
Aleksandar Milicevic

Rustan Leino

Aleksandar Milicevic

Rustan Leino

Aleksandar Milicevic

Rustan Leino

» Specifications are good
˃ Formally give meaning to your programs

» Typically used to check a separate program
˃ Program verification
˃ Proving the absence of safety/security violations

˃ Test case generation

» Also convenient
˃ Elegantly and succinctly express complex properties/invariants

» We would like to use specs
even for writing programs

» Write programs declaratively (say what not how)

» “It would be very nice to input this description into some

suitably programmed computer, and get the computer to

translate it automatically into a subroutine”

- Tony Hoare [“An overview of some formal methods for program design”, 1987]

» A solution: British Museum algorithm
˃ Start with some set of axioms
˃ Use them to generate at random all provable theorems

˃ Wait until your program is generated

» “Under reasonable assumptions, the whole universe will

reach a uniform temperature around four degrees Kelvin

long before any interesting computation is complete”

» Executable specifications
˃ Specification are executed directly at runtime
˃ Typically a constraint solver is used to search for a model
˃ The solution is valid for the current program state only
˃ Preferably integrated within an existing programming language

» Program synthesis
˃ Statically generate imperative code equivalent to given declarative spec

˃ Covers all cases at once

Executable

Specifications

Program

Synthesis

running time Big Huge

frequency At every invocation once, statically

power NP-hard specs (mostly) linear algorithms

» Combine the green checkmarks of both?
˃ Synthesis and executable specs are still quite orthogonal

» Instead: find a sweet spot of synthesis
˃ Identify a category of programs that can be easily synthesized

˃ The synthesis should be fully automatic
˃ It shouldn’t be super slow: order of seconds, not hours

˃ The only input from the user is the spec (declarative, first-order)

˃ Implementation:
→execute specifications and generalize from concrete instances

Executable

Specifications

Program

Synthesis

running time Big Huge

frequency At every invocation once, statically

power NP-hard specs (mostly) linear algorithms

interface Set {
var elems: set[int]

constructor Empty()
ensures elems = {}

constructor Singleton(t: int)
ensures elems = {t}

constructor Double(p: int, q: int)
requires p != q
ensures elems = {p q}

method Contains(p: int) returns (ret: bool)
ensures ret = p in elems

}

Public interface

datamodel Set {
var root: SetNode

invariant
root = null ==> elems = {}
root != null ==> elems = root.elems

}

Data-model

» Public interface: high-level interface in terms of abstract fields

» Data-model: data description, concrete fields, additional invariants

» Code: implementation code for methods that could not be synthesized

interface SetNode {
var elems: set[int]

constructor Init(x: int)
ensures elems = {x}

constructor Double(a: int, b: int)
ensures elems = {a b}

method Contains(p: int) returns (ret: bool)
ensures ret = (p in elems)

}

datamodel SetNode {
var data: int
var left: SetNode
var right: SetNode

invariant
elems = {data} + (left != null ? left.elems : {}) + (right != null ? right.elems : {})
left != null ==> forall e :: e in left.elems ==> e < data
right != null ==> forall e :: e in right.elems ==> e > data

}

» Techniques

˃ Solving for concrete instances that meet the spec

˃ Generalizing from concrete heap instances

˃ Inferring branching (flow) structure

˃ Delegating to method calls

» Application

˃ Synthesizing Constructors

˃ Synthesizing Recursive Functional-Style Methods

» Synthesizing Constructors – Initial Idea

˃ Constructors only initialize the object fields
 enough to find assignments to all object fields

˃ Execute the constructor specification to find a concrete instance
(a model that satisfies all constraints of the spec)

˃ Print out straight-line code that assigns values to
fields according to the model

˃ Use Dafny program verifier to execute specifications

Jennisys Dafny Boogie Z3

» Example (Executing Specification)

interface SetNode {
invariant
…

}

interface Set {
constructor SingletonZero()

ensures elems = {0}
}

class Set {
ghost var elems: set<int>;
var root: SetNode;

function Valid(): bool { ... }

method SingletonZero()
modifies this;

{
// assume invariant and postcondition
assume Valid();
assume elems == {0};
// assert false
assert false;

}
}

Jennisys

Dafny

class SetNode {
ghost var elems: set<int>;
var data: int;
var left: SetNode;
var right: SetNode;

function Valid(): bool
{

user-defined invariant &&
left != null ==> left.Valid() &&
right != null ==> right.Valid()

}
}

Counterexample

encodes an

instance for which

all constraints hold

» Example (Synthesized Code)

class SetNode {
ghost var elems: set<int>;
var data: int;
var left: SetNode;
var right: SetNode;

function Valid(): bool { ... }
}

class Set {
ghost var elems: set<int>;
var root: SetNode;

function Valid(): bool { ... }

Jennisys

Dafny

method SingletonZero()
modifies this;
ensures Valid && elems == {0};

