
Preventing Arithmetic Overflows in Alloy

Aleksandar Milicevica,∗, Daniel Jacksona

aMassachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory,

32 Vassar St, Cambridge, MA 02139, USA

Abstract

In a bounded analysis, arithmetic operators become partial, and a differ-
ent semantics becomes necessary. One approach, mimicking programming
languages, is for overflow to result in wrap-around. Although easy to im-
plement, wrap-around produces unexpected counterexamples that do not
correspond to cases that would arise in the unbounded setting. This paper
describes a new approach, implemented in the latest version of the Alloy An-
alyzer, in which instances that would involve overflow are suppressed, and
consequently, spurious counterexamples are eliminated. The key idea is to
interpret quantifiers so that bound variables range only over values that do
not cause overflow.

Keywords: arithmetic overflows, partial functions, logic, first order, alloy

1. Introduction

A popular approach to the analysis of undecidable logics artificially bounds
the universe, making a finite search possible. In model checking, the bounds
may be imposed by setting parameters at analysis time, or even hardcoded
into the system description. The Alloy Analyzer [1] is a model finder for the
Alloy language that follows this approach, with the user providing a ‘scope’
for an analysis that sets the number of elements for each basic type.

Such an analysis is not sound with respect to proof; just because a coun-
terexample is not found (in a given scope) does not mean that no counterex-

∗Corresponding author
Email addresses: aleks@csail.mit.edu (Aleksandar Milicevic), dnj@csail.mit.edu

(Daniel Jackson)
URL: http://people.csail.mit.edu/aleks (Aleksandar Milicevic),

http://people.csail.mit.edu/dnj (Daniel Jackson)

Preprint submitted to Science of Computer Programming May 7, 2014

ample exists (in a larger scope). But it is generally sound with respect to
counterexamples. That is, no spurious counterexamples are generated, so if
a counterexample is found, the putative theorem does not hold.

The soundness of Alloy’s counterexamples is a consequence of the fact
that the interpretation of a formula in a particular scope is always a valid
interpretation for the unbounded model. There is no special semantics for
interpreting formulas in the bounded case. This is possible because the
relational operators are closed, in the sense that if two relations draw their
elements from a given universe of atoms, then any relation formed from
them (for example, by union, intersection, composition, and so on) can be
expressed with the same universe.

Arithmetic operators, in contrast, are not closed. For example, the sum
of two integers drawn from a given range may fall outside that range. So the
arithmetic operators, when interpreted in a bounded context, appear to be
partial and not total functions, and call for special treatment. One might
therefore consider applying the standard strategies that have been developed
for handling logics of partial functions.

A common strategy is to make the operators total functions by selecting
appropriate values when the function is applied out of domain. In some
logics (e.g., [2]) the value is left undetermined, but this approach is not
easily implemented in a search-based model finder. Alternatively, the value
can be determined. In the previous version of the Alloy Analyzer, arithmetic
operators were totalized in this way by giving them wraparound semantics,
so that the smallest negative integer is regarded as the successor of the largest
positive integer. This matches the semantics in some programming languages
(e.g., Java), and is relatively easy to implement. Unfortunately, however, it
results in counterexamples that would not arise in the unbounded context,
so the soundness of counterexamples is violated. This approach leads to
considerable confusion among users, and imposes the burden of having to
filter out the spurious cases.

Another common strategy is to introduce a notion of undefinedness—at
the value, term or formula level—and extend the semantics of the operators
accordingly. However this is done, its consequence will be that formulas ex-
pressing standard properties will not hold. The associativity of addition, for
example, will be violated, because the definedness of the entire expression
may depend on the order of summation. In logics that take this approach,
the user is expected to insert explicit guards that ensure that desired prop-
erties do not rely on undefined values. In our setting, however, where the
partiality arises not from any feature of the system being described, but from
an artifact of the analysis, demanding that such guards be written would be

2

unreasonable, and would violate Alloy’s principle of separating description
from analysis bounds.

This paper provides a different solution to the dilemma. Roughly speak-
ing, counterexamples that would result in arithmetic overflow are excluded
from the analysis, so that any counterexample that is presented to the user
is guaranteed not to be spurious. This is achieved by redefining the seman-
tics of quantifiers in the bounded setting so that the models of a formula
are always models of the formula in the unbounded setting. This solution
has been implemented in Alloy4.2 and it is by default turned on; it can be
deactivated via the “Prevent Overflows” option.

