
Agile Specifications

Derek Rayside, Aleksandar Milicevic, Kuat Yessenov, Greg Dennis, and Daniel Jackson
MIT Computer Science and Artificial Intelligence Laboratory

{drayside, aleks, kuat, gdennis, dnj}@csail.mit.edu

Abstract
Traditional formal methods and modern agile methods are
separated more by limitations of current technology than
by fundamental intellectual differences. A mixed interpreter
that executes mixed programs, comprising both declarative
specification statements and regular imperative statements,
might bridge the gap. This paper explores how such an
interpreter might be used, showing by example how it might
support a variety of development activities.

Categories and Subject Descriptors D.2.1 [Software En-
gineering]: Requirements/Specifications; D.2.5 [Software
Engineering]: Testing and Debugging

General Terms Design, Languages

Keywords formal methods, agile methods, specification
statement, refinement calculus, test-driven development

1. Introduction
Our departure from tradition is a small one: we sim-
ply banish the distinction between specifications, sub-
specifications (super-programs?), and programs. To
us, they are all programs; what we give up is that all
programs are directly executable. What we gain in-
stead is a more uniform approach in which programs
play a role at every level. — Morgan [39]

Modern agile methods and traditional formal methods are
often perceived as being diametrically opposed. We argue
that with a touch of new technology, however, they can be
quite compatible, and used in combination to good effect.

Following Carroll Morgan [39], we say that a mixed pro-
gram is one written using a mixture of regular imperative
statements and declarative specification statements [38]. We
understand the imperative statements to be written in a con-
ventional object-oriented language (e.g., Java), and the spec-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA 2009 October 25–29, 2009, Orlando, Florida, USA.
Copyright c© 2009 ACM 978-1-60558-768-4/09/10. . . $10.00

ification statements to be written in a first-order logic speci-
fication language (e.g., JML [32] or JFSL [12, 49]).

A mixed interpreter is an interpreter that can execute such
programs. Hoare [26] and Hayes and Jones [23] argued years
ago that executing declarative specifications was infeasible.
But advances in the past twenty years suggest that mixed
interpreters may in fact be possible. Preliminary steps have
already been taken by Wahls et alia [31, 47], and we have
also developed a prototype mixed interpreter ourselves (to
be reported in a future paper).

In this paper we assume the existence of a mixed inter-
preter and explore how this technology might change our
views of software development methodology. We argue that
the divide between formal methods and agile methods is due
more to limitations of current technology than to fundamen-
tally irreconcilable intellectual positions. Through a series of
examples we try to illustrate how a mixed interpreter might
create a smooth continuum between the formal and the agile.

1.1 Background
This paper attempts to connect two large and often culturally
disjoint schools of the software development methodology
literature: formal methods and agile approaches.

Formal methods tend to emphasize specifications and ver-
ification, whereas agile methods emphasize tests and rapid
prototyping. A characteristic example of traditional formal
methods is Dijkstra’s idea that programs and their proofs
should be constructed in tandem [13] by a process of step-
wise refinement [14, 48]. This approach was developed into
the refinement calculus by Back [2], Hehner [24], Morris
[40], Morgan [38, 39], and others.

On the agile side, Kent Beck’s test-driven development [3]
begins with concrete inputs and gradually evolves a program
that computes over a range of similar inputs. Figure 2 lists
some of the contrasting terms that are commonly associated
with each side.

There have been a few hints of potential common ground
between formal methods and agile approaches in the liter-
ature. The idea of lightweight formal methods [27] germi-
nated around the same time as agile methods and similarly
advocated a pragmatic focus on partiality and tool support,
but with an emphasis on applying tools to designs and speci-
fications as well as code. More recently, Amey and Chapman

Figure 1 Integer square root case study from Morgan [39]
(a) Purely declarative program: (b) Mixed program: (c) Purely imperative program:

r : [r2 ≤ s < (r + 1)2]

1: r ← 0
2: q← s + 1
3: I , r2 ≤ s < q2 // loop invariant defn
4: while r + 1 , q do
5: p : [r + 1 < q, I, r < p < q]
6: if s < p2 then
7: q : [s < p2 ∧ p < q, I, q < q0]
8: else
9: r : [s ≥ p2 ∧ r < p, I, r0 < r]

10: end if
11: end while

1: r ← 0
2: q← s + 1
3:
4: while r + 1 , q do
5: p← (r + q)/2
6: if s < p2 then
7: q← p
8: else
9: r ← p

10: end if
11: end while

The purely declarative program in (a) is refined to the purely imperative program in (c). The refinement process has many
steps. One mixed program produced during this process is shown in (b). The parts of the purely imperative program in (c) that
have not changed from the mixed program in (b) are faded to emphasize the lines (5, 7, and 9) that have changed.

