it), a feature that is particularly useful for specifying abstract
datatypes, such as Java collections.

In the context of executable specifications, the goal is to execute a method based
on its specification. That assumes making modifications to the modifiable portion
of the heap (as specified by the frame condition) so that the final state satisfies the
postcondition.
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Operator Description

@+ relational union
@- relational difference
@& relational intersection
. relational join
-> relational product (tuple constructor)
++ relational override
=, == relational equality
in relational subset
!in relational not-subset

+ integer addition or set union
- integer subtraction or set difference
* integer multiplication
\ integer division
% integer modulo division
< integer less than
> integer greater than
<= integer less than or equal
>= integer greater than or equal
& integer bitwise “and” or set intersection
| integer bitwise “or”
<< integer bit shift left
>> integer bit shift right
>>> integer unsigned bit shift right

&& boolean conjunction
|| boolean disjunction
^^ boolean exclusive disjunction
=> boolean implication
<=> boolean equivalence (“if and only if”)

? if-then-else ternary operator (as in Java)

Table 2.2: Binary and ternary expressions supported by JFSL

Quantifier Description Usage

all universal quantifier all x: T | P(x)

some existential quantifier some x: T | P(x)

sum integer summation sum i: int | a[i]

union set comprehension {x: T | P(x)}

Table 2.3: Quantified expressions supported by JFSL

19



Chapter 3

From Object Heap to Relational
Logic

Squander execution begins when the utility method Squander.exe() is called by
the client code. In overview, execution involves the following steps:

• Assembling the relevant constraints, from the annotations comprising the method’s
specification, as well as class annotations corresponding to invariants of all rel-
evant classes (determined by a traversal of the heap from the receiver object).

• Construction of relations representing the values of objects and their fields in
the pre-state, and additional relations for modifiable fields to represent their
values in the post-state, along with their Kodkod bounds;

• Parsing of the constraints and conversion to a single relational formula (handed
to Kodkod for solving);

• If a solution is found, translation of the Kodkod result objects into updates of
the Java heap state, by modification of the object fields.

3.1 Heap traversal and object serialization

The first concern for Squander is discovering the reachable portion of the heap. The
traversal algorithm is a standard breath-first algorithm (although depth-first would
suffice too), starting from a given set of root objects (the caller instance plus method
arguments) and repeatedly visiting all children until all reachable objects have been
visited. The interesting part is how to enumerate children, i.e. how to serialize a
given object into a set of field values.

Squander provides a generic mechanism that allows for different object serializers
based on the object’s class. For example, the default object serializer simply returns
values of an object’s fields. This behavior is good in many cases, including user-
defined classes. However, when serializing abstract types – such as an object of type
java.util.Set – we would like to return only the members of the set, excluding objects
that are artifacts of the representation (such as hash buckets). An abstraction function
is needed to separate the actual content from the internal representation, and this
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is exactly what object serializers provide. Similarly, they also provide concretization
functions that are used to restore an object’s state from a given set of abstract values
returned by the solver. Through this mechanism, Squander provides support for
Java collections and Java arrays (more details in Chapter 6), and allows users to
easily customize behavior for user-defined abstractions.

3.1.1 Keeping track of type parameters

Java collection classes make extensive use of parametric types (also called “gener-
ics” in Java terminology). This lets the programmer declare the type of objects a
collection is allowed to contain, e.g. “set of nodes” (Set<Node>) as opposed to “set
of any objects” (Set). Unfortunately, however, since generics were a late addition to
Java, they are implemented using type erasure, and the parameter information is only
available at compile time. For ease of use, Squander is a runtime mechanism that
uses the standard JVM, so it has no access to the compile-time type information.

Knowing the exact types of objects, including type parameters, is important
though. One reason is that we don’t want to have to write explicit casts in our
specifications every time we refer to an element of a collection (as one must do in
Java when not using generics). Other reasons are mainly concerned about perfor-
mance: without knowing its type parameter, the extent of a any set is always a set
of all objects. If the set is actually a set of integers, than the actual extent is much
smaller, which would result in a smaller bound if the set was modifiable (as explained
in Section 3.3), which could dramatically improve the Kodkod’s running time.

Java reflection does, however, provide static types of fields and method parame-
ters, include type parameter information. For example, if there is a field declared as
Set<Node> nodes, the fact that the field is a “set of Nodes” can be obtained at run-
time. Consequently, if we know that some object obj was read as a value of the field
nodes, we can conclude that the type of obj is actually Set<Node>. Almost all objects
during the heap traversal are discovered by reading field values. It is only the caller
instance whose origin is not known; all other objects are either passed as method
parameters or read as field values, so complete type information can be obtained for
all objects but the root.

3.2 Reading, parsing and type-checking JFSL spec-

ifications

When a new class is discovered during heap traversal, its specification is obtained
by reflection. The specification of a class includes class invariants (@Invariant) and
specification fields (@SpecField). These can be specified either directly in the source
file using Java annotations or through a special spec file, which must be found in the
classpath and whose name must correspond to its target class’s full name. Next, text-
based specifications are parsed and type-checked (e.g. to make sure that all identifiers
can be resolved to actual classes/fields in the program, and that expressions have
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expected types, etc.) and eventually translated into relational expressions. For most
of this task, Squander borrows functionality from JForge [35].

3.3 Defining relations and bounds

Having traversed the heap, found all reachable objects, and discovered all classes/-
fields referred to in the specification, we are ready to construct the relations that
represent the state of the heap.

The translation does not use all fields, but rather considers only relevant fields,
i.e. those that are explicitly mentioned in the specification for the current method.
Similarly, not all reachable objects are needed; only objects reachable by following
the relevant fields are included in the translation. These objects will be referred to
as literals.

First we define a finite universe consisting of all literals, plus integers within the
bound. For every literal, a unary relation is created. These relations are constant,
i.e. they are given an exact bound (lower and upper bounds are equal) of a single
unary tuple containing the corresponding literal.

For each Java type, one could either create a new relation (with appropriate
bounds so that it contains the known literals), or one could construct a relational
expression denoting the union of relations corresponding to all instance literals of that
type. In our implementation, we took the former approach, since it results in more
readable expressions (which helps debugging the framework) and has no performance
impact.

For every field (including specification fields), a relation of type fld.declType →
fld.type1 is created to hold assignments of field values to objects. If the field is
modifiable (inferred from its mention in a @Modifies clause), an additional relation
is created, with the suffix “pre” appended to denote the pre-state value. Relations
for unmodifiable fields are given an exact bound that reflects the current state of the
heap. For the modifiable relations, the “pre” relation is given the same exact bound,
and the “post” relation is bounded so that it may contain any tuple permitted by the
field’s type. Local variables, such as this, return, and method arguments are treated
similarly to literals.

Table 3.1 summarizes how relations and bounds are created. Function rel takes
a Java element and, depending whether the element is modifiable, returns either one
or two relations (the “[]” notation means “list of”, and R is the constructor for
relations, taking a name and a type for the relation). Function bound takes a Java
element and its corresponding relation, and returns a bound for the relation. The
Bound data type contains both lower and upper bounds. If only one expression is
passed to its constructor (B), both bounds are set to that value. Helper functions
is mod, is post and fldval are used to check whether a field is modifiable, to check
whether a relation refers to the post-state, and to return a literal that corresponds to
the value of a given field of a given literal, respectively.

1fld.declType is the declaring class of fld
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rel :: Element → [Relation]

rel (Literal lit) = [R(lit.name, lit.type)]
rel (Type t) =

⋃
lit<:t rel lit

rel (Field fld) =
if is mod(fld)

[R(fld.name, fld.declType → fld.type)] ++
[R(fld.name + “ pre”, fld.declType → fld.type)]

else
[R(f.name, f.declType → f.type)]

rel (Local var) = [R(var.name, var.type)]

bound :: Element, Relation → Bound

bound (Literal lit) (Relation r) = B(lit)
bound (Field fld) (Relation r) =

if is mod(fld) ∧ is post(r)
B({}, ext(fld.declType × fld.type))

else
B(

⋃
lit: Object lit × fldval(lit, fld))

bound (Return ret) (Relation r) = B({}, ext(ret.type))
bound (Local var) (Relation r) = B(var)

ext :: [Type] → Expression (helper)

ext [] = {}
ext (t : []) =

⋃
lit<:tlit

ext (t : xs) = ext t × ext xs

Table 3.1: Translation of different Java constructs into relations (function rel) and
bounds (function bound)

3.4 Example: translation of BST.insert

To illustrate translation, consider the Binary Search Tree example introduced in Sec-
tion 1.2.2. From the snapshot of the heap shown in Figure 3-1, we see that the class
BST contains a single pointer to the root node, and the Node class contains pointers
to left and right sub-trees, as well as a single integer value (field key). When a node
is inserted, all node pointers may potentially be modified, so the specification for the
insert method declares fields root, left, and right as modifiable.

The resulting set of relations is shown in Table 3.2. Relations in the upper section
are unary, unmodifiable relations, and represent objects found on the heap. The
middle section contains relations that are also unmodifiable, because they are used
to either represent unmodifiable fields or values in the pre-state of modifiable fields.
Finally, the relations in the bottom section represent the post-state of modifiable
fields; these are the relations for which the solver will attempt to find appropriate
values. By default, the lower bound is simply set to an empty set and the upper
bound is the upper bound is set the extent of the field’s type.