{
var gensym74 := new SetNode;
this.elems := {0};
this.root := gensym74;
gensym74.data := 0;
gensym74.elems := {0};
gensym74.left := null;
gensym74.right := null;

}
}

interface SetNode {
invariant
…

}

interface Set {
constructor SingletonZero()

ensures elems = {0}
}

» Constructors with Parameters
˃ Assigning concrete values obtained from the solver is no longer enough

interface Set {
constructor SingletonSum(p: int, q:
int)

ensures elems = {p + q}
}

Spec

Concrete Instance

˃ Simply matching up values of unmodifiable fields (e.g. method input
args) with values assigned to fields is not enough

No explicit

connection to

input parameters

p = 3

q = 4

� Custom spec evaluation:
evaluate parts of the spec wrt the current instance

» Custom Spec Evaluation

˃ Evaluate the spec without resolving unmodifiable fields

˃ Then do the match-up

˃ Matching up can still be ambiguous

datamodel SetNode {
invariant
elems = {data} + (left != null ? left.elems : {})

+ (right != null ? right.elems : {})
left != null ==> forall e :: e in left.elems ==> e < data
right != null ==> forall e :: e in right.elems ==> e > data

}

datamodel Set {
invariant
root = null ==> elems = {}
root != null ==> elems = root.elems

constructor SingletonSum(p: int, q: int)
ensures elems = {p + q}

}

t = 3

p = 4

{7}  {p + q}
7  p + q

true

� better approach: use concolic spec evaluation and unification

» Concolic Spec Evaluation

˃ Evaluate the spec against the instance without resolving anything

- This gets us a simpler spec for the current instance
˃ Use unification to obtain symbolic values for fields

datamodel SetNode {
invariant
elems = {data} + (left != null ? left.elems : {})

+ (right != null ? right.elems : {})
left != null ==> forall e :: e in left.elems ==> e < data
right != null ==> forall e :: e in right.elems ==> e > data

}

datamodel Set {
invariant
root = null ==> elems = {}
root != null ==> elems = root.elems

constructor SingletonSum(p: int, q: int)
ensures elems = {p + q}

}

elems = {p + q} elems = {data}

data = p + q

» Inferring Branching (Flow) Structure
˃ Straight-line code is no longer enough

interface Set {
constructor Double(p: int, q: int)

requires p != q
ensures elems = {p q}

}

Spec

˃ A correct solution has to consider two cases

(1) p > q, and (2) p < q

˃ Approach:
→Find a concrete instance

→Generalize and try to verify

→If it doesn’t verify
→ Infer the needed guard using custom spec evaluation

p = 1

q = -2

Concrete Instance

» Inferring Guards

˃ Evaluate the spec without resolving unmodifiable fields

˃ Find all true clauses and try to use them as if guards
→ Concolic evaluation discovers clauses hidden behind the declarativness

˃ If it verifies, negation the inferred guard and go all over again.

datamodel SetNode {
invariant
elems = {data} + (left != null ? left.elems : {})

+ (right != null ? right.elems : {})
left != null ==> forall e :: e in left.elems ==> e < data
right != null ==> forall e :: e in right.elems ==> e > data

}

datamodel Set {
invariant
root = null ==> elems = {}
root != null ==> elems = root.elems

constructor Double(p: int, q: int)
ensures elems = {p q}

}

{p q} = {p q}
true

q < ppp

qq

» Delegating to existing methods
˃ So far, all objects are initialized in the constructor for the root object

→Breaks encapsulation
˃ Instead, each object should be initialized in its own constructor
˃ Approach:

→Find a solution as before
→For each child object infer a spec needed for its initialization
→Find an existing constructor that meets this spec,

or create a new one

» Spec Inference for Child Objects
˃ Simply use the obtained assignments to all of its public fields

» Finding existing methods that meet a given spec
˃ Use syntactic unification with a few semantics rules
˃ Limitation: in some cases valid candidate methods can be missed

» Delegation Example

class Set {
method Double(p: int, q: int)
more_spec
ensures elems == {p q}

{
var sym80 := new SetNode;
sym80.Double(p, q);
this.elems := {q, p};
this.root := sym80;

}
}

class SetNode {
method Double(p: int, q: int)
more_spec
ensures elems == {p q}

{
if (b > a) {
this.DoubleBase(b, a);

} else {
this.DoubleBase(a, b);

}
}
…

method DoubleBase(x: int, y: int)
more_spec
requires x < y;
ensures elems == {x, y};

{
var sym88 := new SetNode;
sym88.Init(x);
this.data := y;
this.elems := {y, x};
this.left := null;
this.right := sym88;