[1] argued that programming with a sufficiently powerful
static verifier is similar to pair programming. A panel dis-
cussion at a National Academies workshop including Kent
Beck, Matthias Felleisen, and Anthony Hall came to the sur-
prising conclusion that formal methods and agile approaches
actually had much in common, primarily in being driven by
perceived risk [43].

Figure 2 Characterizations of formal and agile methods

Formal Agile
verification validation
correctness pleasantness
refinement refactoring

abstract concrete
general particular
proofs tests

upfront design design evolves with code
analysis-paralysis cowboy-coding

programmer team
Dijkstra [13, 14] Beck [3, 4]

2. Procedures
In this section we follow the first case study in Morgan’s
book [39]: a procedure that computes the non-negative inte-
ger square root of its input. This example has also been used
by Dijkstra, Amey and Chapman [1], and others.

2.1 Programming from Specifications

If you don’t drive development with tests, what do you
drive it with? Speculation? Specifications?

— Beck [3]

Following Morgan’s development, we start with a specifi-
cation and systematically refine it to a mixed program, and
eventually to a purely imperative program. A mixed inter-
preter supports this formal methodology by enabling the pro-
grammer to execute the program at any step in the process.
The initial specification is:

var r, s : N (1)
r := b

√
sc (2)

where
√

takes the non-negative square root of its argu-
ment. The first step of the refinement is to remove the ‘ex-
otic’ mathematical operators and replace them with non-
deterministic assignment. In Morgan’s syntax we write [39]:

r : [r2 ≤ s < (r + 1)2] (3)

which assigns to r an arbitrary value satisfying the formula
on the right-hand side of the colon. This specification is now
suitable for refinement. After a few refinement steps, Mor-
gan [39] produces the mixed program shown in Figure 1b.
Figure 1c shows the purely imperative program that is the
final result of the refinement process [39].

Line 3 of Morgan’s mixed program defines the loop in-
variant I. Lines 5, 7, and 9 of Morgan’s mixed program
are specification statements of the form v : [pre, inv, post],
where v is the variable being constrained, pre is the precon-
dition, inv is the invariant, and post is the postcondition [39].
These lines are further refined to simple assignments in the
purely imperative program listed in Figure 1c.

2.2 Validation
Beware of bugs in the above code; I have only proved
it correct, not tried it. — Knuth [30]

Using tests for validation has been independently advocated
in the requirements engineering community (e.g., [21]), the

testing community (e.g., [22]), and the agile methods com-
munity (e.g., [36, 41, 45]). Validation has also historically
been the main argument for the execution (and animation)
of specifications (e.g., [20]).

With our prototype mixed interpreter we can execute the
specification for integer square root given in Formula 3.
Suppose we want to compute the integer square root of 10,
which we expect to be 3. With our mixed interpreter we
execute Formula 3 with the input 10 and get the surprising
result 27. Trying the same execution again we get other
surprising results: -12, 42, -55, etc.. We eventually get an
execution that returns the expected result of 3. What’s going
on?

A closer look at Formula 1 reveals that Morgan defines r
and s over the natural numbers (N), which range from 0 to
Ω. Our program is written with ints. In Java, ints are signed
32-bit values ranging from −231 to 231 − 1. For our mixed
interpreter ints are signed 8-bit values, ranging from -128 to
127. These two different sets of ints differ from the natural
numbers in the same ways: they have a finite upper bound,
and their lower bound is below zero. It turns out that these
properties are important for this program.

In the world of signed 8-bit ints, 272 = −39 and (27 +
1)2 = 16. -39 is indeed less than 10 and 16 is greater than
10, so our specification is satisfied: 27 is an integer square
root of 10 according to our definition.

In fact, it turns out that there are sixty numbers between
-128 and 127 that satisfy Formula 3. Similarly, with 32-bit
ints there are 1,073,741,820 solutions that meet our specifi-
cation as an integer square root of ten, which again is about
25% of the possible values.

We need to re-write Formula 3 to get the result we want
given the machine we have. First, we need to explicitly state
that we’re looking for a non-negative root (which is explic-
itly stated in Morgan’s text, and implicitly in his definition of
r ∈ N). Then we re-write the previous two clauses in terms
of division instead of multiplication to avoid overflow. So
Formula 3 becomes Formula 4 (for simplicity of exposition
we exclude the case where s and r are 0):

r : [s > 0, r > 0 ∧ r ≤
s
r
∧

s
r + 1

< r + 1] (4)

When we execute this revised specification with our proto-
type mixed interpreter we get the expected result of 3 (as
the non-negative integer root of 10) on the first try. Further
investigation confirms that 3 is now the only valid answer.