23



Figure 3-1: A snapshot for the pre-state of t1.insert(n4)

BST: {t1}
N1: {n1}
N2: {n2}
N3: {n3}
N4: {n4}
null: {null}
BST this: {t1}
z: {n4}
ints: {0, 1, 5, 6}
key: {(n1 → 5), (n2 → 0), (n3 → 6), (n4 → 1)}
root pre: {(t1 → n1)}
nodes pre: {(t1 → n1), (t1 → n2), (t1 → n3), (t1 → n4)}
left pre: {(n1 → n2), (n2 → null), (n3 → null), (n4 → null)}
right pre: {(n1 → n3), (n2 → null), (n3 → null), (n4 → null)}
root: {}, {t1} × {n1, n2, n3, n4}
nodes: {}, {t1} × {n1, n2, n3, n4}
left: {}, {n1, n2, n3, n4} × {n1, n2, n3, n4}
right: {}, {n1, n2, n3, n4} × {n1, n2, n3, n4}

Table 3.2: Translation of the heap from Figure 3-1

3.5 Tightening the bounds

By declaring fields left and right as modifiable, as in the specification for BST.insert
(Listing 1.7), we allow arbitrary modifications to the tree, as long as all constraints
are satisfied. In effect, after the execution of the specification for the insert method,
the tree will contain all old nodes plus the new node, but the shape of the tree may
randomly change.

If we wanted to change the specification so that the tree topology is preserved and
the new nodes can only be inserted at leaf positions, we could manually add additional
clauses to the postcondition, specifying that left and right pointers of certain nodes
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must remain the same in the post state. However, a better (more efficient) approach
would be to modify the frame condition to tighten the bounds for the left and
right pointers, thus reducing the size of the search space and potentially significantly
improving performance, as previously reported by Samimi et al. [28].

Consider the modified frame condition shown in Listing 3.1. This frame condition
now specifies additional constrains on the modification of the left and right fields.
It says that the value of the left pointer may change only for those nodes for which the
value of the left pointer is currently set to null (and similarly for the right pointers).
This way we make sure that all nodes are inserted at the leaf positions, just like a
manual implementation would do.

@Requires ( ”z . key ! in t h i s . nodes . key” )
@Ensures ( ” t h i s . nodes = @old ( t h i s . nodes + z ) ” )
@Modifies ({

”Node . l e f t [{n : t h i s . nodes | n . l e f t == nu l l } ] ” ,
”Node . r i g h t [{n : t h i s . nodes | n . r i g h t == nu l l } ] ” ,
” t h i s . root ” })

public void i n s e r t (Node z ) {
Squander . exe ( this , z ) ;

}

Listing 3.1: Modified frame condition for the insert method

To implement this new feature, a straightforward approach would be to automat-
ically generate and add the following constraints to the method’s postcondition.

a l l n : Node | n ! in {n : t h i s . nodes | n . l e f t == nu l l } => n . l e f t = @old (n . l e f t )
a l l n : Node | n ! in {n : t h i s . nodes | n . r i g h t == nu l l } => n . r i g h t = @old (n . r i g h t )

Listing 3.2: Translation of the instance selector clause into constraints

As explained above, this would be an inefficient implementation. Instead, Squan-
der evaluates the instance selector clause (e.g. {n: this.nodes | n.left == null})
against the current heap (without running the solver) to obtain the list of modifiable
objects (the evaluation mechanism is similar to that of MintEra [2]). With the list
of modifiable objects, Squander modifies the bounds for the corresponding field re-
lation so that the current field values of the objects not to be modified are included
in the lower bound, thus forcing the value to stay the same in the post state. For
the heap shown in Figure 3-1, the modifiable objects for the left field are n2 and n3,
because their left pointers are currently set to null. Similarly, for the right field, the
modifiable objects are also n2 and n3. The updated bounds for these two fields are
shown in Table 3.3. For the larger trees, this can make a big difference in scalability,
as will be shown later in Section 7.2.4.

left: {(n1 → n2), (n4 → null)}, (n1 → n2) ∪ (n4 → null) ∪ {n2, n3} × {n1, n2, n3, n4}
right: {(n1 → n3), (n4 → null)}, (n1 → n3) ∪ (n4 → null) ∪ {n2, n3} × {n1, n2, n3, n4}

Table 3.3: The updated bounds for the left and right relations
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Chapter 4

Minimizing the Universe Size

To represent a relation r of arity k, Kodkod allocates a matrix of size nk, where
n is the number of atoms in the universe. Consequently, if the universe contains
more than 1290 atoms, a ternary relation would contain 12913 cells. These cells are
stored (for performance) in a single sequential array, indexed by a Java integer, and
since 12913 is greater than the largest integer value in Java (Integer.MAX VALUE), the
relation cannot be represented.

In practice, this can be a problem. Squander makes frequent use of ternary
relations (e.g. for representing arrays, lists and maps), and heaps with more than
1290 objects are not uncommon for problems that we would like to be able to solve
with Squander, so a simple translation like the one described in Section 3.3 (which
simply creates a new atom for every object it finds on the heap) is not feasible. As
an illustration, in our case study on a course scheduling application for the MIT
undergraduate degree program (explained in detail in Section 8), the heap contains
more than 1900 objects.

In this chapter, we describe a different translation technique (named KodkodPart)
that we developed to minimize the number of atoms that is used to represent the
object heap in the relational world of Kodkod.

4.1 KodkodPart translation

Our KodkodPart translation achieves a universe with fewer atoms by establishing a
mapping from Java objects (also called literals, as in Section 3.3) to Kodkod atoms
which is not necessarily an injective function. In other words, multiple literals are
allowed to map to a single atom, so that there can be fewer atoms than literals.
The key requirement is, however, that there exists (in the larger context) an inverse
function from atoms back to literals, so that the heap can be properly restored after
a solution has been found. This inverse function, we will see, can be contructed with
the help of available type information.

Consider the tree insertion example, shown in Figure 3-1. Domains D, literals
L, and assignments of literals to domains γ : D → P(L) for this example are
summarized in Table 4.1.
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D = {BST, Node, Null, Integer}
L = {bst1, n1, n2, n3, n4, null, 0, 1, 5, 6}

γ(BST) = {bst1}
γ(Node) = {n1, n2, n3, n4 }
γ(Null) = {null}

γ(Integer) = {0, 1, 5, 6}

Table 4.1: Summary of domains and instances for the BST.insert example

Recall that field types are represented as unions of base types (in this section also
called partitions). For instance, the type of the field BST.root is BST → Node ∪ Null,
because values of this field can be either instances of Node or the null constant.
That means that all objects of class Node plus the constant null must be mapped to
different atoms, so that it is possible to unambiguously restore the value of the field
root. This is the basic idea behind the KodkodPart translation: all literals within
any given partition must be mapped to different atoms, whereas literals not belonging
to a common partition may share atoms. The inversion function can then work as
follows: for a given atom, first select the correct partition based on the type of the
field being restored, then unambiguously select the corresponding literal from that
partition.

To complete the example, the set of all unary types used in the specification for
this example is:

T = {BST, BST ∪ Null, Node, Node ∪ Null, Null, Integer}

This set is discovered simply by keeping track of types of all relations created for Java
fields, and it automatically becomes the set of our partitions. A valid assignment of
atoms to literals that uses only 5 atoms, as opposed to 10 which is how many the
original translation would use, could be:

bst1 → a0 n1 → a0 n2 → a1 n3 → a2 n4 → a3

null→ a4 0→ a0 1→ a1 5→ a2 6→ a3

As a limitation of this technique, if the class Object is used as a field type, or
anywhere in the specification, it will result in one big partition containing all literals
(because every class is a subclass of Object), making the algorithm equivalent to the
original translation.

4.2 Partitioning algorithm

For a given set of base domains D, literals L, and partitions T (T = P(D)), and
a given function γ : D → P(L) that maps domains to their instance literals, this
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algorithm produces a set of atoms A and a function α : L → A, such that for every
partition p, function α returns different values for all instance literals of p. Formally:

(∀p ∈ T )(∀l1, l2 ∈ ψ(p)) l1 6= l2 =⇒ α(l1) 6= α(l2)

where ψ is a function that for a given partition returns a comprehension of all instance
literals of all of its domains:

ψ : T → P(L); ψ(p) = {γ(d) | d ∈ p}

Obviously, a simple bijection would satisfy this specification, but such a solution
wouldn’t achieve its main goal, which is to minimize the number of atoms, because
the number of atoms in this case would be exactly the same as the number of literals.
In order to specify solutions that are actually “useful”, we are going to require the
algorithm to produce a result such that the cardinality of A (i.e. the total number of
atoms) is minimal.

It is not immediately clear what the minimal number of atoms ought to be. One
might think that no more atoms are required than the number of instances in the
largest partition. However, this is not always true. Consider the case shown in
Figure 4-1. The largest partitions are P1 and P4, both having 5 literals. On the
other hand, any pair of the domains B, C, and D have a partition in common, even
though there is no single partition containing them all. They thus form a strongly
connected component, and their literals must differ. There are 6 literals in total in
these three domains, so 5 atoms cannot be enough. As a conclusion, the minimal
number of atoms is indeed the number of literals in the largest partitions, but only
after all strongly connected domains have been merged into a single partition.

