
Model-Based, Event-Driven Programming
Paradigm for Interactive Web Applications

Aleksandar Milicevic Daniel Jackson
Massachusetts Institute of Technology

Cambridge, MA, USA
{aleks,dnj}@csail.mit.edu

Milos Gligoric Darko Marinov
University of Illinois at Urbana-Champaign

Urbana, IL, USA
{gliga,marinov}@illinois.edu

Abstract
Applications are increasingly distributed and event-driven.
Advances in web frameworks have made it easier to pro-
gram standalone servers and their clients, but these appli-
cations remain hard to write. A model-based programming
paradigm is proposed that allows a programmer to represent
a distributed application as if it were a simple sequential pro-
gram, with atomic actions updating a single, shared global
state. A runtime environment executes the program on a col-
lection of clients and servers, automatically handling (and
hiding from the programmer) complications such as network
communication (including server push), serialization, con-
currency and races, persistent storage of data, and queuing
and coordination of events.

Categories and Subject Descriptors D.2.3 [Coding Tools
and Techniques]: Structured programming; D.2.3 [Cod-
ing Tools and Techniques]: Object-oriented programming;
D.3.2 [Language Classifications]: Design languages; D.3.2
[Language Classifications]: Very high-level languages; D.2.2
[Design Tools and Techniques]: Object-oriented design meth-
ods; D.3.4 [Processors]: Code generation; I.2.2 [Auto-
matic Programming]: Program transformation

General Terms Models, Languages, Events, Software, De-
sign, Web, Frameworks, Security

Keywords model-based; event-driven; distributed; interac-
tive; web applications; declarative programming; automatic
programming; software design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Onward! 2013, October 29–31, 2013, Indianapolis, Indiana, USA.
Copyright c© 2013 ACM 978-1-4503-2472-4/13/10/13/10. . . $15.00.
http://dx.doi.org/10.1145/2509578.2509588

1. Introduction
Today’s era of social networks, online real-time user collab-
oration, and distributed computing brings new demands for
application programming. Interactiveness and multi-user ex-
perience are essential features of successful and popular ap-
plications. However, programming such inherently complex
software systems, especially when the interactive (real-time)
multi-user component is needed, has not become much eas-
ier. Reasons for this complexity are numerous and include:

1. the distributed architecture of multiple servers running
on the cloud (server farms) interacting with clients run-
ning on different platforms (e.g., smartphones, web
browsers, desktop widgets, etc.);

2. the abstraction gap between the problem-domain level
(high-level, often event-driven) and the implementation-
level (low-level messages, queues, schedulers, asyn-
chronous callbacks);

3. shared data consistency;

4. concurrency issues such as data races, atomicity viola-
tions, deadlocks, etc.

Problems of this kind are known as accidental complex-
ity [13], since they arise purely from abstraction mismatches
and are not essential to the actual problem being solved.
Carefully managing accidental complexity, however, is ab-
solutely crucial to developing a correct and robust system.
Although thoroughly studied in the literature, these prob-
lems not only pose serious challenges even for experienced
programmers, but also distract the programmer from focus-
ing on essential problems, i.e., designing and developing the
system to achieve its main goals.

We propose a new model-based programming paradigm
for designing and developing interactive event-driven sys-
tems, accompanied by a runtime environment for moni-
tored execution of programs written in that language. Our
paradigm is structured around models (mostly declarative,
but fully executable) using concepts from the domain of in-
teractive web applications, (e.g., shared data, system events,
interactions and interconnections between clients, etc.), and

also explicitly separating concerns like data, core business
logic, user interface, privacy and security rules, etc. This al-
lows the programmer to think and write code at a high-level,
close to the actual problem domain, directly addressing the
abstraction gap issue.

The structural information about the system, which is in-
herently present in these models, allows the runtime envi-
ronment to automatically manage many forms of accidental
complexity, from synchronizing and dispatching concurrent
events to propagating data updates to all connected clients
(also known as “server push” in the web developers com-
munity). The programmer, therefore, has a very simple se-
quential programming view, and it is the job of the runtime
environment to turn that into a distributed application. Re-
lieving the programmer of writing multithreaded code elim-
inates, by construction, a whole class of concurrency bugs,
which are notoriously difficult to debug and fix.

We call this whole approach SUNNY, as our goal is to
shine some light on the dark world of distributed systems,
making it less tedious and more fun, and, at the same time,
more robust and more secure. In this paper, we also present a
concrete implementation of this approach for Ruby on Rails,
which we call RED (Ruby Event Driven).

2. Example
In this section we present a simple example of a real-

world application to explain the proposed programming
paradigm and illustrate the expressiveness and ease of use of
our language.

Our intention in this example is to implement a “public
IRC” (Internet Relay Chat) web application, meaning that
anyone can create a chat room (provided that a room with
the same name does not already exist) and that the existing
rooms are public (anyone can join and send messages once
joined). With most applications of this kind, the web GUI
must be responsive and interactive, automatically refreshing
parts of the screen whenever something important happens
(e.g., a new message is received), without reloading the
whole page.

Figure 1 shows a simple IRC implementation written in
RED (our implementation of SUNNY for Ruby on Rails).
RED programs consist of several different models of the
system (described next), and as such are fully executable.
These models are fairly high-level and mostly declarative,
so we occasionally refer to them as specifications.

The data model of the IRC application consists of a
User record (which specializes the RED library AuthUser

record and adds a status field), a Msg record (where each
message has a textual body and a sender), and a ChatRoom
record (each room has a name, a set of participating users,
and a sequence of messages that have been sent). These
fields are defined using the refs and owns keywords: the
former denotes aggregation (simple referencing, without any
constraints), and the latter denotes composition (implying

that (1) when a record is deleted, all owned records should
be deleted, and (2) no two distinct records can point to the
same record via the same owned field).

The network model in this example consists of two ma-
chines, namely Server and Client. The Client machine
has a corresponding User, whereas the Server machine
maintains a set of active ChatRooms. They respectively in-
herit from the library AuthClient and AuthServer ma-
chines, to bring in some fairly standard (but library-defined,
as opposed to built-in) user management behavior, like new
user registration, sign-in and sign-out events, etc.1

To implement the basic functionality of IRC, we de-
fined an event model with three event types: CreateRoom,
JoinRoom, and SendMsg, as shown in Figure 1(c).

Each event has an appropriate precondition (given in the
requires clause) that checks that the requirements for the
event are all satisfied before the event may be executed. For
instance, events CreateRoom, JoinRoom, and SendMsg all
require that the user has signed in (client.user is non-
empty), SendMsg requires that the user has joined the room,
etc.

A specification of the effects of an event (given in the
ensures clause) is concerned only with updating rele-
vant data records and machines to reflect the occurrence of
that event. For example, the effects of the JoinRoom event
amount to simply adding the user requesting to join the room
to the set of room members; the runtime system will make
sure that this update is automatically pushed to all clients
currently viewing that room. Actions like updating the GUI
are specified elsewhere, independently of the event model;
this is a key to achieving separation of concerns.

By default, all fields in our models are public and visible
to all machines in the system. That approach might be appro-
priate for the running “public IRC” example, where every-
thing is supposed to be public anyway. For many other sys-
tems, however, it is often necessary to restrict access to sen-
sitive data. Let us therefore define some privacy rules even
for this example to show how that can be done in SUNNY,
declaratively and independently of the event model.

The HideUserPrivateData policy from Figure 1(d)
dictates that the value of a user’s password should not be
revealed to any other user and, similarly, that the status mes-
sage of a user should not be revealed to any other user, unless
the two users are currently both members of the same chat
room. Note that the latter rule is dynamic, i.e., it depends on
the current state of the system (two users being together in a
same chat room) and thus its evaluation for two given users
may change over time.

In addition to restricting access to a field entirely, when
a field is of a collection type, a policy can also specify a fil-
tering condition to be used to remove certain elements from

1 The full listing of the RedLib::Web::Auth library is given in
Figure 2; several events defined in this library are referred to later in the
text.

(a) data model

record User < AuthUser do
inherited fields
name: String,
email: String,
pswd_hash: String,
refs status: String

end

record Msg do
refs text: Text,

sender: User
end

record ChatRoom do
refs name: String,

members: (set User)
owns messages: (seq Msg)

end

(b) network model

machine Client < AuthClient do
refs user: User

end

machine Server < AuthServer do
owns rooms: (set ChatRoom)

end

(c) event model

event CreateRoom do
from client: Client
to serv: Server

params roomName: String

requires {
client.user &&
roomName &&
roomName != "" &&
!serv.rooms.find_by_name(roomName)

}

ensures {
room = ChatRoom.create
room.name = roomName
room.members = [client.user]
serv.rooms << room

}
end

event JoinRoom do
from client: Client
to serv: Server

params room: ChatRoom

requires {
u = client.user
client.user &&
!room.members.include?(u)

}

ensures {
room.members << client.user

}
end

event SendMsg do
from client: Client
to serv: Server

params room: ChatRoom,
msgText: String

requires {
client.user &&
room.members.include?(client.user)

}

ensures {
msg = Msg.create
msg.text = msgText
msg.sender = client.user
room.messages << msg

}
end

(d) security model

policy HideUserPrivateData do
principal client: Client

restrict access to passwords except for owning user
restrict User.pswd_hash.unless do |user|
client.user == user

end

restrict access to status messages to users
who share at least one chat room
with the owner of that status message
restrict User.status.when do |user|
client.user != user &&
ChatRoom.none? { |room|

room.members.include?(client.user) &&
room.members.include?(user)

}
end

end

policy FilterChatRoomMembers do
principal client: Client

filter out anonymous users (those who have not
sent anything) from the ’members’ field
restrict ChatRoom.members.reject do |room, member|
!room.messages.sender.include?(member) &&
client.user != member

end
end

Figure 1. A full implementation (excluding any GUI) of a simple public IRC application written in RED, our new domain-
specific language for programming event-driven systems. Since RED is very high-level and mostly declarative, we often refer
to RED programs as models, and also consider them to be the specification of the system.

that collection before the collection is sent to another ma-
chine. The FilterChatRoomMembers policy hides those
members of a chat room who have not sent any messages
(this simulates, to some extent, “invisible users”, a feature
supported by some chat clients).

SUNNY automatically checks policies at every field ac-
cess; if any policy is violated the access is forbidden simply
by replacing the field value with an empty value.

3. Why The World Needs SUNNY

Interactive multi-user applications, even when having rela-
tively simple functional requirements, are difficult to write
using today’s programming languages and available state-
of-the-art frameworks, the main reason being the abstraction
gap between the problem domain and the concepts available
at the implementation level.