The rest of the paper is organized as follows. Section 2 introduces the
Alloy Analyzer. Section 3 illustrates some of the anomalies that arise from
treating overflow as wraparound. Section 4 shows the problem in a more
realistic context, by presenting an Alloy model of a minimum spanning tree
algorithm that combines arithmetic and relational operators, and shows how
a valid theorem can produce spurious counterexamples. Section 5 explains
and formalizes our new semantics, which is the key contribution of this paper.
Section 6 explains our implementation in boolean circuits and discusses how
it ensures the desired semantics. Section 7 presents evaluation, showing (1)
a case study where the analysis time is cut by 33% due to the reduced search
space imposed by the new semantics, and (2) an exhaustive set of tests we
applied to ensure our implementation meets the specification. Section 8
presents related work on the topic of partial functions in logic, compares our
approach with the existing ones, and discusses alternatives for solving the
issue of overflows in Alloy. Section 9 concludes.

2. Alloy Background

Alloy [3] is a first-order relational modeling language. Alloy models lend
themselves to fully automated bounded analysis—embodied in a tool called
the Alloy Analyzer [1]. The expressiveness of the relational language is one
of the characteristic features of Alloy which makes it particularly suitable
for checking deep properties of structurally complex systems. To keep the
logic decidable and the analysis fully automated, the Alloy Analyzer requires,
however, that all domains be bounded.

The model finding part of the analysis is offloaded to Kodkod [4], a
constraint solver for relational first-order logic. Kodkod works by translating
a given relational formula (together with provided bounds for each relation)
into an equivalent propositional boolean formula and using an of-the-shelf
SAT solver to check its satisfiability.

3

In addition to pure relations, Kodkod also provides support for integers
and arithmetic operations. Integers are an important part of Alloy, because
they enable various program analysis tools that build on top of it; examples
include tools for testing [5], verification [6], and specification execution [7].

Integers in Alloy must also be bounded. The user is required to explicitly
specify the number of bits (bitwidth) to be used for their representation. In
Alloy, signed integers are represented in a twos-complement system, restrict-
ing the analysis to using the integers from {−2bitwidth−1, . . . ,2bitwidth−1 − 1}.
As explained above, this poses certain dilemmas about the semantics of
arithmetic operations. The previous versions of Alloy (up to and including
v4.1.2) implement wraparound semantics; in this paper we explain the new
semantics implemented in Alloy 4.2, which excludes the models containing
arithmetic overflows from the search space.

3. Prototypical Overflow Anomalies

While a wraparound semantics for integer overflow is consistent and eas-
ily explained, its lack of correspondence to unbounded arithmetic produces a
variety of anomalies. Most obviously, the expected properties of arithmetic
do not necessarily hold: for example, that the sum of two positive integers
is positive (Figure 1(a)). More surprisingly, expected properties of the car-
dinality operator may not hold. For example, the Alloy formula some s is
defined to be true when the set s contains some elements. One would expect
this to be equivalent to stating that the set has a cardinality greater than
zero (Figure 1(b)). And yet this property will not hold if the cardinality
expression #s overflows, since it may wrap around, so that a set with enough
elements is assigned a negative cardinality.

One might imagine that this problem could be eliminated by requiring
that the scope of any analysis always assign a bitwidth to integers that
can measure, without overflow, the cardinality of any signature. But this
is not practical, since the cardinality operator by definition counts tuples,
and can be applied to any relational expression — including one of higher
arity (whose cardinality rises exponentially with the number of columns).
An example of the use of the cardinality operator for non-set relations is the
claim that a binary relation p has no more tuples than a binary relation q if
p is a subrelation of q (Figure 1(c)).

In practice, Alloy is more often used for analyzing software designs than
for exploring mathematical theorems, and so properties of this kind are rarely
stated explicitly. But such properties are often relied upon implicitly, and
consequently, when they fail to hold, the spurious counterexamples that are

4

check {

all a, b: Int |

a > 0 && b > 0 => a.plus[b] > 0

} for 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

a = 3; b = 1;

a.plus[b] = - 4

(a) Sum of two positive integers is not necessarily positive.

check {

all s: set univ |

some s iff #s > 0

} for 4 but 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

s = {S0, S1, S2, S3}

#s = -4

(b) Overflow anomaly involving cardinality of sets.

check {

all p, q: univ -> univ |

p in q => #p <= #q

} for 3 but 3 Int

counterexample

Int = {-4, -3, ..., 2, 3}

p = {}

q = {S0->S0, S0->S1, S1->S0, S1->S1}

#p = 0; #q = -4

(c) Overflow anomaly involving cardinality of relations.