Figure 4-1: KodkodPart: an example where more than the number of literals of the
largest partition is needed.

Luckily, cases like the one in Figure 4-1 never happen in Squander, so our im-
plementation of the algorithm doesn’t have to search for cliques and merge partitions.
The reason this never happens is that domains are always Java classes, and partitions
are types used to represent fields. A type of a field is a union type which includes
the entire subclass hierarchy of the field’s base type. For instance, if C and D are Java
classes, C extends D (C <: D), and some field has declared type D, then the type of
the field (in the relational world) will be D ∪ C ∪ Null, meaning that D ∪ Null is
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never going to be used as a partition for anything.
In summary, the actual implementation inside Squander works as follows:

1. Dependencies between domains are computed. A domain depends on all do-
mains with which it shares a partition. Let the function δ : D → P(D) express
this:

δ(d) = {d1 | d1 6= d ∧ ((∃p ∈ T ) d1 ∈ p)}

2. The largest partition pmax is found such that

(6 ∃p ∈ T ) |ψ(p)| > |ψ(pmax)|

3. For every literal l in ψ(pmax) an atom a is created, it is added to the universe
A and assigned to l, such that α(l) = a. From this point onwards, A is fixed.

4. For every other partition p iteratively, for all literals lp ∈ p that do not already
have an atom assigned, a set of possible atoms Alp is computed and the first
value from this set is assigned to lp. Alp is computed when atoms corresponding
to all literals of all dependent domains is subtracted from A, i.e.:

Alp = A \ {α(l) | l ∈ Ld} , where

Ld = {γ(d) | d ∈ Dd} , where

Dd = δ(dl), where dl ∈ D ∧ lp ∈ γ(dl)
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Chapter 5

Specification Fields and the
Abstract State

This chapter discusses how specification fields can be used to model abstract state
in a modular fashion. It also explains how Squander is capable of maintaining and
managing the abstract state throughout the program execution. As a result, speci-
fication fields don’t have to be defined in terms of the concrete state (by means of
an abstraction function), i.e. they can be left purely abstract. This is particularly
useful for implementing mock objects [5, 21]. For example, an abstract data type
declares a certain number of specification fields to abstractly model the data type.
It can’t provide an abstraction function, because it is not aware of the concrete rep-
resentation that will be used to represent the state. However, it can still formally
specify the operations of the data type just in terms of its specification fields. Before
a concrete implementation has been developed, Squander can be used to run the
abstract class just as if it were a regular Java class with concrete fields. By keeping
track of the abstract state between method calls, and properly updating the abstract
state after each method call, Squander is essentially providing a mock implementa-
tion on the fly. After they have been developed, the concrete implementations of the
abstract data type can simply override the definitions of the specification fields, and
have their concrete state automatically be updated.

5.1 Mock objects example

Consider the implementation of an integer set data structure given in Listing 5.1.
The base class, IntSet, declares a single specification field, namely elems, to model
the content of the set, and provides the specification for several common set oper-
ations. Semantically, IntSet should be an abstract class, but we did not to declare
it “abstract” in the Java sense, because we wanted to be able to create instances of
IntSet and show that even though they have no concrete fields to store the actual
elements of the set, with Squander, they are ready to be used as mock objects (as
in Listing 5.2), since Squander will maintain the content of the abstract elems field
for them.
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@SpecField ( ” elems : s e t i n t ” )
public /∗ abs t r a c t ∗/ class In tSe t {

public In tSe t ( ) { i n i t ( ) ; }

@Ensures ( ”no t h i s . e lems ” )
private void i n i t ( ) { Squander . exe ( this ) ; }

@Ensures ( ” re turn = e ! in @old ( t h i s . e lems ) && th i s . e lems = @old ( t h i s . e lems ) @+ e” )
@Modifies ( ” t h i s . e lems ” )
public boolean add ( int e ) { return Squander . exe ( this , e ) ; }

@Ensures ( ” re turn = e in t h i s . e lems ” )
public boolean conta in s ( int e ) { return Squander . exe ( this , e ) ; }

@Ensures ( ” re turn = s . elems in t h i s . e lems ” )
public boolean con ta i n sA l l ( In tSe t s ) { return Squander . exe ( this , s ) ; }

@Ensures ( ” re turn = e in @old ( t h i s . e lems ) && th i s . e lems = @old ( t h i s . e lems ) @− e” )
@Modifies ( ” t h i s . e lems ” )
public boolean remove ( int e ) { return Squander . exe ( this , e ) ; }

@Ensures ( ” re turn . e l t s = t h i s . e lems ” )
@FreshObjects ( c l s=Set . class , typeParams={ I n t eg e r . class } , num=1)
@Modifies ( ” re turn . e l t s ” )
public Set<Integer> nodes ( ) { return Squander . exe ( this ) ; }

}

Listing 5.1: IntSet class

public stat ic void main ( St r ing [ ] a rgs ) {
In tSe t s1 = new In tSe t ( ) ;
In tSe t s2 = new In tSe t ( ) ;
s1 . add ( 2 ) ; s1 . add ( 3 ) ; s1 . add ( 4 ) ;
s2 . add ( 3 ) ; s2 . add ( 2 ) ;
System . out . p r i n t l n ( s1 . c on ta i n sA l l ( s2 ) ) ; // p r i n t s ” t rue ”
s1 . remove ( 2 ) ;
System . out . p r i n t l n ( s1 . c on ta i n sA l l ( s2 ) ) ; // p r i n t s ” f a l s e ”

}

Listing 5.2: IntSet mock objects

Now, we can provide a concrete IntSet implementation backed with the Set<Integer>
class (Listing 5.3). This class simply overrides the definition of the elems specifica-
tion field and assigns an abstraction function to it to establish the correspondence
between the specification field and the concrete Java field. It also defines the frame
for the specification field (the “from” clause) so that the fields from the frame are
automatically added to the list of modifiable fields when the specification field is de-
clared as modifiable. Nothing else has to be changed. If we modify the main method
from Listing 5.2 so that objects of class SetIntSet are created instead, calls to insert

and remove will not modify the abstract state anymore, but will actually modify the
mySet field.

@SpecField ( ” elems : s e t i n t from th i s . mySet . e l t s | t h i s . e lems = th i s . mySet . e l t s ” )
public class Set In tSe t extends In tSe t {

private Set<Integer> mySet = new HashSet<Integer >() ;
}

Listing 5.3: SetIntSet class
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Chapter 6

User-Defined Abstractions for
Library Types

Imagine we have to implement a program that solves a particular constraint problem,
and that we want to delegate the task of constraint solving to Squander. Suppose
our program makes an extensive use of Java collections to store various problem
elements. This is not uncommon at all. Imagine we are trying to implement a
course scheduler: we would probably want to use a list to keep an ordered sequence
of semesters, a map to keep assignments of courses to semesters, another map to
keep course prerequisites, etc. If we were to solve such a problem with Squander,
we would like to have a way of accessing the contents of our collections from the
specification. For instance, we would like to write a piece of specification that says
that for every course assigned to a semester, all prerequisites for that course are
assigned to some of the previous semesters. The problem is, however, that we don’t
known the internal representation of various implementations of java.util.List or
java.util.Map, so we can’t write specification statements that directly refer to Java
fields, like we used to do in previous examples. We also don’t want to change the
structure of our program, and say use our own implementation of different collection
classes. This is a common problem, and Squander provides a generic solution by
letting the users write abstraction and concretization functions for third party or
library classes.

The task of supporting an arbitrary third party class consists of: (1) writing a
.jfspec file containing abstract field definitions, and (2) writing an object serializer,
as an implementation of IObjSer interface (Listing 6.1) that provides abstraction and
concretization functions for the abstract fields.

The .jfspec files are written in JFSL. They contain a number of abstract fields
(the same @SpecField annotation is used) and a number of invariants (@Invariant).
Some abstract fields may be left with only a type declaration, whereas others may also
be given an abstraction function (written in JFSL), expressed in terms of the existing
fields. The accompanying object serializer must provide concrete implementations
of abstraction and concretization functions for only those abstract fields not already
having an abstraction function defined in the .jfspec file.

Object serializers must implement four methods. The abstraction function (absFunc)
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takes a concrete object1 and produces values for its abstract fields. Each FieldValue

contains the name of the abstract field and a set of tuples to which the field evalu-
ates. The concretization function (concrFunc) takes a concrete object and a value of
an abstract field, and is supposed to restore that value onto the concrete object, by
modifying the given argument obj. In addition to these two essential methods, seri-
alizers have must be able to tell what classes of objects they support (accepts) and
also must be able to create new instances of the classes they support (newInstance).

public interface IObjSer {
public boolean accept s ( Class<?> c l z ) ;
public Object newInstance ( Class<?> c l s ) ;
public List<FieldValue> absFunc ( JavaScene javaScene , Object obj ) ;
public void concrFunc ( Object obj , Fie ldValue f i e l dVa l u e ) ;

}

Listing 6.1: IObjSer interface

Squander provides built-in support for Java collections and Java arrays through
this mechanism. These are explained in the following sections.