A student [8] of Michael Jackson [28] might diagnose the
surprises we experienced in attempting to copy the pseudo-
code out of Programming from Specifications [39] and into
a real computer as a failure to distinguish between require-
ments and specifications. Requirements are all about – and
only about – the problem domain. Programs are all about
– and only about – the machine. Specifications stand in be-
tween requirements and programs, speaking of shared phe-
nomena.

Formulas 1, 2, and 3 are really requirements: they speak
about the domain of mathematics. Formula 4 is a specifica-
tion: it describes the problem domain solution in terms of the
machine. We were seduced into thinking of Formulas 1, 2,
and 3 as specifications because we like to think of program-
ming as a mathematical activity. This illusion disappeared as
soon as we tried to execute these ‘specifications’.

Underestimating the significance of arithmetic overflow
is not a mistake confined to novices. Joshua Bloch [7] reports
making exactly this mistake when he copied (a mathemati-
cally proven) binary search algorithm out of Jon Bentley’s
Programming Pearls [5]. When computing the mid-point of
high and low, Bloch’s implementation (which was shipped
with the standard Java libraries for almost a decade) would
potentially overflow if the size of the array was greater than
about a billion elements.

Similarly, Rod Chapman [personal communication] re-
lays that Praxis High Integrity Systems uses this integer
square root example in their SPARK/Ada training courses.
The trainees, who are usually experienced programmers, are
given the specification and asked to implement it – and to
verify their implementation with the SPARK Examiner tool.
The SPARK Examiner statically verifies that the code meets
its specification and will not throw any runtime exceptions
(integer overflow causes a runtime exception in Ada). Only
one ‘student’ has ever written a verifiably correct implemen-
tation on the first try: Professor Robert Dewar.

More quantitatively, Christey and Martin [10] report that
integer overflows are an increasing source of discovered se-
curity vulnerabilities, especially in operating systems code.
These kinds of errors are made by competent professional
programmers every day.

Testing serves as an important tool for validating spec-
ifications (declarative programs) and for verifying impera-
tive programs. Just as fully imperative programs often com-
pute correct results for common inputs and incorrect results
for uncommon inputs, fully declarative programs often al-
low undesirable results for common inputs (i.e., are under
constrained). Testing our specification by executing it with a
mixed interpreter was essential to validating that the specifi-
cation accurately captured our requirements.

2.3 Test-Driven Development

What of testing and debugging? They are still neces-
sary. ... Those were the only errors, and ‘it ran third
time.’ But the point had been made: mathematical
rigour cannot eliminate mistakes entirely.

— Morgan [39]

Test-Driven Development is a well-known agile method-
ology advocated by Kent Beck [3]. The motto of test-driven
development is red/green/refactor. First the programmer
writes a test for functionality that does not yet exist, and
confirms that the test fails. This failing test is indicated by
a red light in the test harness. Next the programmer writes

Figure 3 Test-Driven Development applied to the integer square root specification. Each row is a new step in the development.
Test cases are in columns. At each step either a new test is added or the program is modified. Test results can be red (R), green
(G), or yellow (Y). Red is fail. Green is pass. Yellow means the result is a super-set of the desired result.

Step Program b
√

9c = 3 b
√

16c = 4 b
√

10c = 3 b
√

100c = 10 b
√

120c = 10

1 r = 0
2 " R {0}
3 r = 3 G
4 " G R {3}
5 r2 = s Y {-125, -3, 3, 125} Y {..., -4, 4, 28, ...}
6 r2 = s ∧ r ≥ 0 Y {3, 125} Y {4, 28, ...}
7 r = s

r ∧ r > 0 G G
8 " G G G
9 " G G G G
10 " G G G G R ∅
11 r ≤ s

r ∧ r > 0 Y {1, 2, 3} Y {1, 2, 3, 4} Y {1, 2, 3} Y {1, 2, ..., 10} Y {1, 2, ..., 10}
12 r ≤ s

r ∧ r ≥ s
r −1 ∧ r > 0 G G G G R ∅

13 r ≤ s
r ∧ r ≥ s

r+1 − 1 ∧ r > 0 Y {2, 3} Y {3, 4} Y {2, 3} Y {9, 10} G
14 r ≤ s

r ∧ r > s
r+1 − 1 ∧ r > 0 G G G G G

the simplest possible code to make the test pass – perhaps as
simple as return 3. This passing test is indicated by a green
light in the test harness. The programmer then adds new test
cases and refactors the implementation to be a more general
program that works over a broader range of inputs.

