Program
Synthesis
Wit Jennisys

Aleksandar Milicevic
Rustan Leino

Concolic
Synthesis

With Jennisys

Aleksandar Milicevic
Rustan Leino

Program
Extrapolation

With Jennisys

Aleksandar Milicevic
Rustan Leino

» Specifications are good

> Formally give meaning to your programs

» Typically used to check a separate program

> Program verification

> Proving the absence of safety/security violations
> Test case generation

» Also convenient

> Elegantly and succinctly express complex properties/invariants

» We would like to use specs
even for writing programs

On Speciications)

» Executable specifications

Specification are executed directly at runtime
Typically a constraint solver is used to search for a model

>
>
> The solution is valid for the current program state only
>

Preferably integrated within an existing programming language

» Program synthesis

> Statically generate imperative code equivalent to given declarative spec
> Covers all cases at once

Executable Program
Specifications Synthesis
running time ¥ Big X Huge

frequency X At everyinvocation ¥ once, statically

power Y NP-hard specs X (mostly) linear algorithms

ApplieREhES);

Executable Program

Specifications Synthesis
running time ¥ Big X Huge
frequency X At everyinvocation ¥ once, statically
power ¥ NP-hard specs X (mostly) linear algorithms

» Combine the green checkmarks of both?

> Synthesis and executable specs are still quite orthogonal

» Instead: find a sweet spot of synthesis
> |dentify a category of programs that can be easily synthesized

> The synthesis should be fully automatic
It shouldn’t be super slow: order of seconds, not hours

>
> The only input from the user is the spec (declarative, first-order)
> Implementation:

— execute specifications and generalize from concrete instances

Gleall)’

Public interface Data-model

interface Set { datamodel Set {
var elems: set[int] var root: SetNode
constructor Empty() invariant
ensures elems = {} root = null ==> elems = {}

root != null ==> elems = root.elems
constructor Singleton(t: int) }
ensures elems = {t}

constructor Double(p: int, g: int)
requires p '=q
ensures elems ={p q}

method Contains(p: int) returns (ret: bool)
ensures ret=pin elems

}

» Public interface: high-level interface in terms of abstract fields
» Data-model: data description, concrete fields, additional invariants

» Code: implementation code for methods that could not be synthesized

Jenmnisys)

interface SetNode {
var elems: set[int]

constructor Init(x: int)
ensures elems = {x}

constructor Double(a: int, b: int)
ensures elems = {a b}

method Contains(p: int) returns (ret: bool)
ensures ret = (p in elems)

}

datamodel SetNode {
var data: int
var left: SetNode
var right: SetNode

invariant
elems = {data} + (left != null ? left.elems : {}) + (right !'= null ? right.elems : {})
left '= null ==>forall e :: e in left.elems ==> e < data
right != null ==> forall e :: e in right.elems ==> e > data

}

JenmnisyS)

» Techniques

> Solving for concrete instances that meet the spec
> Generalizing from concrete heap instances
> |nferring branching (flow) structure

> Delegating to method calls

» Application

> Synthesizing Constructors

> Synthesizing Recursive Functional-Style Methods

Outline)

» Synthesizing Constructors — Initial Idea

> Constructors only initialize the object fields
] enough to find assignments to all object fields

> Execute the constructor specification to find a concrete instance
(a model that satisfies all constraints of the spec)

> Print out straight-line code that assigns values to
fields according to the model

> Use Dafny program verifier to execute specifications

0 OO
o 0O C'oo
OCgennlsys Dafny Boogie @
C'OOOOO

ERCUTING SORES)

» Example (Executing Specification)

interface SetNode { interface Set {
Jennisys invariant constructor SingletonZero()
ensures elems = {0}
} }
class SetNode { class Set {
ghost var elems: set<int>; ghost var elems: set<int>;
var data: int; var root: SetNode;
var left: SetNode;
var right: SetNode; function Valid(): bool {...}
function Valid(): bool method SingletonZero()
{ modifies this;
Dafny user-defined invariant && {
left 1= null ==> left.Valid() && I/l assume invariant and postcondition
right != null ==> right.Valid() assume Valid();
} assume elems == {0};
} /] assert false
assert false; _| Counterexample
} encodes an
} instance for which
all constraints hold

ENECUTING SDRES)

» Example (Synthesized Code)

interface SetNode { interface Set {
Jennisys invariant constructor SingletonZero()
ensures elems = {0}

} }

class SetNode { method SingletonZero()
ghost var elems: set<int>; modifies this;
var data: int; ensures Valid && elems == {0};
var left: SetNode; {
var right: SetNode; var gensym74 := new SetNode;

this.elems := {0};

function Valid(): bool { ... } this.root := gensym74;