Figure 1: Prototypical overflow anomalies in the previous version of Alloy.

produced are even harder to comprehend. Such a case arises in the the
example discussed in the next section, where a test for an undirected graph
being treelike is expressed by saying that there should be one fewer edge
than nodes. Clearly, when using such a formulation, the user would rather
not consider the effects of wraparound in counting nodes or edges.

4. Motivating Example

Consider checking Prim’s algorithm [8, §23.2], a greedy algorithm that
finds a minimum spanning tree (MST) for a connected graph with positive
integral weights. Alloy is for the most part well-suited to this task, since
it makes good use of Alloy’s quantifiers and relational operators, including
transitive closure. The need to sum integer weights, however, is potentially
problematic, due to Alloy’s bounded treatment of integers.

An alternative approach would be to use an analysis that includes arith-
metic without imposing bounds. It is not clear, however, whether such an
approach could be fully automated, since the logics that are sufficiently ex-
pressive to include both arithmetic and relational operators do not have
decision procedures, and those (such as SMT) that do offer decision proce-

5

dures for arithmetic are not expressive enough. In this paper, we are not
arguing that such an approach cannot work, and indeed, experts in these
other approaches may find a suitable encoding of the problem that makes it
tractable. But, either way, exploring ways to mitigate the effects of bounding
arithmetic has immediate benefit for users of Alloy, and may prove useful for
other tools that impose ad hoc bounds.

Figure 2 shows an Alloy representation of the problem. The sets (signa-
tures in Alloy) Node and Edge (lines 3–10) represent the nodes and edges of a
graph. Each edge has a weight (line 5) and connects a set of nodes (line 6);
weights are non-negative and edges connect exactly two nodes (line 9).

This model uses the event-based idiom [3, §6.2.4] to model sequential
execution. The Time signature (line 2) is introduced to model discrete time
instants, and fields covered (line 3) and chosen (line 7) track which nodes
and edges have been covered and selected respectively at each time. Initially
(line 25) an arbitrary node is covered and no edges have been chosen. In each
subsequent time step (line 27), the state changes according to the algorithm.
The algorithm terminates (line 29) when the set of all nodes has been covered.

At each step, a ‘cutting edge’ (that is, one that connects a covered and a
non-covered node) is selected such that there is no other cutting edge with
a smaller weight (line 19). The edge is marked as chosen (line 20), and its
nodes as covered (line 21)1. If the node set has already been covered (line
16), instead no change is made (line 17), and the algorithm stutters. An
implementation would, of course, terminate rather than stuttering. In Alloy,
however, ensuring that traces can be extended to a fixed length allows the
Alloy Analyzer to employ a better symmetry breaking strategy, dramatically
improving performance.

Correctness entails two properties, namely that: (1) at the end, the set
of covered edges forms a spanning tree (line 39), and (2) there is no other
spanning tree with lower total weight (lines 40–44). The auxiliary predicate
(spanningTree, lines 31–38) defines whether a given set of edges forms a span-
ning tree, and states that, unless the graph has no edges and only one node,
the edges cover all nodes of the graph (line 33), the number of given edges is
one less than the number of nodes (line 35), and that all nodes are connected
by the given set of edges (lines 36–37).

If we run the previous version of the Alloy Analyzer (v4.1.2) to check
these two properties, the smallest check fails. In each of the reported coun-

1For a field fmodeling a time-dependent state component, the expression f.t represents
the value of f at time t.

6

1 open util/ordering[Time]

2 sig Time {}

3 sig Node {covered: set Time}

4 sig Edge {

5 weight: Int,

6 nodes: set Node,

7 chosen: set Time

8 } {

9 weight >= 0 and #nodes = 2

10 }

11 pred cutting (e: Edge, t: Time) {

12 (some e.nodes & covered.t) and (some e.nodes & (Node - covered.t))

13 }

14 pred step (t, t’: Time) {

15 -- stutter if done, else choose a minimal edge from a covered to an uncovered node

16 covered.t = Node =>

17 chosen.t’ = chosen.t and covered.t’ = covered.t

18 else some e: Edge {

19 cutting[e,t] and (no e2: Edge | cutting[e2,t] and e2.weight < e.weight)