With a mixed interpreter the test-driven methodology can
also be applied to specifications. Making specifications in-
teractive in this way potentially offers usability benefits. One
way to develop a specification is to have a brilliant flash of
insight and, with a single stroke of the pen, capture that in-
sight in a mathematical formula. Another possibility is to
start with concrete input/output pairs, expressed as test cases,
and build up the general formula through interaction with a
mixed interpreter.

Figure 3 walks through applying test-driven development
to the integer square root example. Each step in the develop-
ment is a new row in the table, and each step either adds a
new test case or modifies the program. The results for each
test are either red (R), green (G), or yellow (Y). Red and
green indicate failing and passing tests, respectively, as per
normal. Yellow indicates that the expected answer is among
the answers, but is not the only answer (i.e., the program is
under-constrained). In red and yellow cases a sample of the
results returned by the program is also displayed. Step-by-
step:

1. We start with the program r = 0 and no test cases.

2. We add the test case b
√

9c = 3, which fails. Keep it
simple to start with: only perfect squares.

3. Revise the program to r = 3. The single test case passes.

4. Add a new test case, b
√

16c = 4, which is also a perfect
square. This test case fails.

5. Revise the program to r2 = s. Both test cases return
yellow, due to negative roots and overflow.

6. Add r ≥ 0 to the program to eliminate the negative roots.

7. Divide both sides of r2 = s by r to avoid overflow. Since
we’re dividing by r let’s also now ensure that r > 0. Both
perfect-square tests pass.

8. Add a new test case, b
√

10c = 3, our first test case that’s
not a perfect square. Surprisingly, it passes: 10

3 = 3 in
integer division.

9. Add a new test case with some larger numbers: b
√

100c =
10. This also passes; it’s a perfect square.

10. Add a new test case with a larger number that isn’t a
perfect square: b

√
120c = 10. This is a boundary case

just under b
√

121c = 11. It fails: there is no integer r
such that r = s

r . For example, 120
10 = 12, and 120

11 = 10.

11. Relax the program from an equality to an inequality.
Now all tests are yellow. Notice that the desired result
is always the upper bound of the result set. We need a
stronger lower bound for r to eliminate these undesired
values.

12. Add r ≥ s
r −1 to the program. It’s one less than our upper-

bound, so maybe it will work. All tests are green except
the last one, which again has no result. Why doesn’t our
desired answer 10 work? 120

10 − 1 = 11, which is greater
than 10. How can we change the left hand side so that it is
a lower bound on 10? Let’s examine the concrete values.
Possibilities include: 120

10 − 2 = 10 or 120
10+1 − 1 = 9. The

latter seems like a better guess: sticking 1’s into a formula
is more likely to work out than 2’s.

13. Change the lower bound to r ≥ s
r+1 − 1. Most tests are

yellow: this lower bound is a bit too low.

14. Change ‘≥’ to ‘>’ on the lower bound clause to tighten it
up a bit. All tests now pass.

The astute reader will see that the specification developed
here is the same as that in Formula 4 (notwithstanding the
s > 0 conjunct). Although both methods arrived at the same
result, they did so in different manners. With Beck’s agile
method we dealt with negative values and overflow early
in the development, whereas with Morgan’s formal method
these adaptations to the actual machine were the last step.
In the agile approach we adapted to the environment first,
and generalized later. In the formal approach, we generalized
first and adapted to the environment later.

3. Data Types
Specifications of data types include not only the behavior of
the type’s operations, but also representation invariants [25]
and abstraction functions [25]. (Jones [29] provides an inter-
esting discussion of the early work on abstraction functions.)
Representation (or class) invariants define the set of valid
concrete (runtime) values for the structure. An abstraction
function maps concrete values to their abstract counterparts.

A mixed interpreter might make agile practical use of
both representation invariants and abstraction functions.

3.1 Test-Input Generation
A number of recent tools, such as TestEra [35] and Korat [9],
have used representation invariants as a basis to generate test
inputs. The goal is to generate all non-isomorphic test inputs
that satisfy the representation invariant specification.

A mixed interpreter naturally subsumes the functionality
of these task-specific tools. The advantages to this more gen-
eral approach are (1) the programmer uses the same speci-
fication language for class invariants as for procedures; (2)
the ease with which various specifications can be composed
in order to generate test-inputs with a particular focus (com-
position of logical specifications is simply conjunction); (3)
the other tasks for which these same specifications can also
be used, as described in the rest of this paper.