} gensym74.data := 0;

Dafny gensym74.elems := {0};

class Set { gensym74.left := null;
ghost var elems: set<int>; gensym74.right := null;
var root: SetNode; }

}

function Valid(}: bool { ...}

No-arg ConsStructors

» Constructors with Parameters

> Assigning concrete values obtained from the solver is no longer enough

interface Set { Set
constructor SingletonSum(p: int, g: w
int)
ensures elems ={p + q} p=3 |) No explicit
J a=4 connection to
Spec input parameters

Concrete Instance

> Simply matching up values of unmodifiable fields (e.g. method input
args) with values assigned to fields is not enough

j@: =>» Custom spec evaluation:
Q evaluate parts of the spec wrt the current instance

Generalizing

» Custom Spec Evaluation

datamodel Set { datamodel SetNode {
invariant invariant
root = null ==> elems = {} elems = {data} + (left '= null ? left.elems : {})
root != null ==> elems = root.elems + (right != null ? right.elems : {})
left I= null ==> forall e :: e in left.elems ==> e < data
constructor SingletonSum(p: int, g: int) right '= null ==> forall e :: e in right.elems ==> e > data
ensures elems ={p + q} }
}
i Dip + ab -3 (S true
[gn p + q p=4

> Evaluate the spec without resolving unmodifiable fields
> Then do the match-up

@ Matching up can still be ambiguous

Q =>» better approach: use concolic spec evaluation and unification

Generalizing

» Concolic Spec Evaluation

datamodel Set { datamodel SetNode {
invariant invariant
root = null ==> elems = {} elems = {data} + (left I= null ? left.elems : {})
root != null ==> elems = root.elems + (right !'= null ? right.elems : {})
left I= null ==>forall e :: e in left.elems ==> e < data
constructor SingletonSum(p: int, g: int) right != null ==> forall e :: e in right.elems ==> e > data
ensures elems ={p + q} }
}

elems = {p + q}

! !

elems = {data}
\ /

data=p +q

> Evaluate the spec against the instance without resolving anything

- This gets us a simpler spec for the current instance

> Use unification to obtain symbolic values for fields

Generalizing

» Inferring Branching (Flow) Structure

> Straight-line code is no longer enough

interface Set {
constructor Double(p: int, g: int)

requires p I= q 2 - _12 Setodet
ensures elems = {p g} '
}
SetNode2

> A correct solution has to consider two cases
(I)p>qg,and(2)p<q

> Approach:
— Find a concrete instance
— Generalize and try to verify

— If it doesn’t verify
— Infer the needed guard using custom spec evaluation

|verring Flewn

Concrete Instance

» Inferring Guards

datamodel Set { datamodel SetNode {
invariant invariant
root = null ==> elems = {} elems = {data} + (left != null ? left.elems : {})
root != null ==> elems = root.elems + (right !'= null ? right.elems : {})

left I= null ==> forall e :: e in left.elems ==> e < data

constructor Double(p: int, g: int) right != null ==> forall e :: e in right.elems ==> e > data

ensures elems = {p q} }
}
1 1
{pat={paq} U q<p
true

SetNode2

data(2)

> Evaluate the spec without resolving unmodifiable fields
> Find all true clauses and try to use them as if guards

— Concolic evaluation discovers clauses hidden behind the declarativness
> |f it verifies, negation the inferred guard and go all over again.

» Delegating to existing methods

> So far, all objects are initialized in the constructor for the root object
—> Breaks encapsulation

> Instead, each object should be initialized in its own constructor

> Approach:
— Find a solution as before
— For each child object infer a spec needed for its initialization

— Find an existing constructor that meets this spec,
or create a new one

» Spec Inference for Child Objects

> Simply use the obtained assignments to all of its public fields

» Finding existing methods that meet a given spec

> Use syntactic unification with a few semantics rules
> Limitation: in some cases valid candidate methods can be missed

Delegating

» Delegation Example

class Set {
method Double(p: int, g: int)
more_spec
ensures elems == {p q}
{

var sym80 := new SetNode;
sym80.Double(p, 9);
this.elems :={q, p};
this.root := sym80;
}
}

class SetNode {
method Double(p: int, g: int)

more_spec
ensures elems == {p q}
{
if (b>a){
this.DoubleBase(b, a);
}else {
this.DoubleBase(a, b);
}

}

method DoubleBase(x: int, y: int)

more_spec
requires x <y,
ensures elems =={x, y};
{
var sym88 := new SetNode;
syma88.Init(x);
this.data :=y;
this.elems = {y, x};
this.left := null;
this.right := sym88;

» Finding existing methods that meet a given spec

> Use syntactic unification with a few semantics rules

> Limitation: in some cases valid candidate methods can be missed

Delegating

» Synthesizing Recursive Methods

> Goal: synthesize simple functional-style methods:

— assignments to fields are in the form of function compositions
(as opposed to arbitrary statement sequences with mutable
variables)

> |dea:

— Again, generalize from concrete instances

— Again, obtain a set of true clauses using concolic evaluation

- (new) use an inference engine to derive additional logical conclusion
Npe > (new) use unification to match up clauses from the knowledge base

Q with specs of the existing methods

Recursive Methoes)

» Example (SetNode.Contains)

interface SetNode {

}

constructor Contains (p: int) returns (ret: bool)
ensures ret = p in elems

datamodel SetNode {
invariant
elems = {data} + (left I= null ? left.elems : {})
+ (right !'= null ? right.elems : {})

left != null ==> forall e :: e in left.elems ==> e < data
right != null ==> forall e :: e in right.elems ==> e > data
}
@ N\ P — guard: left == null && right == null
e assignments: ret = (p == data)
p=4 KB: elems ={data} + left.elems
left.elems = {left.data}
@ left.data < data
—) et = pin elems

SetNode2
data: 0

transitivity

ret = p in ({data} + left.elems)

/_q ret

domain
specific rules

false :
) || p in left.elems
= p InTeft.elems

RECUrsivE M@ﬂih@@]@)

» Example (SetNode.Contains)

interface SetNode {
constructor Contains (p: int) returns (ret: bool)
ensures ret = p in elems

}

SetNodet
data: 7

datamodel SetNode {
invariant
elems = {data} + (left I= null ? left.elems : {})
+ (right !'= null ? right.elems : {})
left != null ==> forall e :: e in left.elems ==> e < data
right != null ==> forall e :: e in right.elems ==> e > data

elems = {data} + left.elems
left.elems = {left.data}
left.data < data

ret = pinelems
ret = p in ({data} + left.elems)
ret = pin left.elems
$ret = $p in $this.elems (Contains($p)
ret = |left.Contains(p)
Unification / Add method
specs

Recursive Methoes)

method Contains(n: int) returns (ret: bool)
requires Valid();
ensures Valid();
ensures ret == (n in elems);
{
if (left = null && right '= null) {
ret := n == data || left. Contains(n) || right. Contains(n);
}else{
if (left = null && right == null) {
ret := n == data || left. Contains(n);
}else{
if (right !'= null && left == null) {
ret := n == data || right. Contains(n);
}else {
ret := n == data;
}
}
}
}

SetNocde. Containsy

» Domain Specific Rules

ein (set; + set,) < (einset,) || (ein set,)

seq; + seqy| < |seq,| + [seq,]
seqq [idx], when idx < |seqq |

(SeCh + Squ)[ldX] & {seqz [ldX . |seq1|],When ldX > |Seq1|

foralle:: einseq; = P(e) &
|seq1| > 0 = (P(seqq[0]) A (foralle :: e in seq;[1..] = P(e)))

Recursive Methoes)

» EXpressiveness

> “Very declarative” specifications cannot be synthesized

constructor Sqgrt(p: int) returns (ret: int)
requires p >0
ensures ret * ret <= p && (ret+1)*(ret+1) > p

> Works mostly for specifications with assignments
> Takes advantage of recursively defined specifications

» Synthesized Methods

> No loops (synthesizing loop invariants is a problem); recursion instead

> Not necessarily the most efficient implementation
(e.g. like in Set.Contains()),

- but still faster than executing the same specification every time
> (currently) Simple read-only queries

LImnItatlons)

» Sketch — Armando Solar Lezama (2008l

> spec: a correct (but presumably inefficient) implementation
> extras: a sketch: outlining the control structure of a desired solution
> output: equivalent low-level procedure

» Storyboard Programming — Rishabh Singh [2011]

> spec: abstract graphical input/output examples
> extras: a similar sketch of the final solution
> output: low-level procedure that works for the given examples

» KIDS (Kestrel Interactive Development System)
— Douglas R. Smith [19°0]

> spec: high-level logical specification
> extras: much more verbose than pre/post conditions, semi-automated
> output: efficient implementation

Relatee) Worlk)

»

»

»

»

»

»

Finish up implementation for recursive methods
Further explore the idea of concolic synthesis

Try to generalize the idea of concolic synthesis to
a broader range of (functional) programs

Formalize the synthesis algorithm
More examples

Evaluation and comparison with other tools

NEE STRPS)

»

»

»

»

»

»

Finish up implementation for recursive methods
Further explore the idea of concolic synthesis

Try to generalize the idea of concolic synthesis to
a broader range of (functional) programs

Formalize the synthesis algorithm
More examples

Evaluation and comparison with other tools

THANK YOU!

)