6.1 Supporting Java collections

6.1.1 Specification for java.util.Set

The abstract representation of a set is a set of elements, which is captured in a single
SpecField named elts (Listing 6.2). An additional field, size, is defined for conve-
nience. Since fields elts and size are not independent, an abstraction function is
given for size, to constrain its value to be the cardinality of the set elts, and Squan-
der can make use of this, without requiring the serializer to provide abstraction and
concretization functions for size. The code for the serializer is straightforward and
is given in Appendix A.

interface Set<K> {
@SpecField ( ” e l t s : s e t K” )
@SpecField ( ” s i z e : one i n t | t h i s . s i z e = #th i s . e l t s ” )

}

Listing 6.2: Specification for java.util.Set

6.1.2 Specification for java.util.List and Java arrays

To capture the abstract representation of a list, we again declare a single field, again
named elts, but of type int -> E (Listing 6.3). This time, however, we must include
an additional constraint to ensure that these fields represent a valid list: there should
be exactly one element for every index from 0 (inclusive) to the size of the list (exclu-
sive), and no elements at any other index. We write this constraint as an invariant
in the same jfspec file. As before, we define field size to represent the number of

1It actually takes an instance of JavaScene as well, which may be needed in order to access the
class’s specification
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elements in the list. Finally, we define an extra field, prev, defining the reverse or-
dering, whose use is illustrated in the case study described later. The abstraction
function for this field makes use of a constant relation, namely DEC, which is built-in
to Squander and evaluates to all pairs {i, i− 1}, where both i and i− 1 are integers
drawn from the finite universe.

Including extra specification fields does not exact any performance penalty, since
only those fields that are actually used in a specification for a particular method will
be used in translation.

interface List<E> {
@SpecField ( ” e l t s : i n t −> E” )
@SpecField ( ” s i z e : one i n t | t h i s . s i z e = #th i s . e l t s ” )
@SpecField ( ”prev : E −> E | t h i s . prev = (˜ t h i s . e l t s ) . DEC . ( t h i s . e l t s ) ” )
@Invariant ({

” a l l i : i n t | ( i >= 0 && i < t h i s . s i z e ) ? one t h i s . e l t s [ i ] : no t h i s . e l t s [ i ] ”
})

}

Listing 6.3: Specification for java.util.List

Java arrays are also supported through this mechanism. The specification is given
in Listing 6.4 and is very similar to the one for Java lists. Even though the name of
this specification file is “Object[]”, the implementation knows to make an exception
in this case and use it for all types of arrays. This mechanism automatically supports
multi-dimensional arrays, because in Java, multi-dimensional arrays are simply arrays
of arrays, and our mechanism for defining specifications is inherently compositional.

interface Object [] <E> {
@SpecField ( ” elems : i n t −> E” )
@SpecField ( ” l ength : one i n t | t h i s . l ength = #th i s . e lems ” )
@Invariant ({

” a l l i : i n t | ( i >= 0 && i < t h i s . l ength ) ? one t h i s . e lems [ i ] : no t h i s . e lems [ i ] ”
})

}

Listing 6.4: Specification for Java arrays

6.1.3 Specification for java.util.Map

The specification for Java maps is given in Listing 6.5. A binary relation named
elts is used to represent the mapping from keys to values. A Java map, unlike an
unconstrained relation in Alloy, can map a key to at most one value, so an invariant
is needed to constrain the field elts accordingly.

interface Map<K,V> {
@SpecField ( ” e l t s : K −> V” )
@SpecField ( ” s i z e : one i n t | t h i s . s i z e = #th i s . e l t s ” )
@SpecField ( ” keys : s e t K | t h i s . keys = th i s . e l t s . (V) ” )
@SpecField ( ” va l s : s e t V | t h i s . v a l s = t h i s . e l t s [K] ” )
@Invariant ({

” a l l k : K | k in t h i s . e l t s .V => one t h i s . e l t s [ k ] ”
})

}

Listing 6.5: Specification for java.util.Map
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Chapter 7

Examples and Evaluation

7.1 Solving hard problems

If a problem is solvable in polynomial time, a careful manual implementation is likely
to outperform a Squander implementation, because Squander always resorts to
running a boolean satisfiability algorithm, which is NP-complete. But if the problem
itself is difficult – due to the efficiency of modern SAT solvers – Squander may turn
out to be more efficient than typical hand-written algorithms.

Of course, Squander will not always offer the most efficient solution; most of
these problems have been well studied, and highly specialized heuristics have been
developed for solving them. Nevertheless, it is perhaps surprising how competitive
a SAT-based solution is – even including Squander’s overhead of encoding and de-
coding – with many hand-written solutions. For our comparison, we used standard
textbook solutions to the benchmark problems, which are typically based on back-
tracking with pruning.

7.1.1 “Hamiltonian Path” algorithm

A Hamiltonian path in a graph is one that visits each node in the graph exactly
once. Listing 7.1 shows both the data representation that we used for graphs and the
specification for this problem. To find a solution, the framework must create a fresh
array of nodes to hold the result; this is specified explicitly using the @FreshObjects

annotation. The specification asserts that the returned path contains all nodes in
the graph, and that for every two consecutive nodes in the path, there exists an edge
between them in the graph.

The textbook backtracking algorithm uses an adjacency matrix to represent a
graph. We took this particular implementation from the web site of the Cornell
course on Algorithms and Data Structures [1].

In our experiment, we generated two categories of directed graphs: (1) graphs
without any Hamiltonian paths, and (2) graphs containing one or more Hamiltonian
paths. For each graphs size, we ran the experiment on 10 different graphs of that size,
measured the execution times, and calculated the average. All experiments included
2 warmup runs to neutralize possible effects of class loading, etc.
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The following procedure was used to generate graphs:

1. generate and add n nodes to the graph

2. generate a random permutation of nodes and add edges between the neighboring
nodes in the permutation, including the edge between the last and the first node.
At this point, the graph contains a Hamiltonian cycle.

3. randomly choose a number between 30 and 90 percent of the maximum number
of nodes (n(n + 1)) and keep adding random edges until the number of edges
in the graph is equal to the chosen number.

4. randomly choose a node and remove all its incoming edges. At this point, the
graph still contains at least one Hamiltonian path, the one that starts from the
node selected in this step.

5. if the goal is to generate graphs with no Hamiltonian paths, remove all outgoing
edges of the node selected in the previous step.

public class Graph {
public stat ic class Node { int value ; }
public stat ic class Edge { Node src , dst ; }

private Set<Node> nodes ;
private Set<Edge> edges ;

@Ensures ({
” re turn [ i n t ] in t h i s . edges . e l t s ” ,
” re turn [ i n t ] . ( s r c + dst ) = th i s . nodes . e l t s ” ,
” re turn . l ength = #th i s . nodes . e l t s − 1” ,
” a l l i : i n t | i >= 0 && i < r e turn . l ength − 1 => r e turn [ i ] . dst = return [ i +1] . s r c ”
})
@Modifies ({ ” re turn . l ength ” , ” re turn . elems” })
@FreshObjects ( c l s = Edge [ ] . class , num = 1)
public Edge [ ] hp ( ) { return Squander . exe ( this ) ; }
}

Listing 7.1: Hamiltonian Path Specification

The results are shown in Table 7.1. For the manual implementation, establishing
the absence of a Hamiltonian path is harder than finding one (if it exists), since this
requires exploring all paths from the first node (i.e. whichever node it chooses first).
Sometimes, it can happen that the first node has no outgoing edges, in which case the
manual algorithm terminates instantly, but on average, the problem becomes hard
for a random graph with 15 or more nodes. In contrast, the boolean solver seems
to easily locate the isolated node, no matter where it is found in the graph, and can
thus prove nonexistence of a Hamiltonian path more easily. Finding a path when one
exists is harder, but on average, the declarative solution still scales better than the
backtracking algorithm.

7.1.2 The N-Queens problem

The problem of N-Queens involves placing N queens on an N × N chess board so
that no queen can take any of the others. E. W. Dijkstra, in his book on structured
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Graphs without Hamiltonian paths
10 14 15 20 25 30 35 40

Manual 0.02 96.92 t/o t/o t/o t/o t/o t/o
Squander 0.34 0.3 0.34 0.33 0.68 1.8 2.8 4.1

Graphs with Hamiltonian paths
10 14 15 20 25 30 35 40

Manual 0.01 50.17 214.96 t/o t/o t/o t/o t/o
Squander 0.24 0.29 0.37 0.75 4.88 119.81 t/o t/o

Table 7.1: Hamiltonian path execution times

programming [9], describes a backtracking solution with pruning, which we imple-
mented in Java for the purpose of our experiment. This algorithm keeps track of
rows, columns and diagonals that have been taken by the queens already placed on
the board, so every time it has to pick a position for the next queen, it avoids all
conflicting cells, thus pruning a large portion of the search space. (There is a known
polynomial time algorithm for N-Queens [30], which first guesses a solution, and
then performs a local search using a gradient-based heuristic to move certain queens
around until all conflicts have been resolved.)