Automatic generation of test inputs from specifications
has already been established as an area that blurs the bound-
aries between the concrete, test-centred world of agile meth-
ods and the abstract world of formal methods. Mixed inter-
preters make this part of a more general and uniform ap-
proach to programming.

3.2 Data Structure Repair
Sometimes data structures get into a bad state. At this point
options include: abrupt termination, try to keep computing
with invariants violated, or try to repair the data structures
before continuing. This last option, data structure repair, has
received some attention in recent years (e.g., [11, 18]), and
is usually based on the representation invariants.

Given a logical specification of the class invariant, a
mixed interpreter can easily be used to (a) check that the
current state complies with the invariant, and (b) to search
for a state that does comply with the invariant.

Performing data structure repair with a mixed interpreter
might have some advantages and disadvantages as compared
with previous specialized approaches to repair. The main
disadvantage is that, without some extra customization for
this task, the mixed interpreter isn’t going to be constrained
to find a valid state that is similar to the broken state. In
the extreme, consider that an empty list is a valid list: one
valid (although not preferable) repair strategy for a list data
structure is just to delete all elements of a broken list.

An advantage that a mixed interpreter might have over a
customized solution is the ease with which various specifi-
cations can be combined. For example, class invariants are
usually checked at the end of public methods. If, at the end of
the execution of a public method, the mixed interpreter finds
that the class invariant of the receiver no longer holds, it can
search for a state that respects both the invariant and the post-
condition while mutating only the receiver. Such flexibility
might be harder to achieve with a customized solution.

3.3 Object Contract Compliance
In many object-oriented languages, including Java and C#,
every object is supposed to provide implementations of the
so-called ‘object contract’ methods equals and hashCode.
Correct implementation of these methods is notoriously
tricky, tedious, and error-prone [6, 33, 42, 44, 46].

However, correct implementations of these object-contract
methods can be mechanically derived from programmer-
provided abstraction functions [44]. A mixed interpreter en-
ables these abstraction functions to be written in the same
logic as the other specifications, and therefore also used as
part of the other software engineering activities described in
this paper. (Previous work by Rayside et al. [44] required
non-trivial abstraction functions for this purpose to be writ-
ten in imperative code.)

While there are some procedures for which it may be eas-
ier to write code than a specification, for abstraction func-
tions it is almost always easier to write the specification.

4. Putting it all together: Mock Objects
Mock objects are a specific form of rapid prototyping advo-
cated by the agile methods community [3, 19, 34, 37]. Mock
objects, as objects, comprise both procedures and data.

The motivation for mock objects is to facilitate testing
of other code that uses complex infrastructure: mock imple-
mentations of the infrastructure are developed to enable test-
ing the other code. For example, one might use an alternative
in-memory database for testing an order processing system
rather than using the real on-disk database.

Suppose we are developing an email client, and are
about to write EmailMessage.bind(AddressBook), which
attempts to look up a person’s email address in the address
book. Following an agile test-driven approach [3], we first
write two unit tests for bind, shown in Listing 1.

Now we need an AddressBook object so that we can run
our tests. But the developer working on the real Address-
Book implementation hasn’t finished it yet. However, fol-
lowing traditional formal methods, she has written a spec-
ification for it first (Listing 3). All we need to do then to
get a working AddressBook object for our tests is to cre-
ate a class MockAddressBook that implements Address-
Book and specifies the initial conditions (i.e., that the book is
empty) on the constructor (Listing 4). Finally we implement
EmailMessage.bind() (Listing 2) and run our tests.

With the help of a mixed interpreter we have a mock im-
plementation at no additional cost to writing its specification.
Moreover, the specification-based mock provides additional
benefits: support for verification of the real implementation,
test-input generation, data structure repair, object contract
compliance, and so on.

Listing 1. Unit tests for EmailMessage.bind()

@Before public void setUp () {
addressBook = new MockAddressBook () ;
addressBook . setEmailAddress (" Danie l " , " dnj@mit . edu ") ;

}
@Test public void t e s t B i n d I f P r e s e n t () {

EmailMessage m = new EmailMessage (" Danie l ") ;
Asser t . asser tTrue (m. bind (addressBook)) ;
Asser t . asser tEquals (" dnj@mit . edu " , m. emai l) ;

}
@Test public void t es tB ind I fAbsen t () {

EmailMessage m = new EmailMessage (" Robert ") ;
Asser t . asser tFa lse (m. bind (addressBook)) ;

}

Listing 2. EmailMessage.bind() method

public boolean bind (AddressBook abook) {
i f (! abook . conta ins (th is . name)) {

return fa lse ;
} else {

th is . emai l = abook . getEmailAddress (th is . name) ;
return true ;