Just as one example, current systems typically do not of-
fer much help with structuring and organizing the system

def hash_pswd(str)
Digest::SHA256.hexdigest(pswd_plain)

end

abstract_record AuthUser, {
name: String,
email: String,
pswd_hash: String

} do
def authenticate(pswd_plain)
pswd_hash == hash_pswd(pswd_plain)

end
end

abstract_machine AuthServer {}
abstract_machine AuthClient { user: AuthUser }

event Register do
from client: AuthClient
params name: String, email: String, pswd: String
requires { !AuthUser.find_by_email(email) }
ensures {
client.create_user! :name => name,

:email => email,
:pswd_hash => hash_pswd(pswd)

}
end

event SignIn do
from client: AuthClient
params email: String, pswd: String
ensures {
u = AuthUser.find_by_email(email)
fail "User #{email} not found" unless u
pswd_ok = u.authenticate(pswd)
fail "Wrong password for #{email}" unless pswd_ok
client.user = u

}
end

event SignOut do
from client: AuthClient
requires { some client.user }
ensures { client.user = nil }

end

event Unregister do
from client: AuthClient
requires { client.user }
ensures { client.user.destroy }

end

Figure 2. The RedLib::Web::Auth library module, writ-
ten in RED itself, provides common records and events for
managing users and user authentication.

around events, despite proper event handling being at the
core of most interactive applications. Instead, they offer call-
backs, which can be registered from any source code loca-
tion, almost inevitably leading to what is known as callback
hell [20]. As a consequence, programs end up being clut-
tered, the flow structure becomes very difficult to infer from
the source code, leading to programs that are hard to under-
stand and maintain.

Other than event-handling, the programmer has to face
a number of other technological barriers, including con-
currency, object-relational mapping, server push, etc. Even
though these technological barriers have been individually
overcome, the solutions sometimes come in a form of best-
practices or guidelines, so the programmer still has to spend

time implementing them for the project at hand, which is,
for the barriers mentioned above, time-consuming, tedious,
and also error-prone.

We illustrate these points in terms of three concrete plat-
forms for developing web applications.

3.1 The Java Approach
The Java language, which gained much of its success from
being proposed as a platform for web development, is still
one of the top choices for development of enterprise web
systems. The language being mature, the runtime (JVM)
being fast and solid, and an abundance of freely available
third-party libraries are some of the points in favor.

The trend of web development in Java still seems to be
based around manually configuring and integrating a multi-
tude of standalone, highly specialized libraries, designed in-
dependently to solve various web-related tasks, as opposed
to having a single overarching framework designed to ad-
dress most of the common issues. A highly experienced Java
expert, who is already familiar with the existing libraries for
web development, object-relational mapping, database man-
agement, server push, and such (also already knowing how
to configure them all so that they can interoperate and work
well together) would have a good start developing our IRC
example. For the rest of us, however, the situation is much
worse. For someone already familiar with Java, but not too
familiar with web development in Java, the effort just to get a
handle on all the necessary libraries would by far exceed the
effort needed to implement the functionality of our example.

Even the expert would have to be very careful about man-
aging concurrent requests on the server side, setting up event
processing queues (to avoid common concurrency issues but
still achieve good throughput), implementing correspond-
ing producer and consumer threads, and so on. Probably
equally cumbersome would be manually keeping track of
which clients are viewing what, automatically propagating
updates when the data underlying the views change, and im-
plementing Ajax-style code on the client side to refresh the
GUI smoothly. All these are generic enough tasks, for which
the implementation does not seem to differ much from one
project to another, so it seems unfortunate that they have to
be repeated every time. One of the design goals of SUNNY
was to explicitly address this issue, and let the framework,
not the programmer, fight the technology.

3.2 The Rails Approach
In contrast to Java, the design of Rails [6] adopted the “con-
vention over configuration” school of thought: instead of
manually configuring every single aspect of the application,
if certain conventions are followed, the Rails framework will
automatically perform most of the boilerplate tasks behind
the scene and “magically” make things happen.

Underneath the surface, unfortunately, it is still a config-
uration mess, and the magic is mostly concerned with low-
level configuration of different components and how to tie

them all together. This creates problems for many Rails pro-
grammers, because, as this magic has no high-level seman-
tics, it is often difficult to understand and remember not only
how it works, but also what it does. In SUNNY, we aim to
offer a different kind of magic, which is easy to understand
at the conceptual level (e.g., data updates are automatically
propagated to clients, all the way to automatically refresh-
ing the GUI), so the programmer need not understand the
technical details behind its implementation.

By imposing some structure on how the system should
be organized and implemented (e.g., using the Model View
Controller (MVC) architecture), Rails can indeed provide a
lot of benefits for free. One of the most appealing features
of Rails (especially back when it first appeared) is “scaffold-
ing”: given just a few model files describing how the data
structures are organized, Rails automatically generates a run-
ning web application, with the full stack, from the database
to the web server, automatically configured and set up.

While scaffolding greatly reduces the startup cost of de-
veloping a new application (even for inexperienced pro-
grammers), it is not meant to be a permanent, system-level
solution. The reason is that it is based on code genera-
tion from transient models: the generated files (including
database configuration files, Rails controller classes, HTML
views) work fine at the beginning, but as soon as something
needs to be changed, everything needs to be changed manu-
ally, since there is nothing to keep them in sync otherwise.
Furthermore, the models used for scaffolding support only
scalar, primitive-typed fields. In SUNNY, in contrast, mod-
els (like those shown in Figure 1) are first-class citizens;
not only do they exist at runtime, but they are central to the
whole paradigm (i.e., the entire runtime semantics is built
around them). Our models are also much richer, so there is
enough information available to the SUNNY runtime envi-
ronment to interpret them on the fly, instead of generating
code up front. That way, the common problem of having in-
consistencies between the models and the code is eliminated
in SUNNY.

Concurrency in Ruby is an interesting topic. Ruby is
inherently not concurrent (because of a Global Interpreter
Lock). As a result, Rails programmers can safely ignore
threads and synchronization, and still have no data race is-
sues. This, of course, comes at the cost of low scalabil-
ity. When a more scalable implementation is needed, typi-
cally solutions require that the system is restructured so that
blocking operations (like I/O) are offloaded to a different
process, which is at the same time told what to do upon
completion of the requested operation (the so called Reac-
tor pattern). Refactoring a system in this manner is almost
never trivial nor straightforward.

We believe that concurrency and parallel processing do
not have to be sacrificed to this extent to give the program-
mer a safe sequential programming model, as explained in
more detail in Section 4.1.

3.3 The Meteor Approach
Meteor [5] is a newer web framework for fast and con-
venient development of modern web applications. Meteor
has been rapidly gaining popularity. It is a pure JavaScript
implementation (both server and client have to be written
in JavaScript) of an event-driven (publish/subscribe) sys-
tem which also automatically propagates updates to all con-
nected clients whenever the shared data changes.

Unlike SUNNY, Meteor focuses on providing a platform
for automatic data propagation, whereas SUNNY is designed
to also handle other aspects of the system, including richer
models for shared data, GUI scaffolding, automated sup-
port for concurrency, etc. Specifically, Meteor does not offer
much structure to help design the system, nor does it have
rich models of the underlying shared data. The data model
in Meteor consists of a number of flat collections (corre-
sponding directly to database tables), with no type informa-
tion, and no explicit relationship between different model
classes. Rich models enable both software engineering ben-
efits (like automated test generation and verification of end-
to-end properties), as well as productivity benefits (like au-
tomated GUI scaffolding)2.

4. The SUNNY Approach
A key idea of SUNNY is to make it possible to think about
different events in isolation, and only in terms of modifi-
cations to the data model they entail. Therefore, in the de-
sign phase, the programmer does not have to think about
other issues, such as how to update the user interface to re-
flect the changes, or even about security and privacy policies;
those can be specified separately and independently from the
core event model. Limiting the specification this way is what
forces the programmer to focus on the core logic of the sys-
tem first (hence reducing the chances of software bugs in
those core parts of the system) and what enables us to pro-
vide a unified and overarching runtime environment for fully
automated resource management and constant data access
monitoring for security violations.

The main components of SUNNY are:

• a Domain Specific Programming Language
• a Runtime Environment
• an Online Code Generator
• a Dynamic Template-Based Rendering Engine

Instead of going into technical details about each of
these components, our main intent for this paper is to pro-
vide a broader discussion of the big-picture goals and de-
sign behind SUNNY, illustrate its usefulness and practicality
through examples, and argue for the benefits it brings to

2 In contrast to GUI scaffolding implemented in Rails, ours is not a one-
off code generation approach; it is rather based on generic (application-
agnostic) templates which get evaluated at runtime, so again, there is no
problem of falling out of sync.

View
RendererHTTP

GET

Data

template

Event
Hanlder

event event

View Req Queue

Event Queue

read/write

HTML

read

data update

Client View Tree

update

Update Queue

Discover
Affected
Nodes

Rerender
Nodes

Push
Changes

Pusher

writeread

View Tree

Ajax
call

Figure 3. Internal architecture of SUNNY’s runtime environment for concurrent processing of events and user requests.

software engineering best practices. We will next, therefore,
walk through a sample execution of our system (still using
the running IRC example) to better illustrate how the system
works and how the benefits are achieved. Afterward, we will
briefly describe each of the mentioned components using the
concrete syntax of RED.

4.1 Sample Execution
Consider a scenario in which a user initially opens the home
page of our IRC application. This request is received by
the web server via the HTTP GET method and placed in
a processing queue (namely View Req Queue, Figure 3, top
pipeline). From there, it is picked up by the View Renderer
component, while the web server can immediately go back
to serving incoming requests.

Let us assume that the view corresponding to the home
page is the irc template shown in Figure 4(a) and that the
user is not logged in yet. These templates are written in the
ERB language, which allows arbitrary Ruby expressions to
be embedded inside the <% %> and <%= %> marks (the dif-
ference being that only the latter produces a textual output,
while the output of the former is ignored). The View Ren-
derer, therefore, evaluates the “else” branch of the template,
and returns a login page with two input fields (for email and
password) and a “Sign-in” button.

While rendering a template, the View Renderer also main-
tains a View Tree structure which holds a single node for
each Ruby expression that was evaluated during the execu-
tion of the template (templates can invoke other templates,
potentially creating a hierarchy of nodes). Each node stores
a list of fields that were accessed while the corresponding
expression was being evaluated. In the case of this example,
there is only one node in that tree, and the only field that was
accessed was the user field of the current client instance
(during the evaluation of the “if” condition).