@Requires ( ” r e s u l t . l ength == n” )
@Ensures ({
” a l l k : i n t | k>=0 && k<n => l one ( Cel l@i ) . k” ,
” a l l k : i n t | k>=0 && k<n => l one ( Cel l@j ) . k” ,
” a l l q1 : r e s u l t . e l t s | no q2 : r e s u l t . e l t s − q1 | ”+
” q1 . i = q2 . i | | q1 . i−q1 . j = q2 . i−q2 . j | | q1 . j = q2 . j | | q1 . i+q1 . j = q2 . i+q2 . j ”
})
@Modifies ({
” Ce l l . i [ ] [ ] [ { k : i n t | k>=0 && k<n } ] ” ,
” Ce l l . j [ ] [ ] [ { k : i n t | k>=0 && k<n } ] ”
})
public stat ic void nqueens ( int n , Set<Cel l> r e s u l t ) {

Squander . exe ( null , n , r e s u l t ) ;
}

Listing 7.2: NQueens Specification

Listing 7.2 gives the specification for N-Queens. The nqueens method takes an
integer n, and a set already containing exactly n Cell1 objects, and is expected to
modify the coordinates of the given cells so that they represent a valid positioning
of n queens.2 The frame condition specifies that only cell coordinates are modifiable.
The three bracketed subexpressions respectively mean that: (1) all Cell instances are
modifiable, (2) the lower bound is empty, and (3) the upper bound is {0, · · · , n− 1}
(values for cell coordinates). In the post-condition, the third “all” clause asserts that
no two different cells (queens) in the resulting set may be in the same row, column or

1Cell is a simple wrapper class for i and j coordinates of the chess board.
2The reason why this method takes a set of cells (as opposed to creating a new set with n

Cells in it) is non-essential: Squander can’t arbitrarily create new objects; instead it requires the
user to explicitly pass the number of new objects via FreshObjects annotations. Unfortunately,
annotations cannot take variables as arguments, only constants
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either diagonal. The first two universal quantifier clauses are redundant; they state
that every row and every column must contain exactly one Cell object, which follows
from the third constraint. Even though they are not required for correct execution,
redundant constraints often (as here) improve the performance of the solver.

n = 8 16 28 32 34 36 54
Manual 0.0 0.0 0.5 15.9 428.9 t/o t/o
Squander 0.4 0.6 4.7 10.0 11.1 15.7 89.1

Table 7.2: N-Queens execution times (in seconds)

Table 7.2 shows results for different values of n. For smaller values (up to 28),
the (manual) backtracking algorithm performs better (although Squander’s perfor-
mance is not terrible). For larger values of n, Squander scales considerably better.
It computes a solution for 54 queens in 89 seconds, whereas the manual algorithm
begins to time out (that is, exceed the five minute limit we set) at only 34 queens.

7.2 Textbook data structures

In this section, we’ll first show on several examples how textbook data structures can
be easily and succinctly specified in JFSL, and then we’ll run some mini benchmarks
and show the execution times with Squander.

7.2.1 Binary Search Tree

We’ll use the same binary search tree we used in the introduction (Section 1.2.2,
Listing 1.6). We evaluated both versions of the specification for the insert method:
the one that allows arbitrary modifications to the tree (Listing 1.7) and the one that
forces that the new nodes are inserted at leaf positions by making use of the instance
selector clause in the frame condition (Listing 3.1, named insert fast here).

7.2.2 Balanced Binary Search Tree

Having specified the binary search tree, it is very easy to define a subclass of it
and add an extra invariant to implement a balanced search tree. The extra invariant
(Listing 7.3) is used to enforce that for each node, the sizes of its left and right subtrees
differ by at most 1. Specifications for the insert and delete methods (Listing 1.7)
remain unchanged and they are automatically inherited from the superclass. Note
that the specification for the insert method that localizes the scope of modification
cannot be used here, because it forces the nodes to be inserted at leaf positions, which
is in collision with the balancedness constraint.

@Invariant ( ” a l l n : t h i s . nodes |
(#n . l e f t . ˆ ( l e f t+r i gh t ) − #n . r i g h t . ˆ ( l e f t+r i gh t ) ) in t h i s . d i f f [ i n t ] ” )

public class BalancedBST extends BST {
private f ina l int [ ] d i f f = new int [ ] {−1, 0 , 1} ;

}
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Listing 7.3: Specification for Balanced Binary Search Tree

7.2.3 Linked List

The specification for the LinkedList class is shown in Listing 7.4. For a given node,
the specification field succ evaluates to all nodes reachable from that node following
the next pointer (including the starting node). The specification field nodes evaluates
to all nodes of a list, and is simply a shortcut for header.succ.

The specification for the add and remove is pretty straightforward. The add method
requires that the list rooted at the given node is not already in the list, and ensures
that the resulting list contains all nodes reachable from the given node. We also want
to ensure that these nodes are inserted at the end of the list, so in the frame condition
we assert that the only node whose next pointer may be modified is the last node of
the list, effectively forcing the beginning of the list to stay untouched. Similarly, for
the remove method we assert that the only node that is modifiable is the immediate
predecessor of the node to be removed.

@SpecField ( ”nodes : s e t Node | t h i s . nodes = th i s . header . succ ” )
public class LinkedLis t {

@Invariant ( ” t h i s ! in t h i s . ˆ next ” )
@SpecField ( ” succ : s e t Node | t h i s . succ = th i s .∗ next − nu l l ” )
public stat ic class Node {

private int value ;
private Node next ;

}

private Node header ;

@Requires ( ”n . succ ! in t h i s . nodes ” )
@Ensures ( ” t h i s . nodes = @old ( t h i s . nodes ) + n . succ ” )
@Modifies ({

” t h i s . header ” ,
”Node . next [{ nn : t h i s . nodes | nn . next == nu l l } ] ”

})
public void add (Node n) { Squander . exe ( this , n ) ; }

@Requires ( ”n in t h i s . nodes ” )
@Ensures ( ” t h i s . nodes = @old ( t h i s . nodes ) − n” )
@Modifies ({

” t h i s . header ” ,
”Node . next [{ nn : t h i s . nodes | nn . next == n } ] ”

})
public void remove (Node n) { Squander . exe ( this , n ) ; }

}

Listing 7.4: Specification for Linked List

7.2.4 Benchmarks

We measured the time it took Squander to execute specifications of some common
operations on several different types of complex data structures. The algorithmic
complexity of the chosen operations is in polynomial time, so it is unreasonable to
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expect Squander to perform as good as carefully written manual implementations.
However, the results show that the running times are acceptable for inputs of small
size, so the applicability of this approach is typically limited to the development
phase.

For all benchmarks presented here, we had 1 warmup run and 3 test runs. The
purpose of the initial warmup run was to eliminate possible “cold start” effects, such
as JVM initialization and class loading. In the subsequent 3 test runs, we executed
the operation under test on 3 different (randomly generated) instances of a given size,
measured the total execution time (which includes both serialization/deserialization
done by Squander and solving done by Kodkod + SAT solver), and reported the
average. The timeout threshold was set to 1 minute for all experiments, and the
maximum Java heap size was left to the default value of 256MB. All benchmarks
were run a Linux box, with Intel R© CoreTM2 Duo CPU @ 2.93GHz, 4GB of RAM,
running Ubuntu 9.10.

To generate random binary trees of size n for insertion, we executed a manual
implementation of the insert(Node n) operation n − 1 times. Every time we would
pass a node with a random (but previously unseen) value. The same way, we would
then generate the n-th node, the node to be inserted, and execute the specification
for the insert method with Squander. For deletion, we would similarly generate a
tree with n nodes, randomly pick a node from the tree to be deleted, and measure
the time of execution of the specification for the remove method.

To generate inputs for the “Balanced BST” benchmark, we used exactly the same
procedure the generate unbalanced trees, and the require that the tree is balanced
after the insertion/deletion. Since the invariant for these trees is often violated in the
pre-state (since the way we generate them doesn’t make them necessarily balanced),
we had to configure Squander so that it doesn’t check the precondition.

Finally, to generate linked list, we simply generated random sequences of nodes.
For the benchmarks of size n, the insert benchmark inserts the n-th node in a list
already containing n − 1 nodes, and the remove benchmark removes a node from a
list of n nodes.

The results are shown in Tables 7.3, 7.4, and 7.5. For the hard search problems
(insertion/deletion from a (balanced) binary tree), executing specifications becomes
infeasible for trees with more than 10-15 nodes. These are hard search problems,
because the bounds for the modifiable relations corresponding the left and right

fields grow rapidly as the number of nodes increases. In these cases, the time taken
by the SAT solver dominates the total time. In other benchmarks (BST.insert fast,
linked list insertion/deletion) it is possible to localize the modifications to only several
objects, which results in much better scalability. Interestingly, for these benchmarks,
the problem is not the SAT solving time anymore. Once the boolean formula has
been constructed, it is easy for the SAT solver to find a solution, because the formula
is now fairly smaller, since only a smaller part of the state needs to be solved for
and Kodkod does a pretty good job of optimizing the final boolean formula. Instead,
Kodkod translation time becomes dominant now because the sole translation from
relational to boolean logic takes a lot of time when the bounds for the relations are
big. As an intuition, for a tree with 100 nodes, the upper bound for the left and
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right fields counts 100×100 = 10, 000 tuples. A matrix with 10,000 elements is used
to represent each of these two fields. Translation of relational expressions to boolean
formulas involves many different matrix operations, so when matrices are big (i.e.
contain many elements) these operations can be very slow.