}
}

Listing 3. AddressBook interface and specification

@SpecField (" data : S t r i n g −> S t r i n g ")
@Invar iant (" a l l x : S t r i n g | lone t h i s . data [x] ")
public inter face AddressBook {

@Requires ("name != n u l l && emai l != n u l l ")
@Ensures (" t h i s . data = @old (t h i s . data) ++ name −> emai l ")
@Modifies (" t h i s . data ")
void setEmailAddress (S t r i n g name, S t r i n g emai l) ;

@Ensures (" r e t u r n − n u l l = t h i s . data [name] ")
S t r i n g getEmailAddress (S t r i n g name) ;

@Returns ("some t h i s . data [name] ")
boolean conta ins (S t r i n g name) ;

}

Listing 4. MockAddressBook implementation

public class MockAddressBook implements AddressBook {
@Ensures (" no t h i s . data ")
@Modifies (" t h i s . data ")
public MockAddressBook () { }

}

Terminology. The term mock object was introduced by
Mackinnon et al. [34]. Since then the terminology in the
agile-methods community has evolved [19, 37]. In the new
terminology our MockAddressBook would be referred to
as a fake object rather than a mock object. Fake objects
are fully (or mostly) functional replacements, whereas mock
objects are simply pre-programmed to respond to a specific
sequence of method calls for a single unit test. In other
words, fake objects are richer than mock objects and take
more effort to implement [37]. A mixed interpreter provides
fake objects for no additional effort over specifying them.

5. Performance of a Prototype
On reasonable assumptions, the whole universe will
reach a uniform temperature around four degrees
Kelvin long before any interesting calculation is com-
plete. — Hoare [26]

Our prototype mixed interpreter can perform the basic com-
putations described in this paper with small inputs: 8-bit in-
tegers and a dozen or so objects. Mixed programs that we
have executed with our prototype include the integer square
root programs above, the address book mock object program
above, sorting a list of integers, and various manipulations of
binary search trees.

Figure 4 shows a plot of execution time versus input size
for sorting an array of integers by executing a declarative
specification for a sort procedure. Lists of up to size 15 can
be sorted in a couple of seconds on stock hardware.

These results show that interesting calculation can be
completed before the heat-death of the universe. While
mixed interpreters may not yet be ready for everyday use,
they are clearly no longer beyond the bounds of our imagi-
nation.

Figure 4 Performance sorting an array of integers

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30

ru
nn

in
g

tim
e

(s
)

array length

Squander sort() method

total time
solving time

6. Conclusion
Much work has been done since the crucial first step
of considering both specifications and code to be pro-
grams. The effect has been to simplify, and make more
regular, much of the detail of constructing programs:
and there are significant implications for the practice
of software engineering generally. — Morgan [39]

Until now, formal specifications have occupied a rather spe-
cialized niche in software engineering. While advocates of
formal methods have argued, for several decades, that speci-
fications should lie at the center of the programming process,
practitioners have been reluctant to adopt them – often out of
ignorance, but also from a realistic assessment of their costs
and benefits. With programming languages offering better
support for runtime assertions, and a more positive attitude
to unit testing encouraged by the agile programming move-
ment, the value of specifications is being reassessed. Syn-
ergies between tools allow multiple benefits to be obtained
from a single specification; the same annotation used as an
oracle for unit testing can be fed to a theorem prover.

This paper has argued for taking one step further along
the road towards a full integration of specifications and code.
In addition to using specifications for traditional purposes,
we have proposed that they be executed just like code. From
one perspective, this is nothing more than providing some
mechanical support for the refinement calculus. From an-
other perspective, however, this makes specifications more
agile by shifting the emphasis from abstraction and proof
to simulation and checking. Something has been gained and
nothing has been lost: systematic, proof-oriented approaches
are still perfectly compatible with this technology.

Specification statements [2, 38, 40] were developed as
part of the refinement calculus to support a very systematic
style of programming that proceeds in an orderly fashion
from specification to code. One might imagine that, in a
less systematic and more experimental setting, these notions
would be less useful. But, on the contrary, it seems likely
that the ability to write a mixed program will be particularly
helpful when the programmer is less disciplined, since it
makes it easier to maintain a complete version of the code
(albeit with sections ‘implemented’ as specifications) and
explore it as it evolves.

It has become clear that the writing of code in its narrow-
est sense is only a small part of software engineering, and
even of programming. The best programmers are willing to
invest in the surrounding infrastructure – test cases, stubs
and oracles, runtime assertions, documentation – and are ea-
ger to integrate this infrastructure more closely with the code
proper, and to find ways to develop the two in tandem. The
ability to execute specifications might take us much closer
towards this goal; at the very least, the range of benefits of
specification would be greatly expanded.