On the client side, our JavaScript library automatically
recognizes the “Sign-in” button by its data-trigger-event
HTML5 attribute, and, according to its value, associates
it with the SignIn event (which is a part of the previ-

ously imported Auth library (Figure 2)). More concretely,
it assigns an “onclick” handler to it, so that when the
button is clicked, the associated form (discovered via the
data-params-form attribute) is submitted (via an Ajax
call) as the parameters of the SignIn event.

When the user clicks this button, the SignIn event is trig-
gered and received on the server side via the bottom pro-
cessing pipeline in Figure 3. The EventHandler then picks
it up from the queue, checks its precondition, and if it holds
(in this case it does, since the requires method is empty),
proceeds to execute its postcondition. Assuming that the user
entered valid credentials, the execution will assign value to
the user field of the current client instance (the client

instance is always implicit and denotes the machine which
submitted the currently executing event).

Any modification to the data model triggers an internal
“data update” signal, which is placed in the Update Queue
(the right-most pipeline in Figure 3). A component called
Pusher is in charge of serving the Update Queue. Every
time an update is received, it goes through a list of all
connected clients and corresponding view trees, discovers
which nodes could potentially be affected by the current
update (by checking their list of field accesses), re-renders
those nodes, updates the global Client → View Tree map,
and pushes those changes to clients. On the client side, only
the corresponding portion of the HTML DOM is replaced by
the newly rendered text.

In the running scenario, the only node that was stored for
the current client was dependent on the user field, so only
it has to be re-rendered. The new content is produced by ex-
ecuting the “then” branch, which amounts to rendering the
user.html.erb template for the current user (the user object is
by default available to the callee template via the user vari-
able), and rendering the chat_room.html.erb template once
for each room on the server (in this case the default variable
name would be “chat_room”, but it is instead explicitly set
to “room” via the :as option).

The execution then continues in the same manner: clients
continue to perform actions by triggering events from the

domain, and the server keeps processing events, detecting
changes in the data model, and re-rendering parts of the
client views when needed. An explanation of how asyn-
chronous message sending is declaratively specified directly
in an HTML template (no separate JavaScript file), and with-
out any Ajax code, is given in Section 4.4.3.

To get a running version of this sample execution, if using
RED, the programmer only needs to:

• write the data, machine, and event models from Figure 1
(the security model is not necessary);

• write the HTML templates from Figure 4;
• deploy the application to a server running Ruby on Rails

with our extensions; and
• set the application home page to irc.html.erb (by config-

uring the root route in Rails).

Comparing to implementing the same application in stan-
dard Rails:

• in place of our data model, the programmer would
write ActiveRecord model classes (one model class per
record), which are more verbose and require more con-
figuration (as discussed in Section 4.4.2);

• in place of our machine model, the programmer would
likely use in-memory classes and the Rails session stor-
age (not affecting the complexity of the implementation);

• in place of our event model, the programmer would write
controllers of approximately the same complexity;

• the HTML templates would remain the same, as well as
the deployment process.

Additionally, the Rails programmer would have to

• write a database schema (discussed in Section 4.4.1),
carefully following the Rails naming convention;

• write a controller for each model class implementing the
standard CRUD (Create, Read, Update, Delete) opera-
tions (again, certain naming conventions have to be fol-
lowed);

• configure routes for each controller;
• decide on a third party library to use to implement the

server push (pushing data updates to connected clients in
real time);

• implement server-side code that keeps track of what data
each client is currently displaying;

• implement server-side code that detects model changes
(made during the execution of controllers);

• implement server-side code that pushes data changes to
each client whenever a piece of data currently being dis-
played on that client is changed;

• implement client-side code that listens for data changes
from the server;

• implement client-side code that dynamically re-renders
affected parts of the GUI whenever a data update is re-
ceived.

In both cases, a CSS file is necessary in order to make the
GUI look pretty.

While RED provides dynamic GUI updates for free,
and for that does not require the programmer to write any
JavaScript, it does not prevent him or her from doing so;
RED comes with a client-side JavaScript library (see Sec-
tion 4.4.3) which can be used to interact with the server-
side, customize how the GUI gets updated (e.g., implement
special visual effects or animations), asynchronously trigger
events, etc.

4.2 Domain-Specific Programming Language
We designed a domain-specific language for writing SUNNY
models in order to better emphasize the key concepts of our
paradigm. This language has strong foundations in the Al-
loy modeling language [33], a relational language based on
first-order logic. Alloy is declarative, and as such, it is not
executable per se; it is instead used primarily for model-
ing and checking logical properties of various kinds of sys-
tems. Most of Alloy’s expressive power comes from its rela-
tional base (including all the supported relational operators),
which, however, can be efficiently executable in the con-
text of object-oriented programs [57]. For example, the dot
operator (‘.’) is actually a relational join, so an expression
that fetches all users currently present in any chat room on a
server can be written simply as Server.rooms.members.

In RED, we implemented this language as an embedded
DSL in Ruby. Concretely, each of record, machine, and
event is just a function that takes a name, a hash of field
name → type pairs, and a block; it (1) returns a Class

having those field names as attributes, while storing the
type information in a separate meta-class, (2) creates, in
the current module, a constant with the given name and
assigns the newly created class to it, and (3) if a block is
given, evaluates that block in the context of that class. The
block parameter can be used to define additional instance
methods (as in Figure 2, method authenticate in record
AuthUser), but also to define fields with more information
than just name and type (e.g., the call to the owns function
in Figure 1(a), which additionally specifies that whenever
a chat room is deleted, the deletion operation should be
propagated to all the messages referenced by that room via
the messages field).

Having this syntactic sugar (instead of just using the built-
in class keyword) provides a convenient way of specifying
typed fields, but more importantly, being in charge of class
generation also gives us an easy way to hook into all field
accesses, where we perform the necessary policy checks. We
override the const_missing method, so that unresolved
types are converted to symbols at declaration time; we only
require that all types can be resolved at runtime.

(a) template file: irc.html.erb

<% if client.user %>
<%= render client.user %>
<%= render server.rooms, :as => ’room’ %>
<% else %>
<form id="login-form">
Email: <input type="text" name="email"/>
Password: <input type="password" name="password"/>

</form>
<button data-trigger-event="SignIn"

data-params-form="login-form">
Sign In</button>

<% end %>

(b) template file: user.html.erb

<div class="User">
Welcome <%= user.name %> (<%= user.email %>)
</div>

(c) template file: chat_room.html.erb

<div class="ChatRoom">
Name: <%= room.name %>
Members: <%= room.members.name.join(", ") %>
Posts: <%= render room.messages %>

<input id="txt-<%=room.id%>" type="text"/>
<button data-trigger-event="SendMsg"

data-param-room="${new ChatRoom(<%=room.id%>)}"
data-param-msgText="${$(’#txt-<%=room.id%>’).val()}">

Send</button>
</div>

(d) template file: msg.html.erb

<div class="post">
<%= msg.sender.name %>: <%= msg.text %>

</div>

Figure 4. HTML views for the IRC example from Figure 1 written using ERB templates (the ERB language allows arbitrary
Ruby code to be embedded and evaluated inside the <% %> and <%= %> marks).

Note that, however, none of our language features man-
dated this implementation choice; a different implementa-
tion targeting a different platform is possible.

4.3 Runtime Environment
One of our main goals is to relieve the programmer of having
to explicitly implement a distributed system, i.e., explicitly
synchronize multiple processes, handle inter-process com-
munication, manage queues and messages, ensure data con-
sistency, and a number of other tasks typical for distributed
and concurrent programming. By introducing a specific pro-
gramming model (as described previously), we tailored a
generic runtime environment to automate all those tasks. The
runtime implements a standard message-passing architec-
ture, a well-known and widely used idiom for designing dis-
tributed systems, which we use to dispatch events and data
updates between entities (Figure 3).

Another important role of the runtime environment is to
automatically check and enforce privacy policies at runtime.
Policies are checked at every field access attempted by the
user-defined code: all relevant restriction rules are discov-
ered and applied. Instead of throwing an exception when
the access is forbidden, an empty relation is returned. This
makes it possible for the client code to be written in a mostly
policy-agnostic style. For example, the client code can sim-
ply say room.members to fetch the members of a chat room,
and rely on the runtime to return only those elements that the
client is allowed to see.

Policies are also considered when objects are being serial-
ized (by the runtime) prior to being sent to another machine
(e.g., as part of the automatic propagation of data updates).
Consider a client (client) attempting to fetch all rooms by
executing server.rooms. This is a legal operation, as all
field accesses are permitted (it is a public IRC application).
Any sensitive data (e.g., the password and status fields of the

room members), however, must still be hidden or their values
properly filtered out, which our runtime does automatically
(simply by returning an empty relation every time access is
forbidden).

This illustrates the declarative nature of our privacy poli-
cies, and how the runtime can automatically enforce them.
It also shows that the operational code (e.g., event handlers,
embedded GUI formulas, etc.) usually can be written inde-
pendently of privacy policies, and does not need to be up-
dated when policies change.

4.4 Online Code Generator
Many of the responsibilities of the runtime environment

are enabled by the code automatically generated from the
core models, on the fly, during the system initialization
phase. In addition, we use code generation to automate var-
ious common tasks. Several of these tasks are briefly de-
scribed next.

4.4.1 Database Migrations
The richness of our data model makes it possible for us to
handle data persistence fully automatically. This includes (1)
generating and maintaining a database schema (discussed
in this section), and (2) implementing an object-relational
mapper (i.e., mapping domain objects onto that schema,
discussed next in Section 4.4.2).