BST 5 10 15 20 30 40 50 60 70 80 90
insert fast 0.09 0.19 0.29 0.69 1.16 3.10 6.52 12.29 24.53 38.02 55.58
insert 0.18 0.29 0.38 0.75 t/o t/o t/o t/o t/o t/o t/o
remove 0.01 0.33 1.27 t/o t/o t/o t/o t/o t/o t/o t/o

Table 7.3: Binary Search Tree benchmarks

Balanced BST 5 6 7 8 9 10 11 12 13
insert 0.3 0.35 0.43 0.5 5.01 5.45 15.31 34.13 t/o
remove 0.39 0.21 0.66 0.92 1.07 12.46 5.64 43.58 50.4

Table 7.4: Balanced Binary Search Tree benchmarks

Linked List 20 60 100 140 180 200 250 300
add 0.29 0.79 3.2 13.17 24.6 29.7 51.84 m/o
remove 0.3 0.57 1.91 6.82 17.33 29.99 35.19 m/o

Table 7.5: Linked List benchmarks
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Chapter 8

Course Scheduler Case Study

As a larger case study, we re-implemented an existing application – a course scheduler
that helps students select courses to complete graduation requirements. Given a
student’s current standing, it finds a path to graduation that meets the program
requirements for the undergraduate degree in EECS at MIT. The MIT program offers
around 300 courses, defines prerequisites for more than 150 courses, and also specifies
some additional requirements (e.g. mandatory courses, selections of multiple options
from groups of courses, etc). The original implementation [36] used the Kodkod [31]
constraint solver directly via its API.

About 1500 lines of code were written to translate the student’s standing and the
set of MIT requirements to relational constraints, run Kodkod to find a solution, and
finally translate the Kodkod solution back to the original data structures. It is these
lines of code that Squander is intended to eliminate.

The goal of this case study was to assess the usability of Squander on a real
world program, whose core lies in solving a constraint problem. A key goal was to
make minimal changes to the existing data structures of the original application,
so that the rest of the application (e.g. GUI, I/O, etc.) might be reused without
modification.

Squander’s built-in abstractions for the Java library classes (Chapter 6), used
extensively in the data model, were essential in reducing the annotation burden. We
had to annotate user-defined classes with invariants, define additional specification
fields when necessary, and introduce a single new method (named solve), with a
specification capturing the course requirements.

A second goal was to show that the framework could scale to a large heap. The
novel translation presented in Chapter 4 enabled us to handle heaps with almost 2000
objects. The time it takes Squander to find a solution for a problem of this size is
less than 5 seconds. The original implementation still runs faster (it takes about 1
second) but the cost of its development was much higher.

8.1 Data Model

The full data model for the scheduler application is given in Listing 8.1.
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The top-most class in the hierarchy is the class Problem. Aside from references to
a DegreeProgram and a Schedule, the Problem class contains a set of additional con-
straints provided by the student, e.g. “don’t schedule a course”, “schedule a course af-
ter a given semester”. Departmental requirements are associated with DegreeProgram.

A DegreeProgram contains information about the selected program. The purpose
of allCourses and prereqMap fields is intuitive: the former simply contains all courses
offered by the department, and the latter contains prerequisites for certain courses.
A prerequisite for a course is defined (in disjunctive normal form) as sets of sets of
courses (in other words, the students choose a single set of courses as a prerequisite).
This class also contains all course groupings defined by this program (groupings) and
the top-level grouping (rootGrouping) which in the end resolves to all courses that a
student must pass (course groupings are explained below).

A Schedule contains a list of semesters (which is given in advance and must
not be changed during the process of solving), a mapping from semesters to courses
(sCourses) and an auxiliary field, namely prereqUsed, holding the choice of course
used to satisfy a course’s prerequisite (recall that the prerequisites map can possibly
contain several possibilities for a single course). The sCourses map may already con-
tain some entries (courses that have already been taken). The goal of this application
is to compute the content of this map such that it preserves the existing assignments
and satisfies all requirements.

Semesters can have a set of attributes associated to it (e.g. “Fall”, “Spring”, etc.)
and can also be flagged as “past semester”. Assignment of courses for past semesters
must not change.

Courses can be grouped in CourseGrouping so that the requirements can be written
in terms of course groups. Moreover, every course is also put in a singleton group,
for which isSingleCourse field is set to true and the value of the courses field is
a singleton set containing that one course. For others, the courses field is to be
computed according to the requirements associated with the grouping.

To understand course groups better, and how requirements are always defined in
terms of course groups, consider the following requirement

<minSizeSubsetReq>
<size>2</size>
<subset>

<member>6.101</member>
<member>6.105</member>
<member>bio-lab</member>

</subset>
</minSizeSubsetReq>

where “bio-lab” is a course group containing two or more courses, and “6.101” and
“6.105” are singleton course groups. This requirement means that the student must
pick 2 out of these three groups, and pass all courses from those 2 selected groups.
In other words, the requirement is not satisfied if the student passes “6.101” and one
course from “bio-lab”.

Finally, a Course has a name and potentially some attributes. In order for a
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course to be scheduled for a semester, that semester’s set of attributes must include
all attributes of the course.

public class Problem {
private DegreeProgram dp ;
private Schedule schedu le ;
private Set<Requirement> add i t i ona lReqs ;
}

public class DegreeProgram {
private Set<Course> a l lCou r s e s ;
private PrereqMap prereqMap ;
private Set<CourseGrouping> groupings ;
private CourseGrouping rootGrouping ;
}

public class Schedule {
private List<Semester> s emeste r s ;
private Map<Semester , Set<Course>> sCourses ;
private Map<Course , Set<Course>> prereqUsed ;
}

public class Semester {
private St r ing name ;
private boolean i sPas tSemes te r s ;
private Set<Attr ibute> a t t r i b u t e s ;
}

public class CourseGrouping {
private St r ing name ;
private boolean i s S i ng l eCou r s e ;
private Set<Requirement> groupingReqs ;
private Set<Course> cour s e s ;
}

public class Course {
private St r ing name ;
private Set<Attr ibute> a t t r i b u t e s ;
}

public class PrereqMap {
protected Map<Course , Set<Set<Course>>> pre r eq s ;
}

public abstract class Requirement {
protected CourseGrouping cg ;
}

Listing 8.1: Course Scheduler data model

8.2 Specification

8.2.1 Invariants for the schedule

Class Schedule is the primary class. It contains a list of semesters (given in advance
and not to be modified), and a mapping from semesters to courses (sCourses) to be
computed. The content of the prereqUsed fields is also to be computed so that it
holds the choice of course used to satisfy a course’s prerequisite.

There are several invariants that must hold for a schedule to be valid. They are
all listed in Listing 8.2 and explained individually below.
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• Schedule a course’s prerequisites for semesters preceding the semester of that
course. This constraint can be expressed with several nested universal quanti-
fiers, but a more complicated, closed form relation expression is used instead for
efficiency reasons. This expression says that all tuples of type Course × Course

found in the prereqUsed map (the left-hand-side of the in expression) can also
be found in the relation holding the mapping of courses to previously taken
courses (the right-hand-side of the in expression; makes use of the prev field
defined for lists).

• Include prerequisites for courses. All scheduled courses, for which there exist
at least one entry in the departmental map of course prerequisites (PrereqMap),
must appear as keys in the map of used prerequisites. This is constraint is
needed to force the content of the prereqUsed map, whereas the previous con-
straint enforces that the course prerequisites are actually assigned to preceding
semesters.

• Course and semester attributes match. This one simply constrains courses to be
assigned only to semesters whose attributes include all of the course’s attributes.

• Don’t skip semesters. It is usually not desired to have semesters with no courses,
so this rule is used to disallow that.

• Don’t assign courses more than once. Set intersection is used to ensure that
for every semester, the set of courses assigned for that semester and the set of
courses assigned for all other semesters are disjoint.

• Don’t include null. Since null is a valid value for all reference types in Java,
nulls must be explicitly disallowed when desired.

@Invariant ({
/∗ f o r a l l courses , p r e r eq s must be taken in the prev ious semeste r s ∗/
” t h i s . prereqUsed . e l t s . e l t s in

( (˜ t h i s . sCourses . e l t s . e l t s ) . ( ˆ ( t h i s . s emeste r s . prev ) ) . ( t h i s . sCourses . e l t s . e l t s ) ) ” ,
/∗ i n c l ude p r e r e q u i s i t e s f o r cour s e s ∗/
” ( t h i s . sCourses . va l s . e l t s & PrereqMap . pre r eq s . keys ) in t h i s . prereqUsed . keys ” ,
/∗ course and semester a t t r i b u t e s match ∗/
” a l l sem : Semester | t h i s . sCourses . e l t s [ sem ] . e l t s . a t t r i b u t e s . e l t s in

sem . a t t r i b u t e s . e l t s ” ,
/∗ don ’ t sk ip semeste r s ∗/
” a l l sem : Semester | some t h i s . sCourses . e l t s [ sem ] . e l t s &&

! t h i s . s emes te r s . prev [ sem ] . i sPa s t
=> some t h i s . sCourses . e l t s [ t h i s . s emeste r s . prev [ sem ] ] . e l t s ” ,

/∗ don ’ t a s s i gn cour s e s more than once ∗/
” a l l sem : Semester |

no ( t h i s . sCourses . e l t s [ sem ] . e l t s & t h i s . sCourses . e l t s [ Semester − sem ] . e l t s ) ” ,
/∗ don ’ t add ” nu l l ” ∗/
” nu l l ! in t h i s . sCourses . va l s . e l t s ” })

public class Schedule {
private List<Semester> s emeste r s ;
private Map<Semester , Set<Course>> sCourses ;
private Map<Course , Set<Course>> prereqUsed ;
}

Listing 8.2: The invariant for the class Schedule
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8.2.2 Specification for the solve() method

The core of the specification for the scheduler is associated with the method solve()

(Listing 8.3).
The post-condition says that: (1) all requirements must hold, and (2) the schedule

must include all courses from the root grouping (dp.rootGrouping). To express the
first property without having to know about all subclasses of Requirement, we simply
defined a boolean specification field (named cond) for the Requirement class and
asserted that it evaluates to true. Concrete implementations of Requirement are
expected to override the definition of cond to impose their own constraints. Detailed
explanation of different types of requirements is given later in Section 8.2.3.