Through all of this what we have endeavoured to show is
that formal methods and agile methods are separated more

by shortcomings of existing technology than by fundamental
intellectual differences. One focuses on the abstract and on
correctness and verification. The other focuses on the con-
crete and the convenient and on validation. Both emphasize
co-development of the program and its evaluation. New tech-
nology to connect the concrete and the abstract can give the
practicing programmer a more flexible and unified spectrum
of approaches.

Acknowledgments
Jonathan Edwards [15–17] has been an important influence
in thinking about connecting the concrete and the abstract.

This research was funded in part by the National Science
Foundation under grant 0541183 (Deep and Scalable Anal-
ysis of Software).

References
[1] Peter Amey and Roderick Chapman. Static verifica-

tion and extreme programming. In SIGAda’03, Decem-
ber 2003. URL http://www.praxis-his.com/sparkada/
publications_confs.asp.

[2] Ralph-Johan Back. On the Correctness of Refinement Steps
in Program Development. PhD thesis, University of Helsinki,
1978. Report A–1978–4.

[3] Kent Beck. Test-Driven Development. Addison-Wesley, 2003.

[4] Kent Beck. Extreme Programming Explained. Addison-
Wesley, 1999.

[5] Jon Louis Bentley. Programming Pearls. ACM Press, 1986.

[6] Joshua Bloch. Effective Java. Addison-Wesley, 2001.

[7] Joshua Bloch. Nearly all binary searches and mergesorts
are broken. Official Google Research Blog, June 2006.
URL http://googleresearch.blogspot.com/2006/
06/extra-extra-read-all-about-it-nearly.html.

[8] Joshua Bloch. Response to discussion of [7], June 2006. URL
http://lambda-the-ultimate.org/node/1549.

[9] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Mari-
nov. Korat: Automated Testing Based on Java Predicates. In
Phyllis Frankl, editor, Proc.ISSTA, Rome, Italy, July 2002.

[10] Steve Christey and Robert A. Martin. Vulnerability type
distributions in cve, May 2007. URL http://cwe.mitre.
org/documents/vuln-trends/index.html. Version 1.1.

[11] Brian Demsky and Martin C. Rinard. Goal-directed reasoning
for specification-based data structure repair. TSE, 32(12):931–
951, December 2006.

[12] Greg Dennis. A Relational Framework for Bounded Program
Verification. PhD thesis, MIT, 2009. Advised by Daniel
Jackson.

[13] Edsgar W. Dijkstra. A constructive approach to the problem
of program correctness. BIT Numerical Mathematics, 8(3):
174–186, September 1968.

[14] Edsgar W. Dijkstra. Notes on structured programming. In O.-
J. Dahl, C.A.R. Hoare, and E.W. Dijkstra, editors, Structured
Programming. Academic Press, New York, 1972.

[15] Jonathan Edwards. Example centric programming. In Doug
Schmidt, editor, Proc.19th OOPSLA, October 2004.

[16] Jonathan Edwards. Subtext: Uncovering the simplicity of pro-
gramming. In Richard P. Gabriel, editor, Proc.20th OOPSLA,
October 2005. ISBN 1-59593-031-0.

[17] Jonathan Edwards. No ifs, ands, or buts: Uncovering the
simplicity of conditionals. In Proc.22nd OOPSLA, pages 639–
658, Montréal, Canada, October 2007.

[18] B. Elkarablieh, I. Garcia, Y. Suen, and S. Khurshid. Assertion-
based repair of complex data structures. In Alexander Egyed
and Bernd Fischer, editors, Proc.22nd ASE, Atlanta, GA,
November 2007.

[19] Martin Fowler. Mocks aren’t stubs, January 2007.
URL http://martinfowler.com/articles/
mocksArentStubs.html.

[20] Norbert E. Fuchs. Specifications are (preferably) executable.
Software Engineering Journal, 7(5):323–334, September
1992.

[21] Donald C. Gause and Gerald M. Weinberg. Exploring Re-
quirements. Dorset House, 1989.

[22] Dorothy Graham. Requirements and testing: Seven missing-
link myths. IEEE Software, 19(5):15–17, 2002.

[23] Ian Hayes and Cliff B. Jones. Specifications are not (necessar-
ily) executable. Software Engineering Journal, 4(6):330–338,
1989. ISSN 0268-6961.

[24] E. Hehner. Do considered od: a contribution to the program-
ming calculus. Acta Informatica, 11:287–304, 1979.