A database schema provides a way to persist all relevant
information from the domain model. Because the schema
is always supposed to closely mirror the model, ideally it
should not have to be written/programmed separately. In
standard Rails, however, that is not the case; the schema
exists as a standalone code artifact, and the programmer is
in charge of maintaining it and keeping it in sync with the
application model. Although Rails comes with automated
generators that can create schema skeleton files from sim-

(a) auto-generated Rails migration file

class UpdateTables < ActiveRecord::Migration

def change
create_table :auth_clients do |t|
t.column :auth_token, :string
t.references :user
t.column :user_type, :string
t.references :user
t.column :user_type, :string
t.column :type, :string
t.timestamps

end

create_table :auth_servers do |t|
t.column :type, :string
t.timestamps

end

create_table :auth_users do |t|
t.column :name, :string
t.column :email, :string
t.column :password_hash, :string
t.column :status, :string
t.column :type, :string
t.timestamps

end

create_table :msgs do |t|
t.column :text, :text
t.references :sender
t.column :sender_type, :string
t.references :chat_room_as_message
t.timestamps

end

create_table :chat_rooms do |t|
t.column :name, :string
t.references :server_as_room
t.column :server_as_room_type, :string
t.timestamps

end

create_table :chat_rooms_users_members,
:id => false do |t|

t.column :chat_room_id, :int
t.column :user_id, :int

end

create_table :sessions do |t|
t.string :session_id, :null => false
t.text :data
t.timestamps

end
add_index :sessions, :session_id
add_index :sessions, :updated_at

end

end

(b) auto-generated ActiveRecord classes

class Msg < Red::Model::Record # < ActiveRecord::Base
attr_accessible :text
belongs_to :sender,

:class_name => "User",
:foreign_key => :sender_id

belongs_to :chat_room_as_message,
:class_name => "ChatRoom",
:foreign_key => :chat_room_as_message_id,
:inverse_of => :messages

interceptors for field getters and setters
def text() intercept_read(:text) { super } end
def text=(val) intercept_write(:text, val){ super } end
...
end

class ChatRoom < Red::Model::Record # < ActiveRecord::Base
attr_accessible :name
has_and_belongs_to_many :members,

:class_name => "User",
:foreign_key => :chat_room_id,
:association_foreign_key => :user_id,
:join_table => "chat_rooms_users_members"

has_many :messages,
:class_name => "Msg",
:foreign_key => :chat_room_as_message_id,
:dependent => :destroy

belongs_to :server_as_room,
:class_name => "Server",
:foreign_key => :server_as_room_id,
:inverse_of => :rooms

interceptors for field getters and setters
def name() intercept_read(:name) { super } end
def name=(val) intercept_write(:name, val){ super } end
...
end

class User < RedLib::Web::Auth::AuthUser # < Red::Model::Record
attr_accessible :status
has_and_belongs_to_many :chat_rooms_as_member,

:class_name => "ChatRoom",
:foreign_key => :user_id,
:association_foreign_key => :chat_room_id,
:join_table => "chat_rooms_users_members"

has_many :msgs_as_sender,
:class_name => "Msg",
:foreign_key => :sender_id,
:inverse_of => :sender

has_many :clients_as_user,
:class_name => "Client",
:foreign_key => :user_id,
:inverse_of => :user

interceptors for field getters and setters
def status() intercept_read(:status) { super } end
def status=(val) intercept_write(:status, val){ super } end
...
end

Figure 5. Several different snippets of automatically generated code for the IRC example: (a) full database migration file (in
Ruby), creating a schema for the persistent entities from the domain (records and machines), (b) excerpt from the translation
of domain records to ActiveRecord classes, with mappings of fields to database columns and field interceptors.

ple name → type pairs, they only work for primitive types
and scalar fields; for more advanced features like type inher-
itance and non-scalar fields (many-to-many relations), the
programmer has to manually extend the generated schema
file in such a way that it works with the object-relational
mapper on the other side.

Figure 5(a) gives a full listing of the database schema (in
the form of a Ruby migration class, standard for the Rails
framework) that RED automatically generated for the IRC
example. This schema supports all the features of the model,
so the programmer does not even have to look at it.

ActiveRecord (the object-relational mapper used in Rails
and in our framework) implements the single table inheri-

tance strategy for handling inheritance. Hence, for each base
type we generate one table with columns for all fields of all
of its subtypes, plus an extra string-valued column (named
:type) where the actual record type is stored. For exam-
ple, in the :auth_users table, the first three columns cor-
respond to fields from AuthUser and the fourth column is
for the single field from User. Furthermore, in every other
table referencing such a table, an additional “column type”
column must be added to denote the declared type of the
corresponding field, as in the :msg table (columns :sender
and :sender_type).

When a record field type is of arity greater than 1, a
separate join table must be created to hold that relation.
This is the case with the ChatRoom.members field (ref-
erencing a set of Users). The corresponding join table
(:chat_rooms_users_members) stores all tuples of the
:members relation by having each row point to a row in
the :chat_rooms table and a row in the :users table.
In the special case when a field owns a set of records
(e.g., field ChatRoom.messages, meaning that a given
message can be referenced via that field by at most one
chat room), instead of a join table, a referencing column is
placed in the table corresponding to the type of that field (the
:chat_room_as_message column in table :msgs).

The last create_table statement in Figure 5(a) simply
creates a table where the session data will be stored, and is
independent of the domain data model.

Despite being mostly straightforward, writing migrations
by hand is still tedious and time consuming, and, for devel-
opers new to Rails, can often be a source of mysterious run-
time errors. Even after those initial errors have been fixed,
the gap between the schema and the application model still
remains. RED eliminates all these issues by having a single
unified model of the system and automatically driving vari-
ous implementation-level technologies (such as the database
schema maintenance) directly from it.

4.4.2 ActiveRecord Classes and Reflections
As we explained in Section 4.2, the record keyword in
RED is actually implemented as a Ruby function that creates
a new class and assigns a named constant to it. Here we
discuss the generated record classes (listed in Figure 5(b))
in more detail.

ActiveRecord provides “reflections” for specifying as-
sociations between models (i.e., records in our terminol-
ogy). Primitive fields are declared with attr_accessible

(e.g., ChatRoom.name), one-to-many associations with
has_many on one side and belongs_to on the other (e.g.,
ChatRoom.messages), and many-to-many associations with
has_and_belongs_to_many (e.g., ChatRoom.members).
Various options can be provided to specify the exact map-
ping onto the underlying database schema.

As with migration generators, Rails provides generators
for ActiveRecord model classes as well, but again, with lim-
ited features and capabilities. While most of the schema-

mapping options (e.g., :foreign_key, :join_table,
:association_foreign_key) can be omitted if the nam-
ing convention is followed when the schema is written, the
programmer still has to manually write these reflections for
all but primitive fields. Furthermore, ActiveRecord requires
that reflections are written on both sides of an association,
meaning that each non-primitive field has to have its inverse
explicitly declared in the opposite class (which is another
step that our system eliminates). Finally, even though the
database schema and the model classes are coupled, there is
nothing that keeps them in sync in standard Rails. This not
only makes the development process more cumbersome and
error-prone, but also makes it difficult to perform any system
redesign or refactoring.

Controlling the generation of model classes also lets us
intercept all field accesses, where we perform all the neces-
sary security checks, detect changes to the data model for
the purpose of updating client views, wrap the results of get-
ter methods to enable special syntax (e.g., the Alloy-style
relational join chains), etc.

4.4.3 JavaScript Model for the Client-Side
One of the main ideas behind SUNNY is to have a single
unified model of the system, and a model-based program-
ming paradigm that extends beyond language and system
boundaries. In RED, we wanted to preserve this idea and
enable the same kind of model-based programming style
on both the server side and the client side, despite the lan-
guage mismatch. More concretely, we wanted to provide
the same high-level programming constructs for instantiat-
ing and asynchronously firing events in JavaScript on the
client side, as well as constructing and manipulating records.

To that end, we translate the system domain model into
JavaScript, to make all the model meta-data available on
the client side. We also implemented a separate JavaScript
library that provides prototypes for the generated model
classes, as well as many utility operations.

Figure 6 gives an excerpt from the translation of the
IRC application’s domain model. Up on the top are con-
structor functions for all records, machines, and events. The
mk_record and mk_event functions (part of our library)
take a name and (optionally) a super constructor, and return
a constructor function with the given name and a prototype
extending the super constructor’s prototype. This is followed
by the meta-data for each record, machine, and event, which
contains various information about the type hierarchy, fields,
field types, etc. All this information is necessary for our li-
brary to be able to provide generic and application-agnostic
operations. One such operation we mentioned before, in Sec-
tion 4.1, where we talked about how DOM elements hav-
ing the data-trigger-event attribute are automatically
turned into event triggers.

Let us finally take a look at how asynchronous message
sending is implemented on the client side, that is, how such

an operation can be specified declaratively, directly in an
HTML template file, without writing any Ajax code.

The chat_room.html.erb template (Figure 4(c)) contains
a text input field and a send button, with the intention to
trigger the SendMsg event and send whatever message is in
the text input field whenever the send button is pressed. To
achieve that, we added three HTML5 data attributes to the
send button element; we used data-trigger-event, as
before, to denote the type of the event, and two data-param
attributes to specify the two mandatory arguments of the
SendMsg event, room and msgText.

The value for the room parameter is known statically—
it is exactly the chat room object for which the chat_room
template is being executed. However, that value is an object,
so it is not possible to directly embed it in the template as
a string-valued attribute. Instead, we inline a small piece of
JavaScript code that, when executed, creates an equivalent
room on the client side. Knowing the id of that room, and
having a full replica of the model classes on the client, that
code is as simple as new ChatRoom(<%=room.id%>)3;
we only need to tell our JavaScript library that the value we
are passing is not a string, but code, by enclosing it in ${}4.

The value for the msgText parameter is not known stat-
ically, and has to be retrieved dynamically when the user
presses the send button. As in the previous case, we can spec-
ify that by inlining a piece of JavaScript that finds the input
text field by its id (using the jQuery syntax $(’#<id>’))
and reads its current value (by calling the .val() function).

An alternative approach to declaratively specifying event
parameter bindings, that would require no JavaScript from
the programmer, would be to somehow annotate the input
text field (e.g., again by using the HTML5 data attributes) as
the designated value holder for the msgText event param-
eter. A drawback of such an approach is that, in general,
it leads to code fragmentation, where a single conceptual
task can be specified in various different (and not predeter-
mined) places, potentially significantly reducing code read-
ability. For that reason, we thought it was better to have all
the code and specification in one place, even if the user has
to write some JavaScript.

4.5 Dynamic Template-Based Rendering Engine
To go along with this declarative approach for programming
the core business logic of an event-based system, RED im-
plements a mechanism for declaratively building graphical
user interfaces. The main responsibility of this mechanism

3 Our JavaScript library actually does not complain if a numeric id is passed
where a record object is expected—having all the meta-model information
available, it can easily find the event parameter by the name, look up its
type, and reflectively construct an instance of that type. Instead of using
this shortcut (which works only for record objects) in the main text, we
used a more verbose version to illustrate a more general approach and all of
its power and flexibility.
4 Note that this dollar sign has nothing to do with the jQuery dollar sign;
it is rather our own syntax for recognizing attribute values that should be
computed by evaluating the JavaScript code inside ${}.