The frame condition for solve requires more than just listing the modifiable fields.
For example, not only must the Set<Course>.data field be modifiable (because we are
searching for suitable values for the Schedule.sCourses map), but an instance selector
must also be provided to specify that only those sets of courses that are not associated
with the past semesters may be modified. The content of the “used prerequisites”
map (Map<Course, Set<Course>>) must also be modifiable, but this time, however, it
is essential to tighten the upper bound for this field so that its content is a subset of
the constant map of course prerequisites defined by the department (which has less
than 300 entries). Otherwise, the bound for this field would have gone up to 90,000
atoms, since there are 300 distinct courses and 300 distinct sets of courses on the
heap, causing a huge performance setback. Finally, sets of courses associated with
course groupings are also modifiable, but only for those groups that don’t represent
a single course.

@Ensures ({
” a l l req : t h i s . add i t i ona lReqs . e l t s +

t h i s . dp . groupings . e l t s . groupingReqs . e l t s | req . cond” ,
” t h i s . dp . rootGrouping . cou r s e s . e l t s in t h i s . s chedu le . sCourses . va l s . e l t s ”
})
@Modifies ({
/∗ modify sCourses map , but don ’ t change the mapping f o r the ” past ” semeste r s ∗/
” t h i s . s chedu le . sCourses . va l s . e l t s

[{ s t : java . u t i l . Set<Course> | no sem : Semester |
sem . i sPa s t && ( ( sem−>s t ) in t h i s . s chedu le . sCourses . e l t s ) } ] ” ,

/∗ modify the used p r e r e q u i s i t e s map ∗/
” t h i s . s chedu le . prereqUsed . e l t s [ ] [ ] [ PrereqMap . pre r eq s . e l t s . e l t s ] ” ,
/∗ and cour s e s a s s i gned to course groups ∗/
”CourseGrouping . cou r s e s . e l t s [{ cg : CourseGrouping | ! cg . i s S i ng l eCou r s e } . c ou r s e s ] ”

)}
public void s o l v e ( ) {
Squander . exe ( this ) ;
}

Listing 8.3: Specification for the solve method

8.2.3 Specifying the requirements

Specification fields are particularly useful for defining specification in a modular fash-
ion, thus reducing the coupling between modules. As mentioned above, at the place
where the post-condition for the solve() method is defined, all existing types of
requirements are not known. In order to abstractly say that all requirements hold,
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without knowing the concrete requirement rules for any of them, we defined a boolean
specification field for the Requirement class, namely cond as shown in Listing 8.4. In
this section, we give concrete abstraction functions for all different kinds of require-
ments.

@SpecField ( ”cond : one boolean ” )
public abstract class Requirement {

protected CourseGrouping cg ;
}

Listing 8.4: Specification field for the Requirement class

MandatoryCourseReq

MandatoryCourseReq contains a set of mandatory courses and simply asserts that all
those courses must be found in the set of courses of the group which is associated
with this requirement.

@SpecField ( ”cond : one boolean |
t h i s . r equ i r edCourse s . e l t s . c ou r s e s . e l t s in t h i s . cg . cou r s e s . e l t s ” )

public class MandatoryCourseReq extends Requirement {
private Set<CourseGrouping> r equ i r edCourse s ;
}

Listing 8.5: Specification for the MandatoryCourseReq class

MinimumSizeSubsetReq

MinimumSizeSubsetReq contains a set of course groups and the minimum number of
those groups that must be included. The abstraction function asserts that there exists
a subset of choices with at least minSubsetSize elements such that all corresponding
courses are included in the courses for this requirement’s group.

@SpecField ( ”cond : one boolean | e x i s t s s : s e t CourseGrouping |
#s == th i s . minSubsetSize && s in t h i s . c ho i c e s . e l t s &&
s . cour s e s . e l t s in t h i s . cg . cou r s e s . e l t s ” )

public class MinimumSizeSubsetReq extends Requirement {
private Set<CourseGrouping> cho i c e s ;
private int minSubsetSize ;
}

Listing 8.6: Specification for the MinimumSizeSubsetReq class

NoOverlapReq

NoOverlapReq contains a set of course groups and asserts that those courses must not
overlap with the courses assigned to this requirement’s group.

@SpecField ( ”cond : one boolean | no t h i s . members . e l t s . c ou r s e s & th i s . cg . cou r s e s . e l t s ” )
public class NoOverlapReq extends Requirement {
private Set<CourseGrouping> members ;
}

Listing 8.7: Specification for the NoOverlapReq class
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NeverScheduleReq

The course scheduler application allows the students to specify if they don’t want to
take certain courses at all. To represent this requirement, class NeverScheduleReq is
used. Classes used to represent the students’ requirements don’t have an associated
course group, so their abstraction functions must refer directly to the schedule and
the scheduled courses. So in this case, the abstraction function simply asserts that
the given course is not found in the sCourses map of the Schedule object.

@SpeccField ( ”cond : one boolean | t h i s . course ! in Schedule . sCourses . va l s . e l t s ” )
public class NeverScheduleReq extends Requirement {
private f ina l Course course ;
}

Listing 8.8: Specification for the NeverScheduleReq class

TimeReq

The students are also allowed to explicitly specify time requirements for certain
courses. For example, they can specify that a certain course must be scheduled
either exactly at, before, after, not before or not after a given semester.

@SpecField ( ”cond : one boolean | ” +
/∗ AT ∗/
” t h i s . opVal = 2 ? ( t h i s . course in Schedule . sCourses . e l t s [ t h i s . semester ] . e l t s ) : ( ” +
/∗ BEFORE ∗/
” t h i s . opVal = 0 ? ( some s : Semester | t h i s . course in Schedule . sCourses . e l t s [ s ] . e l t s

&& Schedule . s emeste r s . e l t s . ( s ) < Schedule . s emeste r s . e l t s . ( t h i s . semester ) ) : ( ” +
/∗ NOT AFTER ∗/
” t h i s . opVal = 1 ? ( no s : Semester | t h i s . course in Schedule . sCourses . e l t s [ s ] . e l t s

&& Schedule . s emeste r s . e l t s . ( s ) > Schedule . s emeste r s . e l t s . ( t h i s . semester ) ) : ( ” +
/∗ NOT BEFORE ∗/
” t h i s . opVal = 3 ? ( no s : Semester | t h i s . course in Schedule . sCourses . e l t s [ s ] . e l t s

&& Schedule . s emeste r s . e l t s . ( s ) < Schedule . s emeste r s . e l t s . ( t h i s . semester ) ) : ( ” +
/∗ AFTER ∗/
” t h i s . opVal = 4 ? ( some s : Semester | t h i s . course in Schedule . sCourses . e l t s [ s ] . e l t s

&& Schedule . s emeste r s . e l t s . ( s ) > Schedule . s emeste r s . e l t s . ( t h i s . semester ) ) :
f a l s e ) ) ) ) ” )

public class TimeReq extends Requirement {
private f ina l int opVal ;
private f ina l Course course ;
private f ina l Semester semester ;
}

Listing 8.9: Specification for the TimeReq class
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Chapter 9

Related Work

The idea of executable specifications is not a new one. However, it has been widely as-
sumed that any implementation would be hopelessly inefficient, and thus not feasible
for practical applications. Hoare [14] acknowledges the benefits that such technology
would have, but also predicts that computers would never be powerful enough to carry
out any interesting computation in this way. Hayes and Jones [13] argue that direct
execution of specifications would inevitably lead to a decrease in the expressive power
of the specification language, undoing much of the advantage of specifications. On
the other side of the spectrum, Fuchs [12] claims that declarative specifications can be
made executable by intuitive (manual) translation to either a functional programming
language (such as ML) or a logic programming language (like Prolog).

Rayside et al. [27] suggested how executing specifications might play a useful
role in an agile development process [4]: for fast prototyping, test input generation,
creation of mock objects directly from interfaces, etc.

Samimi et al. implemented a tool [28], called PBnJ, that borrows most of the ideas
from the work of Rayside et al. [27], but applies them in a different context: using
executable specifications as a fallback mechanism. Like Squander, PBnJ provides
a unified environment for imperative and declarative code but it lacks Squander’s
expressive power and the ability to handle abstract types (and in particular, library
classes). Their spec methods are similar to the spec fields of [27], but do not accommo-
date arbitrary declarative formulas – rather, only those for which a straightforward
translation to imperative code exists. As a consequence, spec methods can express
something like “all nodes in a graph”, or “all nodes such that each one of them has
some property”, but cannot express “some set of nodes that form a clique”. Another
limitation is that spec methods cannot be recursive. By creating a separate relation
for every spec field, Squander solves all these problems: whatever abstraction func-
tion is given to a spec field, it will be translated into a relational constraint on the
corresponding relation, and Kodkod will find a suitable value for it. PBnJ comes
with custom classes for sets, lists and maps, but provides no mechanism for the user
to extend the support to other abstract types.