[25] C. A. R. Hoare. Proof of correctness of data representations.
Acta Informatica, 1(4):271–281, December 1972.

[26] C. A. R. Hoare. An overview of some formal methods for
program design. IEEE Computer, 20(9):85–91, 1987.

[27] Daniel Jackson and Jeanette Wing. Lightweight formal meth-
ods. IEEE Computer, pages 21–22, April 1996.

[28] Michael Jackson. Software Specifications and Requirements:
a lexicon of practice, principles and prejudices. Addison-
Wesley, 1995. ISBN 0-201-87712-0.

[29] Clifford B. Jones. The early search for tractable ways of
reasoning about programs. IEEE Annals of the History of
Computing, 25(2):26–49, 2003.

[30] Donald E. Knuth. Notes on the van Emde Boas construc-
tion of priority deques: An instructive use of recursion. Let-
ter to Peter van Emde Boas, March 1977. URL http://
www-cs-faculty.stanford.edu/~knuth/faq.html.

[31] Ben Krause and Tim Wahls. jmle: A tool for executing jml
specifications via constraint programming. In L. Brim, editor,
Formal Methods for Industrial Critical Systems (FMICS’06),
volume 4346 of LNCS, pages 293–296. Springer-Verlag, Au-
gust 2006.

[32] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Prelimi-
nary design of JML: A behavioral interface specification lan-
guage for Java. Technical Report 98-06u, Iowa State Univer-
sity, April 2003. URL http://www.jmlspecs.org.

[33] Barbara Liskov and John Guttag. Abstraction and Specifica-
tion in Program Development. MIT Press, 1986.

[34] Tim Mackinnon, Steve Freeman, and Philip Craig. Endo-
testing: Unit testing with mock objects. In eXtreme Pro-
gramming and Flexible Processes in Software Engineering
(XP2000), 2000.

[35] Darko Marinov and Sarfraz Khurshid. TestEra: A Novel
Framework for Automated Testing of Java Programs. In
Proc.16th ASE, pages 22–31, November 2001.

[36] Robert C. Martin and Grigori Melnik. Tests and Require-
ments, Requirements and Tests: A Möbius Strip. IEEE Soft-
ware, 25(1):54–59, 2008.

[37] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code.
Addison-Wesley, 2007.

[38] Carroll Morgan. The specification statement. TOPLAS, 10(3),
1988.

[39] Carroll Morgan. Programming from Specifications. Prentice-
Hall, Inc., 2nd edition, 1998. First edition 1990.

[40] J. Morris. A theoretical basis for stepwise refinement and the
programming calculus. Science of Computer Programming, 9
(3), December 1987.

[41] Rick Mugridge and Ward Cunningham. Fit for Developing
Software: Framework for Integrated Tests. Prentice-Hall, Inc.,
2005.

[42] Martin Odersky, Lex Spoon, and Bill Venners. Programming
in Scala. Artima, November 2008.

[43] Committee on Certifiably Dependable Software Systems, ed-
itor. Summary of a Workshop on Software Certification
and Dependability. The National Academies Press, 2004.
ISBN 978-0-309-09429-0. URL http://books.nap.edu/
catalog.php?record_id=11133.

[44] Derek Rayside, Zev Benjamin, Rishabh Singh, Joseph P. Near,
Aleksandar Milicevic, and Daniel Jackson. Equality and hash-
ing for (almost) free: Generating implementations from ab-
straction functions. In Joanne Atlee and Paola Inverardi, edi-
tors, Proc.31st ICSE, 2009.

[45] Filippo Ricca, Marco Torchiano, Massimiliano Di Penta, Mar-
iano Ceccato, and Paolo Tonella. Using acceptance tests as a
support for clarifying requirements: A series of experiments.
Information and Software Technology, 51(2):270–283, 2009.

[46] Mandana Vaziri, Frank Tip, Stephen Fink, and Julian Dolby.
Declarative object identity using relation types. In Erik Ernst,
editor, Proc.21st ECOOP, volume 4609 of LNCS, pages 54–
78, Berlin, Germany, July 2007. Springer-Verlag.

[47] Tim Wahls, Gary T. Leavens, and Albert L. Baker. Execut-
ing formal specifications with concurrent constraint program-
ming. Automated Software Engineering Journal, 7:315–343,
2000.

[48] Niklaus Wirth. Program development by stepwise refinement.
CACM, 14(4):221–227, April 1971.

[49] Kuat Yessenov. A light-weight specification language for
bounded program verification. Master’s thesis, MIT, May
2009. Advised by Daniel Jackson.