/* ------------- record signatures ------------- */
var AuthUser = Red.mk_record("AuthUser");
var User = Red.mk_record("User", AuthUser);
var Msg = Red.mk_record("Msg");
var ChatRoom = Red.mk_record("ChatRoom");
var AuthClient = Red.mk_record("AuthClient");
var AuthServer = Red.mk_record("AuthServer");
var Client = Red.mk_record("Client", AuthClient);
var Server = Red.mk_record("Server", AuthServer);

/* ------------- event signatures ------------- */
var Register = Red.mk_event("Register");
var SignIn = Red.mk_event("SignIn");
var SignOut = Red.mk_event("SignOut");
var Unregister = Red.mk_event("Unregister");
var CreateRoom = Red.mk_event("CreateRoom");
var JoinRoom = Red.mk_event("JoinRoom");
var SendMsg = Red.mk_event("SendMsg");

/* ------------- record meta ------------- */
ChatRoom.meta = new Red.Model.RecordMeta({
"name" : "ChatRoom",
"short_name": "ChatRoom",
"sigCls" : ChatRoom,
"abstract" : false,
"parentSig" : Red.Model.Record,
"subsigs" : [],
"fields" : [
new Red.Model.Field({
"parent" : ChatRoom,
"name" : "name",
"type" : "String",
"multiplicity": "one" }),
new Red.Model.Field({
"parent" : ChatRoom,
"name" : "members",
"type" : User,
"multiplicity": "set" }),
new Red.Model.Field({
"parent" : ChatRoom,
"name" : "messages",
"type" : Msg,
"multiplicity": "seq",
"owned" : true })]

});
...

/* ------------- event meta ------------- */
SendMsg.meta = new Red.Model.EventMeta({
"name" : "SendMsg",
"short_name": "SendMsg",
"sigCls" : SendMsg,
"abstract" : false,
"parentSig" : Red.Model.Event,
"subsigs" : [],
"params" : [
new Red.Model.Field({
"parent" : SendMsg,
"name" : "room",
"type" : ChatRoom,
"multiplicity": "one" }),
new Red.Model.Field({
"parent" : SendMsg,
"name" : "msgText",
"type" : "String",
"multiplicity": "one" })]

});
...

Figure 6. Excerpt from the JavaScript translation of the do-
main model, which the client-side code can program against.

is to automatically and efficiently update and re-render the
GUI (or relevant parts of it) when a change is detected in the
data model. This idea is similar to the concept of “data bind-
ings” (e.g., [52, 56]), but is more general and more flexible.

Traditionally, GUIs are built by first constructing a ba-
sic visual layout, and then registering callbacks to listen for
events and dynamically update bits and pieces of the GUI
when those events occur. In contrast, we want the basic vi-
sual layout (like the one in Figure 4) to be sufficient for a
dynamic and fully responsive GUI. In other words, we want
to let the designer implement (design) a single static visu-
alization of the data model, and from that point on rely on
the underlying mechanisms to appropriately and efficiently
re-render that same visualization every time the underlying
data changes.

To implement this approach, we expand on the well-
known technique of writing GUI widgets as textual tem-
plates with embedded formulas (used to display actual val-
ues from the data model) and using a template engine [7] to
evaluate the formulas and paste the results in the final out-
put. To specify input templates, we use the ERB language
(the default template language in Rails) without any mod-
ifications. Unlike the existing renderer for ERB, however,
our system detects and keeps track of all field accesses that
happen during the evaluation of embedded formulas. Conse-
quently, the result of the rendering procedure is not a static
text, but a view tree where embedded formulas are hierarchi-
cally structured and associated with corresponding field ac-
cesses (as illustrated in Section 4.1). That view tree is what
enables the permanent data bindings—whenever the under-
lying data changes, the system can search the tree, find the
affected nodes, and automatically re-render them.

In the context of web applications, only a textual response
can be sent back to the client. Therefore, when an HTTP
request is received, the associated template is rendered, and
a view tree is produced. The view tree is saved only on the
server side. The client receives the same plain-text result that
the standard ERB renderer would produce along with some
meta-data to denote node delimiters; the browser renders
the plain-text response, and our client-side JavaScript library
saves the meta-data. When a data change is detected on the
server-side, the server finds and re-renders the affected nodes
and pushes plain-text node updates to corresponding clients;
each client then, already having the meta-data, knows where
to cut and paste the received update to automatically refresh
the GUI.

5. Automated Reasoning and Analysis
Although SUNNY simplifies the development of interactive
web applications, and by construction eliminates a whole
class of concurrency bugs, it does not eliminate all possi-
ble bugs. The user implementation of events can still fail to
satisfy the functional requirements of the application. Ap-
plying the standard software quality assurance techniques to
SUNNY programs is, therefore, still of high importance. We
designed SUNNY with this in mind, and in this section we
discuss how our programming paradigm is amenable to tech-

niques like automated testing, model checking, and software
verification.

5.1 Testing
Testing is the most widely used method for checking pro-
gram correctness. Testing an event-driven system is both
challenging and time consuming, because one needs to gen-
erate realizable traces (sequences of events). The challeng-
ing part in discovering realizable traces is that the precon-
ditions need to hold for each event in the sequence, and
the time-consuming part is that the traces can be long, and
therefore, there can be too many of them to explore manu-
ally. Having both preconditions and postconditions of each
event formally specified in our event model allows us to use
symbolic-execution techniques [36], and build on recent suc-
cesses in this domain [69], to discover possible traces auto-
matically.

A symbolic execution engine would start with an empty
path condition; at each step, the engine would consider all
events from the model and discover the ones that are realiz-
able from the current state (this can be done by using an au-
tomated SMT solver [12, 19] to check if there exists a model
in which both the current path condition and the event’s pre-
condition are satisfied). When an event is found to be real-
izable, a new state is created and the event’s postcondition
is appended to the path condition for the new state. Since at
each step of this process multiple events may be found to
be realizable, the algorithm proceeds by exploring the entire
graph, effectively yielding a state diagram by the end. Fig-
ure 7 depicts the state diagram extracted from the running
example (Figure 1). Each node in the diagram describes a
symbolic state and each edge describes a transition that can
happen when the condition on the edge is satisfied and the
event is executed. For example, moving from the initial state
to the next state requires that a user initiates a SignIn event
and provides a correct name and password. This transition
results in the execution of the postcondition of the SignIn

event.
In addition to automated testing of traces, a state diagram

can be used to automatically create a test environment –
the state necessary before the execution of a test – for all
unit tests. Considering Figure 1, if a developer wants to test
the SendMsg event, there should be a registered user in a
room. To create such a state, a sequence of other events have
to be executed before SendMsg. Inferring from Figure 7,
SignIn and CreateRoom event handlers must be executed.
Executing these events requires solving the precondition of
each event on the path.

Functional unit testing of events also becomes easier. A
black-box unit test for the SendMsg event would have to
check that the message sent indeed gets added to the list of
messages of the given room, that it gets added to the very
end of the list, that no other messages get dropped from that
list, etc. In SUNNY, this can be done directly, without having

∃ email, pswd •
u = User.find_by_email(email) and

u.authenticate(pswd) /
SignIn :email=>email,

:pswd=>pswd

∃ name •
name != "" &&

!server.rooms.find_by_name(name) /
CreateRoom :roomName=>name

∃ room •
server.rooms.include?(room) /
JoinRoom :room=>room

true /
SendMsg

Figure 7. State diagram for the IRC example

to set up any mock objects, e.g., to abstract the network and
the actual peer points, as no network is required.

In a traditional event-driven system, an implementation
of a single functional unit is often fragmented over several
classes. Consider the SignIn event: the user sends his or
her credentials to the server, the server checks the authen-
ticity, sends back the result, and based on that result, both
the server and the client update their local state. In the tradi-
tional model, the client-side code can initiate the event (by
sending a message to the server), and schedule a continu-
ation that will run when a response is received. The con-
tinuation, which is typically a separate procedure, then im-
plements the logic for updating the local state based on the
server response. Such fragmented code is very hard to test as
a unit, so it is often turned into an integration test, and inte-
gration tests are typically more laborious to write and require
more elaborate setup. In SUNNY, because of the shared view
of the global data, there is no need for such fragmentation;
the event handler can be a single procedure that updates only
the global data model, meaning that it can easily be tested as
a unit.

5.2 Model Checking
Loosely coupled events without explicit synchronization and
communication allow model checking to scale. The source
of non-determinism in SUNNY models is the order in which
events are executed. Because of the non-determinism in
scheduling, a model may exhibit different behavior for the
same input (i.e., the same values of event parameters) with
a different order of event execution. The goal of software
model checking is conceptually to explore all orders to en-
sure the correct execution. Note that the exploration need
consider only the semantics of the model and not the seman-
tics of the underlying runtime system. Based on our prior ex-
perience with model checking actor programs [39, 65], X10
programs [27], and database applications [26], we believe
that an efficient model checking approach can be developed
for our new paradigm.

For example, a model checker can be used to check end-
to-end properties for all scenarios that the system can pos-

sibly exhibit. One such property could be “it is impossible
that at one point two different chat rooms have two differ-
ent users with the same name”. The tool can automatically
either confirm that the property in question always holds, or
find a scenario (i.e., a sequence of events leading to a state)
in which the property is violated.

5.3 Verification and Program Synthesis
The technique of discovering realizable sequences of events
can also be used to synthesize higher-level operations. For
example, a novice IRC user may wonder what are the steps
that need to be taken in order to post a message in a chat
room. Given such an end-goal, a tool can discover that one
possible scenario to achieve that goal is to first SignIn,
then JoinRoom, and finally SendMsg. An alternative solu-
tion would be to CreateRoom instead of JoinRoom at the
second step. These scenarios can be displayed to the de-
signer and serve as a guide to better understanding possible
functionalities of the system (which can be especially useful
for bigger systems with many possible events).

6. Discussion
In the previous sections we described several new techniques
and concepts this paper proposes to research and develop.
In this section we discuss some benefits that directly follow
from or are enabled by those techniques.

It can be argued that designing a system around a given
property is the best way to ensure that the system correctly
implements that property [34]. This paper is certainly in
that spirit since it encourages the programmer to carefully
design and specify the core part of an event-driven system,
i.e., the event model. Furthermore, the programmer does so
mostly declaratively, by specifying key properties of events
in isolation, without being bogged down by the operational
details of the entire distributed system.