Squander can be considered as an implementation of the Carroll Morgan’s mixed
interpreter [25], comprising a combination of conventional imperative statements and
declarative specification statements [24].
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The PAISLey project [37] can execute specifications that represent both data
manipulation and control flow. This form of specification is well suited for specifying
process control systems, but is different from the first order relational logic supported
by Squander.

In later work, Wahls et al. are working on executing JML [7] (which a specification
language very similar to JFSL) by translating them to constraint programs and using
backtracking to search for a solution [8, 18] (as opposed to using a SAT solver). A
comparison between these two techniques was outside the scope of this thesis. Yang’s
LogLog tool [34] employs runtime constraint solving to automatically impute values
for missing data based on declarative constraints.

Forge [10, 11] is a bounded software verifier that allows an imperative procedure
written in Forge Intermediate Representation (FIR) to be checked, up to a given
bound on the heap size and the number of loop unrollings, against a rich specifi-
cation. Its front-end for Java, JForge [35], can check a Java procedure against a
JFSL specification. As in refinement calculus [3], FIR supports declarative specifica-
tion statements. Squander could exploit that fact and alternatively use Forge as
a back-end solver. In that case, Squander would construct a Forge universe that
corresponds to the current state of the Java program, and a Forge procedure that
contains a single specification statement corresponding to the specification being ex-
ecuted by Squander. It would then ask Forge to check whether the given procedure
is equivalent to false. If the answer is yes, that means that the specification is not
satisfiable; otherwise, Forge returns a concrete counter-example describing a state in
which the given program is not equivalent to false, i.e. a state in which the specifi-
cation statement is true, which is exactly what Squander is supposed to find. We
decided not to use Forge, because going directly to Kodkod gave us more flexibility
and options for optimizations.
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Chapter 10

Conclusions and Future Work

10.1 Challenges/Difficulties

The main challenge to successfully completing this project was choosing the right
level of abstraction. A solution that works for the simplest examples, like the Binary
Search Tree example, is relatively simple. The basic idea – to use relations to repre-
sent field values, and then use Kodkod to search for field assignments – was also pretty
intuitive, at least for someone with an Alloy mind-set. The difficult part was identi-
fying the entire class of problems that are suitable for this general approach of mixing
imperative and declarative code, and making sure that Squander can support most,
if not all, of them. For example, we didn’t realizer that a basic object serializer that
simply follows all object’s fields wasn’t sufficient until we tried to use Squander to
modify an existing application (namely the course scheduler application). The im-
portance of the “KodkodPart” translation also became clear from this case study. We
also realized that we needed a different abstraction for types. Initially, we equated
our notion of a type with the Java Class class. As soon as we added support for
Java collections, it was clear that knowing the actual type parameters of objects of
generic classes was essential; otherwise, Squander would have not scaled enough to
solve the real MIT course requirements in our case study. Finally, we learned that
in the interest of performance, we must leave the user the option to be more specific
about frame conditions and specify fine-grained bounds (both lower and upper) for
the modifiable fields, as well as the exact instances whose fields may be modified.

10.2 Limitations

There are several limitations of our framework worth mentioning:

• First of all, everything has to be bounded. As a consequence, Squander
cannot be expected to generate an arbitrary number of new objects needed to
satisfy a specification; instead, the exact number of new objects of each class
must be specified by the user. This fact doesn’t make Squander very suitable
for functional style programs, where instead of mutating the current state, one
would want to create a bunch of fresh objects and modify their state only.
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• Another consequence of the bounded nature of Squander is that integers must
also be bounded to a small bitwidth. Using 32 bits to represents integers (as in
Java) would make Kodkod intractable. Using a small bitwidth can occasionally
cause subtle integer overflow problems, which are typically hard to find.

• Issues with equality. The current implementation uses observational equiva-
lence [19,26] only for strings and primitive types, and referential equality for all
other types. That means that it is currently impossible to write a specification
which asserts that two objects are equal in the sense of Java equals, i.e. that
obj1.equals(obj2).

• Higher-order expressions. Even though both JFSL and Kodkod API allow (in
a somewhat limited form) higher-order expressions, the Kodkod engine won’t
accept them. As an example where this can be a problem, consider the longest
path in a graph problem. It is not possible to write a specification that says
“find a path in the graph such that there is no other path in the graph longer than
it” and solve it with Squander. It is possible, however, to express and solve
“find a path in the graph with at least k nodes”, which is computationally as
hard as the previous problem, because a binary search can be used to efficiently
find the maximum k for which a solution exists.

10.3 Future Work

In the future, we are hoping to explore a different translation mechanism, which would
not only minimize the number of atoms in the universe, but the number of relations as
well. For many problems, we compared translations to Kodkod that were handwritten
with those produced by Squander. In almost all cases, the handwritten translations
were more compact and used fewer relations. Object graphs usually contain many
unmodifiable fields (“links”) that are only used to navigate from the root objects
to the modifiable portion of the heap. Currently, our translation creates a relation
for each of them. A more clever translation could short-circuit some of those links,
therefore use fewer relations to represent the heap, which is likely to decrease the
solving time and improve overall performance.

We also plan to compare different techniques for solving declarative constraints,
e.g. the backtracking ones as in JMLe [18] or Korat [6, 22], with our current, SAT-
solver based one. Boyapati et al. reported in [6] that the Korat search algorithm,
which takes an imperative implementation of repOk [20] to check the class invariant,
generates complex structures much faster than Alloy Analyzer [16], which is based on
checking declarative constraints very similar to those used by Squander. Squander
could translate the method’s postcondition to an imperative repOk method (using a
technique similar to that of MintEra [2]) and then run the Korat algorithm to search
for a solution that satisfies the postcondition. Another benefit of this approach would
be that all integers would automatically be supported, instead of only a bounded
subset (which is required by Kodkod).
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Our framework can also be used for test input generation. One can simply define
a method with a return type of a class whose instances are to be generated and exe-
cute that method with Squander. Provided that the invariant for the return type is
defined, Squander will find an instance of that type that satisfies the class invariant.
That instance represents a valid test input. Squander can also enumerate all pos-
sible solutions, i.e. generate all valid test inputs, by using the corresponding feature
of Kodkod. Kodkod adds symmetry breaking [29, 33] predicates to return (mostly)
non-isomorphic instances. TestEra [17, 23] takes a similar approach for generating
test inputs from Alloy-like specifications, but it generates a much larger number of
instances than Korat. Our current implementation of Squander suffers from the
same problem, which makes it less practical to use. It would be interesting to see if
that can be improved by adding more symmetry breaking predicates at the Squan-
der level, instead of at the boolean level inside Kodkod.

10.4 Conclusion

In this thesis, we presented Squander, a framework that unifies both writing and
executing imperative and declarative code. With the optimizations described above,
and specification extensions to support data abstraction, we have shown in this thesis
(a) that we are now able – for a non-trivial class of problems – to use the mecha-
nism for executing specifications as a standard runtime, and (b) that the framework
is expressive enough to specify and completely eliminate the manual encodings and
decodings of a moderately-sized course scheduling application we had previously im-
plemented.
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Appendix A

Source Code for SetSer.java

public class SetSer implements IObjSer {
public stat ic f ina l St r ing DATA = ” e l t s ” ;

public boolean accept s ( Class<?> c l z ) {
return Set . class . i sAss ignableFrom ( c l z ) ;

}

public Set newInstance ( Class<?> c l s ) {
return new HashSet ( ) ;

}

public List<FieldValue> absFunc ( JavaScene javaScene , Object obj ) {
ClassSpec c l s = javaScene . c lassSpecForObj ( obj ) ;
L i s t<FieldValue> r e s u l t = new LinkedList<FieldValue >() ;
Set s e t = ( Set ) obj ;
JF ie ld dataFie ld = c l s . f i n dF i e l d (DATA) ;
i f ( dataFie ld != null ) {

Fie ldValue fvElems = new Fie ldValue ( dataFie ld , 2 ) ;
for ( Object elem : s e t ) {

fvElems . addTuple (new ObjTuple ( obj , elem ) ) ;
}
r e s u l t . add ( fvElems ) ;

}
return r e s u l t ;

}

public Object concrFunc ( Object obj , Fie ldValue f i e l dVa l u e ) {
St r ing fldName = f i e l dVa l u e . j f i e l d ( ) . name ( ) ;
i f (DATA. equa l s ( fldName ) )

return re s toreElems ( obj , f i e l dVa l u e ) ;
else

throw new RuntimeException ( ”Unknown f i e l d name f o r Java Set : ” + fldName ) ;
}

private Object re s toreElems ( Object obj , Fie ldValue f i e l dVa l u e ) {
ObjTupleSet va lue = f i e l dVa l u e . tup l eSe t ( ) ;
a s s e r t va lue . a r i t y ( ) == 2 ;
Set s e t = ( Set ) obj ;
s e t . c l e a r ( ) ;
for ( ObjTuple ot : va lue )

s e t . add ( ot . get ( 1 ) ) ;
return s e t ;

}
}

Listing A.1: Serializer code for java.util.Set class
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