}
}

» Finding existing methods that meet a given spec
˃ Use syntactic unification with a few semantics rules

˃ Limitation: in some cases valid candidate methods can be missed

» Synthesizing Recursive Methods
˃ Goal: synthesize simple functional-style methods:

→assignments to fields are in the form of function compositions
(as opposed to arbitrary statement sequences with mutable
variables)

˃ Idea:
→Again, generalize from concrete instances
→Again, obtain a set of true clauses using concolic evaluation

→(new) use an inference engine to derive additional logical conclusion
→(new) use unification to match up clauses from the knowledge base

with specs of the existing methods

» Example (SetNode.Contains)

interface SetNode {
constructor Contains (p: int) returns (ret: bool)

ensures ret = p in elems
}

datamodel SetNode {
invariant
elems = {data} + (left != null ? left.elems : {})

+ (right != null ? right.elems : {})
left != null ==> forall e :: e in left.elems ==> e < data
right != null ==> forall e :: e in right.elems ==> e > data

}

①
p = 1

guard: left == null && right == null
assignments: ret = (p == data)

②

p = 4 elems = {data} + left.elems
left.elems = {left.data}
left.data < data
ret = p in elems

KB:

ret = p in ({data} + left.elems)

ret = p in {data} || p in left.elems
ret = p in left.elems

transitivity

domain

specific rules

false

» Example (SetNode.Contains)

interface SetNode {
constructor Contains (p: int) returns (ret: bool)

ensures ret = p in elems
}

datamodel SetNode {
invariant
elems = {data} + (left != null ? left.elems : {})

+ (right != null ? right.elems : {})
left != null ==> forall e :: e in left.elems ==> e < data
right != null ==> forall e :: e in right.elems ==> e > data

}

②

p = 4 elems = {data} + left.elems
left.elems = {left.data}
left.data < data
ret = p in elems
ret = p in ({data} + left.elems)
ret = p in left.elems

KB:

$ret = $p in $this.elems (Contains($p))

Add method

specs

ret = left.Contains(p)
Unification

method Contains(n: int) returns (ret: bool)
requires Valid();
ensures Valid();
ensures ret == (n in elems);

{
if (left != null && right != null) {
ret := n == data || left. Contains(n) || right. Contains(n);

} else {
if (left != null && right == null) {
ret := n == data || left. Contains(n);

} else {
if (right != null && left == null) {
ret := n == data || right. Contains(n);

} else {
ret := n == data;

}
}

}
}

» Domain Specific Rules

e in (set1 + set2) ⇔ (e in set1) || (e in set2)

forall e :: e in seq� ⇒ P(e) ⇔
|seq�| � 0 ⇒ (P(seq��0�) ∧ (foralle :: e in seq��1. . � ⇒ P(e)))

seq� + seq� idx ⇔ !seq� idx , when idx < |seq�|
seq� idx − |seq�| , when idx ≥ |seq�|

|seq1 + seq2| ⇔ |seq1| + |seq2|

» Expressiveness
˃ “Very declarative” specifications cannot be synthesized

˃ Works mostly for specifications with assignments
˃ Takes advantage of recursively defined specifications

» Synthesized Methods
˃ No loops (synthesizing loop invariants is a problem); recursion instead

˃ Not necessarily the most efficient implementation
(e.g. like in Set.Contains()),

→but still faster than executing the same specification every time

˃ (currently) Simple read-only queries

constructor Sqrt(p: int) returns (ret: int)
requires p > 0
ensures ret * ret <= p && (ret+1)*(ret+1) > p

» Sketch – Armando Solar Lezama [2008]

˃ spec: a correct (but presumably inefficient) implementation
˃ extras: a sketch: outlining the control structure of a desired solution
˃ output: equivalent low-level procedure

» Storyboard Programming – Rishabh Singh [2011]

˃ spec: abstract graphical input/output examples

˃ extras: a similar sketch of the final solution
˃ output: low-level procedure that works for the given examples

» KIDS (Kestrel Interactive Development System)
– Douglas R. Smith [1990]

˃ spec: high-level logical specification
˃ extras: much more verbose than pre/post conditions, semi-automated

˃ output: efficient implementation

» Finish up implementation for recursive methods

» Further explore the idea of concolic synthesis

» Try to generalize the idea of concolic synthesis to
a broader range of (functional) programs

» Formalize the synthesis algorithm

» More examples

» Evaluation and comparison with other tools

» Finish up implementation for recursive methods

» Further explore the idea of concolic synthesis

» Try to generalize the idea of concolic synthesis to
a broader range of (functional) programs

» Formalize the synthesis algorithm

» More examples

» Evaluation and comparison with other tools