We believe that, in most cases, even the event effects
(postconditions) might be specified fully declaratively, and
yet efficiently executed. We showed previously that declar-
ative specifications can be executable (within a traditional
object-oriented language) with certain performance handi-
caps [48]. Moreover, Near and Jackson [53] showed that, in a
setting of a typical web application, most server-side actions
(or “events” in our terminology) boil down to (possibly con-
ditional) assignments to variables, which is still declarative,
but much easier to execute efficiently. They also showed how
this fact can be exploited to build a scalable verifier, which
is of comparable complexity to executing a declarative post-
condition in the first place.

Our system also lends itself to model-based user inter-
face software tools, which, by definition, take a high-level
declarative model of an interactive system and help the pro-
grammer build a user interface (UI) for it (either through an
integrated development environment or automated code gen-
eration) [61]. For example, a UI can be automatically gener-

ated from a SUNNY model that contains generic widgets for
querying existing records, creating new instances of records
defined in the model, creating associations between existing
records via the fields defined in the model, triggering events,
and so on, all while respecting the model-defined invariants,
event preconditions, and privacy policies. Some existing im-
plementations of scaffolding can already generate a graphi-
cal UI that supports standard CRUD operations (create, read,
update, delete) for all data model classes; in contrast, with
SUNNY models scaffolding of events is supported, thus en-
abling a fully generic user interface that actually covers the
full functionality of the system.

7. Evaluation
7.1 Comparison with a Web Application in Meteor
We implemented the IRC example in Meteor, a framework
designed specifically for fast development of modern, inter-
active web applications, and compared it to the presented
implementation in SUNNY. We make no strong claims based
on this simple case study; we only quantify the effort needed
to develop this example (in terms of the number of lines of
code) and report on our experiences using both systems.

SUNNY and Meteor share the idea that a single data
model should be used across the application, even in a dis-
tributed setting, and that any updates to it should be auto-
matically propagated to all connected nodes. The main dif-
ference is in the representation of the shared data. Meteor
relies on MongoDB [1], a NoSQL database which stores
data as untyped JSON documents, meaning that the database
schema is fully dynamic, and can change anytime. In con-
trast, models in SUNNY are strongly typed, which is essen-
tial to achieving a precise code analysis, but also necessary
for implementing various tools, such as the GUI builder.

For comparison, our implementation of the IRC example
in Meteor is given in Figure 8. The number of lines of code
is about the same, but we believe that SUNNY models tend
to be more readable because they make much more explicit
both conceptual and structural information about the system.
Furthermore, because all the concepts in SUNNY models
have a precisely defined semantics, these models can serve
as a good documentation on their own.

Another consequence of lack of structure in the Meteor
code is the tendency to tightly couple business logic and
GUI code. For example, events are often directly tied to
JavaScript UI events (e.g., lines 6, 24, 44), and their handlers
can fetch values directly from the DOM elements (e.g., lines
7, 8, 25, 26).

We believe that our model-based paradigm has a clear ad-
vantage over the dynamic NoSQL model when it comes to
applying tools and techniques for various code analyses. In
other words, Meteor is mainly focused on providing a plat-
form where data updates are automatically propagated to rel-
evant clients; we are also concerned about the software engi-
neering aspects of the system, its overall design, correctness,

testability, and analyzability, as described in Section 5. Most
of the ideas from that section would be difficult to apply to
Meteor programs.

1 Rooms = new Meteor.Collection("rooms");
2

3 if (Meteor.isClient) {
4 // Create Room
5 Template.irc.events({
6 ’click input.createRoom’: function () {
7 var roomName = $("#roomName").val();
8 var userName = $("#userName").val();
9 // Ignore empty names

10 if (roomName) {
11 var room = Rooms.findOne({name: roomName});
12 if (room == undefined) {
13 Rooms.insert({name: roomName, creator: userName,
14 members: [userName], messages: []});
15 Session.set("userName", userName);
16 Session.set("user_id", userName);
17 }
18 }
19 }
20 });
21

22 // Join Room
23 Template.irc.events({
24 ’click input.joinRoom’ : function () {
25 var roomName = $("#roomName").val();
26 var userName = $("#userName").val();
27 // Check if room exist
28 var room = Rooms.findOne({name: roomName});
29 if (room != undefined) {
30 // Check if name is taken
31 var userRoom = Rooms.findOne({
32 members: { $in: [userName] }});
33 if (userRoom == undefined) {
34 Rooms.update({_id: room._id},
35 {$push: {members: userName}});
36 Session.set("userName", userName);
37 }
38 }
39 }
40 });
41

42 // Send a Message
43 Template.irc.events({
44 ’click input.send’: function () {
45 var userName = Session.get("userName");
46 // Create a message to be sent
47 var message = Session.get("userName") + ": " +
48 $("#message").val() + "\n";
49 var room = Rooms.findOne({
50 members: { $in: [Session.get("userName")] }});
51 Rooms.update({_id: room._id},
52 {$push: {messages: message}});
53 }
54 });

Figure 8. Implementation of the IRC example in Meteor.

7.2 Comparison with a Client-Server System in Java
In this section, we quantify the effort it took us to build a
relatively simple real-time, multi-player game in Java, and
discuss how using a technology like SUNNY would signifi-
cantly simplify certain steps in the process. In fact, the chal-
lenges we encountered while developing this game actually
inspired the SUNNY project.

SNAP’N’SHOT [2] is a twist on paintball. In paintball,
players carry paint guns and shoot one another by firing paint
bullets. In SNAP’N’SHOT, players carry cell phones and
shoot one another by taking pictures. The game targets the

Android platform and is implemented entirely in Java as a
client-server system.

The main challenge developing this game was establish-
ing a solid architecture for concurrent event processing and
real-time client notification. The effort to manually imple-
ment a message passing backbone, synchronize accesses to
shared data, maintain connections alive, and keep all the
clients updated resulted in 4000 lines of Java code, as well
as several tough concurrency bugs along the way.

All that effort could be reduced to writing a simple model
in SUNNY, similar to the one we used for the IRC exam-
ple. SNAP’N’SHOT defines events that are equivalent to
CreateRoom, JoinRoom and SendMsg (except that they are
called CreateGame, JoinGame, and ShotFired); its data
model also matches that of IRC quite closely.

We have implemented a prototype of SUNNY for client-
server Java programs (communicating over sockets), but we
have yet to retrofit the implementation of SNAP’N’SHOT
to use the new technology.

8. Related Work
8.1 Event-Driven Programming
There are two main styles of building distributed systems:
(1) asynchronous or event-driven, and (2) using threads and
locks. There has been a lot of debate over whether one is
superior to the other. Dabek et al. [17] convincingly argue
that event-driven systems lead to more robust software, offer
better performance, and can be easily programmed given an
appropriate framework or library.

There exist many frameworks or libraries designed to
support the event-driven programming paradigm. They are
all similar to ours in that they provide an easy, event-
driven way of writing distributed applications. Meteor, pre-
viously discussed, is one such library; another popular one is
Node.js [66]. They eliminate the need to manually manage
threads and event queues, but typically do not provide an
abstract model of the system, amenable to formal analysis.

Approaches like TinyGALS [14] and ESP∗ [64], which
focus on programming embedded systems, also provide
special support for events. The TinyGALS framework ad-
ditionally offers a structured model of the whole system and
also implements global scheduling and event handling. It
uses code generation to translate models into an executable
form, unlike ESP∗ which embeds the Statechart [31] con-
cepts in a high-level general-purpose (Java-like) language.
ESP∗ mainly focuses on correctly implementing the State-
chart semantics.

Tasks [23] provides language support for complex tasks,
which may consist of multiple asynchronous calls, to be
written as a single sequential unit (procedure), without
having to explicitly register callback functions. This is
achieved by a translation of such sequential procedures to
a continuation-passing style code. Tasks is not concerned

with specifying the top-level event model of the system, and
is orthogonal to our framework.

The implicit invocation mechanism [25] provides a for-
mal way of specifying and designing event-driven systems.
Events and the bindings of events to methods (handlers) are
decoupled and specified independently (so that the handler
can be invoked “implicitly” by the runtime system). This
provides maximum flexibility but can make systems difficult
to understand and analyze. In our framework, we decided to
take the middle ground by requiring that one event handler
(the most essential one, the one that implements the busi-
ness logic of the system by updating the core data model) is
explicitly bound to an event.

Functional Reactive Programming [21] is a programming
paradigm for working with mutable values in a functional
programming language. Its best known application is in fully
functional, declarative programming of graphical user in-
terfaces that automatically react to changing values, both
continuous (like time, position, velocity) and discrete (also
called events). Implementations of this paradigm include
Elm [16] (a standalone language that compiles to HTML,
CSS and JavaScript) and Flapjax [45] (an implementation
embedded in JavaScript, designed specifically to work with
Ajax). Our approach to self-updating GUI can also be seen
as a specific application of functional reactive programming.

8.2 Data-Centric Programming
Another, increasingly popular, method for specifying dis-
tributed data management is using Datalog-style declarative
rules and has been applied in the domain of networking (e.g.,
Declarative Networking [42], Overlog [41]), distributed
computing (e.g., the BOOM project [10], Netlog [29]), and
also web applications (e.g., Webdamlog [9], Reactors [22],
Hilda [70], Active XML [8]). The declarative nature of Dat-
alog rules makes this method particularly suitable for im-
plementing intrinsically complicated network protocols (or
other algorithms that have to maintain complex invariants);
manually writing an imperative procedure that correctly im-
plements the specification and respects the invariants is a lot
more difficult in this case.

By contrast, we focus on applications that boil down
to simple data manipulation in a distributed environment
(which constitutes a large portion of today’s web applica-
tions), and one of our goals is to provide a programming
environment that is easy to use by even non-expert pro-
grammers who are already familiar with the object-oriented
paradigm.

8.3 Code Generation and Program Synthesis
The idea of using increasingly higher-level abstractions for
application programming has been a common trend since
the 1950s and the first Autocoder [28] systems which of-
fered an automatic translation from a high-level symbolic
language into actual (machine-level) object code. The main
argument is that software engineering would be easier if pro-

grammers could spend their time editing high-level code and
specifications, rather than trying to maintain optimized pro-
grams [11]. Our approach is well aligned with this idea, with
a strong emphasis on a particular and widely used domain of
web application programming.

Executable UML [44] (xUML) also aims to enable pro-
gramming at a high level of abstraction by providing a for-
mal semantics to various models in the UML family. Model-
driven development approaches based on xUML (e.g., [46,
47]) translate the UML diagrams by generating code for the
target language, and then ensure that the diagrams and the
code are kept in sync. Our system is conceptually similar,
and it also follows the model-driven development idea, but
instead of using code generation to translate models (dia-
grams) to code, we want to make models first-class citizens
and to have an extensive framework that implements the de-
sired semantics by essentially interpreting the models at run-
time (an actual implementation may generate and evaluate
some code on the fly to achieve that). Minimizing the amount
of auto-generated code makes the development process more
convenient, as there is no need to regenerate the code every
time the model changes.

Similar to code generation, the main goal of program
synthesis is also to translate code from a high-level (of-
ten abstract, declarative) form to a low-level executable lan-
guage. Unlike code generation, however, a simple transla-
tion algorithm is often not sufficient; instead, more advanced
(but typically less efficient) techniques (e.g., search algo-
rithms, constraint solving, etc.) have to be used. The state
of the art in program synthesis focuses on synthesizing pro-
grams from various descriptions, e.g,. sketches [63], func-
tional specifications [37], input-output pairs [32], graphical
input-output heaps [62], or first-order declarative pre- and
post-conditions [40].

The core of our framework is a little further from the tra-
ditional program synthesis techniques; although it does aim
to provide a high-level surface language for specifying/mod-
eling various aspects of the system (events, privacy policies,
GUI templates), it does not perform any complex search-
based procedure to synthesize a piece of code. Given the
declarative and formal nature of our models, however, pro-
gram synthesis is still relevant to this work, as it might be ap-
plied to implement some advanced extensions, e.g., to syn-
thesize higher-level operations from basic events (as briefly
discussed in Section 5).

8.4 Declarative Privacy Policies
In their most general form, policies are used to map each
user (subject), resource(object) and action to a decision, and
are consulted every time an action is performed on a resource
by a user [38]. In our framework, resources correspond to

fields, actions correspond to field accesses5, and the user is
the entity executing the action.

Systems for checking and ensuring privacy policies are
typically based either on Access Control Lists (ACL) or
Information Flow (IF). ACLs attach a list of permissions
to concrete objects, whereas IF specifies which flows (e.g.,
data flowing from variable x to variable y) are allowed in
the system. In both cases, when a violation is detected, the
operation is forbidden, for example by raising an exception.

Our security model is more in the style of access control
lists, in the sense that we attach policies to statically defined
fields (as opposed to arbitrary pieces of data), but it has a
flavor of information flow as well, since we automatically
check all data flowing to all different machines and ensure
that no sensitive information is ever sent to a machine that
does not have required permissions (which, in our system,
means that there is no policy that explicitly restricts that ac-
cess). Similar to the access modifiers in traditional object-
oriented languages (e.g., private, protected, public,
etc.), our model also focuses on specifying access permis-
sions for various fields. However, the difference is that our
permission policies are a lot more expressive and more flexi-
ble than static modifiers, and can also depend on the dynamic
state of the program. In addition, they are completely decou-
pled from the data model, so the policies can be designed
and developed independently.

Information flow systems either rely on sophisticated
static analysis to statically verify that no violating flows can
exist (e.g., Jif [50, 51]), or dynamically labeling sensitive
data and tracking where it is flowing (e.g., RESIN [72] or
Dytan [15]). Unlike most other information flow systems,
Jeeves [71] allows policies that are specified declaratively
and separately from the rest of the system, and instead of
halting the execution when a violation is detected, it relies
on a runtime environment to dynamically compute values of
sensitive data before it is disclosed so that all policies are
satisfied. This approach is similar to our serialization tech-
nique when we automatically hide the sensitive field values
before the data is sent to a client.

Margrave [18, 24, 54] implements a system for analyzing
policies. Similar to our system, Margrave policies are declar-
ative and independent of the rest of the system (which they
call “dynamic environment”). Their main goal, however, is
to statically analyze policies against a given relational rep-
resentation of the environment, and to check if a policy can
be violated in any possible (feasible) scenario, whereas we
are only interested in checking field accesses at runtime. To
enable efficient analysis, the Margrave policy language is
based on Datalog and is more restrictive than the first-order
logic constraints that we allow in our policies.

5 Our policy language currently does not allow differentiating between reads
and writes, but it could; we will consider adding that extension if we
encounter examples where that distinction proves to be necessary.

Attribute-based access control (ABAC) adds attributes
(name → value pairs) to any entity in the system (e.g.,
user, resource, subject, object, etc.) so that policies can be
expressed in terms of those attributes rather than concrete
entities. Our system can be viewed as an instantiation of this
model: our fields can be seen as attributes, machines as sub-
jects, and records as resources; both records and machines
can have fields, and policies are free to query field values.
Many other ABAC systems have been designed and imple-
mented (e.g., [49, 67, 73]), each, however, using somewhat
different model from the other. Jin et al. [35] recently pro-
posed a formal ABAC model to serve as a standard, and used
it to express the three classical access control models (discre-
tionary [59], mandatory [58], and role-based [60]).

8.5 GUI Builders
Our dynamic template engine for building graphical user
interfaces, combines two existing techniques: data binding
and templating.

Data binding allows select GUI widget properties to be
bound to concrete object fields from the domain data model,
so that whenever the value of the field changes, the widget
automatically updates its property. Changes can optionally
be propagated in the other direction as well, that is, when
the property is changed by the user, the corresponding field
value gets updated simultaneously.

Templating, on the other hand, takes a free-form text
input containing a number of special syntactic constructs
supported by the engine which, at the time of rendering,
get dynamically evaluated against the domain data model
and get inlined as strings in the final output. Such constructs
can include embedded expressions (formulas), control flow
directives (if, for loops, etc.), or, in a general case, arbitrary
code in the target programming language. This adds extra
flexibility, as it allows generic programming features to be
used in conjunction with static text, enabling widgets with
dynamic layouts to be defined.

Even though existing data binding implementations (e.g.,
WPF and their textual UI layout language XAML [52] for
.NET, UI binder [56] for Android, JFace [30] for Java, Back-
bone [55] for JavaScript) allow for textual widget templates,
those templates are typically allowed to contain only sim-
ple embedded expressions (e.g., a path to an object’s field),
only at certain positions in the template (to provide bind-
ings only for select widget properties). No control struc-
tures are allowed, which makes it difficult to design a widget
that chooses from two different layouts depending on the
state of the application. Conversely, existing template en-
gines (e.g., ASP [43] for .NET, Haml [4] and ERB [3] for
Ruby, FreeMarker [68] for Java) provide all that extra flex-
ibility, but do not preserve data bindings, making it difficult
to push changes to the client when the model changes.

In this work, we combine these two techniques, to achieve
the flexibility of generic template engines and still have the
luxury of pushing the changes to the clients and automati-

cally re-rendering the UI. The main reason why that makes
the problem more difficult than the sum of its parts is the
fact that formulas in the template can evaluate to arbitrary
elements of the target language (e.g., HTML), including lan-
guage keywords, special symbols, tag names, etc. This is un-
like the existing UI frameworks with data-bindings, where
all bindings are assigned to (syntactically strictly defined)
widget properties.

9. Conclusion
Advances in web frameworks have made it much easier
to develop attractive, featureful web applications. Most of
those efforts are, however, mainly concerned with program-
ming servers and their clients in isolation, providing only a
set of basic primitives for intercommunication between the
two sides, thus imposing a clear boundary. We believe that
there is an entire class of web applications, and distributed
programs in general, for which that boundary can be suc-
cessfully erased and removed from the conceptual program-
ming model the programmer has to bear in mind. SUNNY
is a generic programming platform for developing programs
that fall into that class.

Acknowledgments
This material is based upon work partially supported by
the National Science Foundation under Grant Nos. CCF-
1138967, CCF-1012759, and CCF-0746856. We would like
to thank anonymous reviewers for their thoughtful com-
ments on the draft of this paper.

References
[1] MongoDB home page. http://www.mongodb.org/.

[2] SNAP’N’SHOT home page. http://www.snapnshot.
me/.

[3] Ruby’s native templating system. http://ruby-doc.
org/stdlib-1.9.3/libdoc/erb/rdoc/ERB.
html.

[4] Haml template engine for Ruby. http://haml.info.

[5] Meteor - Pure JavaScript web framework. http://
meteor.com.

[6] Ruby on Rails web framework. http://rubyonrails.
org/.

[7] Template engine for web applications. http:
//en.wikipedia.org/wiki/Template_engine_
%28web%29.

[8] S. Abiteboul, O. Benjelloun, and T. Milo. Positive active
XML. In Proceedings of the Symposium on Principles of
Database Systems, pages 35–45, 2004.

[9] S. Abiteboul, M. Bienvenu, A. Galland, and E. Antoine. A
rule-based language for Web data management. In Proceed-
ings of the Symposium on Principles of Database Systems,
pages 293–304, 2011.

[10] P. Alvaro, T. Condie, N. Conway, K. Elmeleegy, J. Heller-
stein, and R. Sears. Boom analytics: exploring data-centric,

http://www.mongodb.org/
http://www.snapnshot.me/
http://www.snapnshot.me/
http://ruby-doc.org/stdlib-1.9.3/libdoc/erb/rdoc/ERB.html
http://ruby-doc.org/stdlib-1.9.3/libdoc/erb/rdoc/ERB.html
http://ruby-doc.org/stdlib-1.9.3/libdoc/erb/rdoc/ERB.html
http://haml.info
http://meteor.com
http://meteor.com
http://rubyonrails.org/
http://rubyonrails.org/
http://en.wikipedia.org/wiki/Template_engine_%28web%29
http://en.wikipedia.org/wiki/Template_engine_%28web%29
http://en.wikipedia.org/wiki/Template_engine_%28web%29

declarative programming for the cloud. In Proceedings of the
European Conference on Computer Systems, pages 223–236,
2010.

[11] R. Balzer, T. E. Cheatham, Jr., and C. Green. Software tech-
nology in the 1990’s: Using a new paradigm. IEEE Computer,
16(11):39–45, 1983.

[12] C. Barrett and S. Berezin. CVC Lite: A new implementa-
tion of the cooperating validity checker. In Proceedings of
the International Conference on Computer Aided Verification,
pages 515–518, 2004.

[13] F. P. Brooks, Jr. The mythical man-month (anniversary ed.).
Addison-Wesley, 1995.

[14] E. Cheong, J. Liebman, J. Liu, and F. Zhao. TinyGALS: a
programming model for event-driven embedded systems. In
Proceedings of the Symposium on Applied Computing, pages
698–704, 2003.

[15] J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic
taint analysis framework. In Proceedings of the International
Symposium on Software Testing and Analysis, pages 196–206,
2007.

[16] E. Czaplicki. Elm: Concurrent FRP for functional GUIs.
2012.

[17] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazières, and
R. Morris. Event-driven programming for robust software. In
Proceedings of the SIGOPS European Workshop, pages 186–
189, 2002.

[18] D. J. Dougherty, K. Fisler, and S. Krishnamurthi. Specifying
and reasoning about dynamic access-control policies. In Pro-
ceedings of the International Joint Conference on Automated
Reasoning, pages 632–646, 2006.

[19] B. Dutertre and L. de Moura. A fast linear-arithmetic solver
for DPLL(T). In Proceedings of the International Conference
on Computer Aided Verification, pages 81–94, 2006.

[20] J. Edwards. Coherent reaction. In Conference Companion
on Object Oriented Programming Systems Languages and
Applications, pages 925–932, 2009.

[21] C. Elliott and P. Hudak. Functional reactive animation. In
Proceedings of the International Conference on Functional
Programming, pages 263–273, 1997.

[22] J. Field, M. Marinescu, and C. Stefansen. Reactors: A data-
oriented synchronous/asynchronous programming model for
distributed applications. Theoretical Computer Science, 410
(2):168–201, 2009.

[23] J. Fischer, R. Majumdar, and T. Millstein. Tasks: Language
support for event-driven programming. In Proceedings of the
Workshop on Partial Evaluation and Program Manipulation,
pages 134–143, 2007.

[24] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz. Verification and change-impact analysis of access-
control policies. In Proceedings of the International Confer-
ence on Software Engineering, pages 196–205, 2005.

[25] D. Garlan and D. Notkin. Formalizing design spaces: Implicit
invocation mechanisms. In Proceedings of the Formal Soft-
ware Development Methods, pages 31–44, 1991.

[26] M. Gligoric and R. Majumdar. Model checking database
applications. In Proceedings of the International Conference

on Tools and Algorithms for the Construction and Analysis of
Systems, pages 549–564, 2013.

[27] M. Gligoric, P. C. Mehlitz, and D. Marinov. X10X: Model
checking a new programming language with an "old" model
checker. In Proceedings of the International Conference on
Software Testing, Verification and Validation, pages 11–20,
2012.

[28] R. Goldfinger. The IBM type 705 autocoder. In Papers pre-
sented at the Joint ACM-AIEE-IRE Western Computer Con-
ference, pages 49–51, 1956.

[29] S. Grumbach and F. Wang. Netlog, a rule-based language for
distributed programming. Proceedings of the International
Conference on Practical Aspects of Declarative Languages,
pages 88–103, 2010.

[30] J. Guojie. Professional Java Native Interfaces with SWT/J-
Face. Wiley, 2006.

[31] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of computer programming, 8(3):231–274, 1987.

[32] W. R. Harris and S. Gulwani. Spreadsheet table transforma-
tions from examples. In Proceedings of the Conference on
Programming Language Design and Implementation, pages
317–328, 2011.

[33] D. Jackson. Software Abstractions: Logic, language, and
analysis. MIT Press, 2006.

[34] D. Jackson, M. Thomas, L. I. Millett, et al. Software for De-
pendable Systems: Sufficient Evidence? National Academies
Press, 2007.

[35] X. Jin, R. Krishnan, and R. Sandhu. A unified attribute-
based access control model covering DAC, MAC and RBAC.
In Proceedings of the Data and Applications Security and
Privacy, pages 41–55. 2012.

[36] J. C. King. Symbolic execution and program testing. Com-
mun. ACM, 19(7):385–394, 1976.

[37] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete
functional synthesis. In Proceedings of the Conference on
Programming Language Design and Implementation, pages
316–329, 2010.

[38] B. W. Lampson. Protection. SIGOPS Oper. Syst. Rev., 8(1):
18–24, 1974.

[39] S. Lauterburg, M. Dotta, D. Marinov, and G. A. Agha. A
framework for state-space exploration of Java-based actor
programs. In Proceedings of the International Conference on
Automated Software Engineering, pages 468–479, 2009.

[40] K. R. M. Leino and A. Milicevic. Program extrapolation
with Jennisys. In Proceedings of the International Conference
on Object Oriented Programming Systems Languages and
Applications, pages 411–430, 2012.

[41] B. Loo, T. Condie, J. Hellerstein, P. Maniatis, T. Roscoe, and
I. Stoica. Implementing declarative overlays. In Operating
Systems Review, volume 39, pages 75–90, 2005.

[42] B. Loo, T. Condie, M. Garofalakis, D. Gay, J. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica.
Declarative networking. Communications of the ACM, 52(11):
87–95, 2009.

[43] M. MacDonald. Beginning ASP.NET 4.5 in C#. Apressus
Series. Apress, 2012.

[44] S. Mellor and M. Balcer. Executable UML: A Foundation for
Model-Driven Architecture. Addison-Wesley Object Technol-
ogy Series. Addison-Wesley, 2002.

[45] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,
M. Greenberg, A. Bromfield, and S. Krishnamurthi. Flapjax:
A programming language for Ajax applications. In Proceed-
ings of the Conference on Object Oriented Programming Sys-
tems Languages and Applications, pages 1–20, 2009.

[46] D. Milicev. Model-Driven Development with Executable
UML. Wrox Programmer to Programmer. Wiley, 2009.

[47] D. Milićev. Towards understanding of classes versus data
types in conceptual modeling and UML. Computer Science
and Information Systems, 9(2):505–539, 2012.

[48] A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson. Uni-
fying execution of imperative and declarative code. In Pro-
ceedings of the International Conference on Software Engi-
neering, pages 511–520, 2011.

[49] T. Moses et al. Extensible access control markup language
(XACML) version 2.0. Oasis Standard, 2005.

[50] A. C. Myers. JFlow: Practical mostly-static information flow
control. In Proceedings of the Symposium on Principles of
Programming Languages, pages 228–241, 1999.

[51] A. C. Myers and B. Liskov. Protecting privacy using the
decentralized label model. ACM Trans. Softw. Eng. Methodol.,
9(4):410–442, 2000.

[52] A. Nathan. WPF 4: Unleashed. Sams, 2010.

[53] J. P. Near and D. Jackson. Rubicon: Bounded verification of
web applications. In Proceedings of the International Sympo-
sium on the Foundations of Software Engineering, pages 1–11,
2012.

[54] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Kr-
ishnamurthi. The Margrave tool for firewall analysis. In Pro-
ceedings of the International Conference on Large Installa-
tion System Administration, pages 1–8, 2010.

[55] A. Osmani. Developing Backbone.js Applications. Oreilly and
Associate Series. O’Reilly Media, Incorporated, 2013.

[56] J. Ostrander. Android UI Fundamentals: Develop & Design.
Pearson Education, 2012.

[57] D. Rayside, V. Montaghami, F. Leung, A. Yuen, K. Xu, and
D. Jackson. Synthesizing iterators from abstraction functions.
In Proceedings of the International Conference on Genera-
tive Programming and Component Engineering, pages 31–40,
2012.

[58] R. S. Sandhu. Lattice-based access control models. Computer,
26(11):9–19, 1993.

[59] R. S. Sandhu and P. Samarati. Access control: principle
and practice. Communications Magazine, IEEE, 32(9):40–48,
1994.

[60] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman.
Role-based access control models. Computer, 29(2):38–47,
1996.

[61] E. Schlungbaum. Model-based user interface software tools
current state of declarative models. Technical report, Graph-
ics, visualization and usability center, Georgia institute of
technology, GVU tech report, 1996.

[62] R. Singh and A. Solar-Lezama. Synthesizing data structure
manipulations from storyboards. In Proceedings of the Sym-
posium on the Foundations of Software Engineering, pages
289–299, 2011.

[63] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and
V. Saraswat. Combinatorial sketching for finite programs. In
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems,
pages 404–415, 2006.

[64] V. C. Sreedhar and M.-C. Marinescu. From statecharts to ESP:
Programming with events, states and predicates for embedded
systems. In Proceedings of the International Conference on
Embedded Software, pages 48–51, 2005.

[65] S. Tasharofi, R. K. Karmani, S. Lauterburg, A. Legay,
D. Marinov, and G. Agha. TransDPOR: A novel dynamic
partial-order reduction technique for testing actor programs.
In Proceedings of the International Conference on Formal
Techniques for Distributed Systems, pages 219–234, 2012.

[66] S. Tilkov and S. Vinoski. Node.js: Using JavaScript to build
high-performance network programs. Internet Computing,
IEEE, 14(6):80 –83, 2010.

[67] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based frame-
work for attribute based access control. In Proceedings of the
Workshop on Formal Methods in Security Engineering, pages
45–55, 2004.

[68] N. Willy. Freemarker. Culp Press, 2012.

[69] X. Xiao, T. Xie, N. Tillmann, and J. de Halleux. Precise identi-
fication of problems for structural test generation. In Proceed-
ings of the International Conference on Software Engineering,
pages 611–620, 2011.

[70] F. Yang, J. Shanmugasundaram, M. Riedewald, and J. Gehrke.
Hilda: A high-level language for data-driven web applications.
In Proceedings of the International Conference on Data En-
gineering, pages 32–32, 2006.

[71] J. Yang, K. Yessenov, and A. Solar-Lezama. A language
for automatically enforcing privacy policies. In Proceedings
of the Symposium on Principles of Programming Languages,
pages 85–96, 2012.

[72] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Im-
proving application security with data flow assertions. In Pro-
ceedings of the Symposium on Operating Systems Principles,
pages 291–304, 2009.

[73] E. Yuan and J. Tong. Attributed based access control (ABAC)
for web services. In IEEE International Conference on Web
Services, 2005.

	Introduction
	Example
	Why The World Needs Sunny
	The Java Approach
	The Rails Approach
	The Meteor Approach

	The Sunny Approach
	Sample Execution
	Domain-Specific Programming Language
	Runtime Environment
	Online Code Generator
	Database Migrations
	ActiveRecord Classes and Reflections
	JavaScript Model for the Client-Side

	Dynamic Template-Based Rendering Engine

	Automated Reasoning and Analysis
	Testing
	Model Checking
	Verification and Program Synthesis

	Discussion
	Evaluation
	Comparison with a Web Application in Meteor
	Comparison with a Client-Server System in Java

	Related Work
	Event-Driven Programming
	Data-Centric Programming
	Code Generation and Program Synthesis
	Declarative Privacy Policies
	GUI Builders

	Conclusion