20 chosen.t’ = chosen.t + e

21 covered.t’ = covered.t + e.nodes }

22 }

23 fact prim {

24 -- initially just one node marked

25 one covered.first and no chosen.first

26 -- steps according to algorithm

27 all t: Time - last | step[t, t.next]

28 -- run is complete

29 covered.last = Node

30 }

31 pred spanningTree (edges: set Edge) {

32 -- empty if only 1 node and 0 edges, otherwise covers set of nodes

33 (one Node and no Edge) => no edges else edges.nodes = Node

34 -- connected and a tree

35 #edges = (#Node).minus[1]

36 let adj = {a, b: Node | some e: edges | a + b in e.nodes} |

37 Node -> Node in *adj

38 }

39 correct: check { spanningTree[chosen.last] } for 5 but 10 Edge, 5 Int

40 smallest: check {

41 no edges: set Edge {

42 spanningTree[edges]

43 (sum e: edges | e.weight) < (sum e: chosen.last | e.weight)}

44 } for 5 but 10 Edge, 5 Int

Figure 2: Alloy model for bounded verification of Prim’s algorithm that finds a
minimum spanning tree for a weighted connected graph.

7

terexamples, the expression sum e: edges | e.weight (representing the sum of
weights in the alternative tree, line 43) overflows and wraps around, and
thus appears (incorrectly) to have a lower total weight than the tree con-
structed. One might think that this overflow could be avoided by adding
guards, for example that the total computed weight in the alternative tree
is not negative. This does not work, since the sum can wrap around all the
way back into positive territory. In the latest version of the Alloy Analyzer
that incorporates the approach described in this paper (v4.2), the check, as
expected, yields no counterexamples for a scope of up to 5 nodes, up to 10
edges and integers ranging from -16 to 15.

5. Approach

Our goal is to give a semantics to formulas whose arithmetic expressions
might involve out-of-domain applications, such as the addition of two integers
that ideally would require a value that cannot be represented. In contrast
to traditional approaches to the treatment of partial functions, the out-of-
domain applications arise here not from any intrinsic property of the system
being modeled, but rather from a limitation of the analysis.2 Consequently,
whereas it would be appropriate in more traditional settings to produce a
counterexample when an out-of-bounds application occurs, in this setting,
we aim to mask such counterexamples, since they do not indicate problems
with the model per se.

First, a standard three-valued logic [9] is adopted, in which elementary
formulas involving out-of-bounds arithmetic applications are given the third
logical value of ‘undefined’ (⊥), and undefinedness is propagated through
the logical connectives in the expected way (so that, for example, ‘false and
undefined’ evaluates to false). But the semantics of quantifiers diverges from
the standard treatment: the meaning of a quantified formula is adjusted so
that the bound variable ranges only over values that would yield a body
that is not undefined (i.e., evaluates to true or false)3. Thus bindings that
would result in an undefined quantification are masked (never presented to

2Note that this discussions concern only the partial function applications arising from
arithmetic operators; partial functions over uninterpreted types are treated differently in
Alloy, and counterexamples involving their application are never masked.

3One might wonder at this point how an automated solver for this logic can possibly
know in advance which bindings will not yield an overflow (without explicitly enumerating
and checking every single combination); indeed, our compilation to SAT does not modify
the ranges of the bound variables, rather, it uses a clever translation (as explained in
Section 5.2) that make the associated bindings irrelevant whenever an overflow occurs.

8

the user), and quantified formulas are never undefined. Since every top level
formula in an Alloy model is quantified (the fields and signatures of an Alloy
model are always implicitly bound in an outermost existential quantifier)
this means that counterexamples (and, in the case of simulation, instances)
never involve undefined terms.

This semantics cannot be implemented directly, since the Alloy Analyzer
does not explicitly enumerate values of bound variables, but instead uses
a translation to boolean satisfiability (SAT) [10]. A scheme is therefore
needed in which the formula is translated compositionally to a SAT formula.
To achieve this, a boolean formula is created to represent whether or not an
arithmetic expression is undefined. This is then propagated to elementary
subformulas in an unconventional way that ensures the high-level semantics
of quantifiers given above.

We therefore have given two semantics: the user-level (high level) seman-
tics that the user needs to understand, and the implementation-level (low
level) semantics that justifies the analysis. This lower level semantics is then
implemented by a translation to boolean circuits.

5.1. User-Level Semantics
As explained above, the key idea of our approach is to change the se-

mantics of quantifiers so that the quantification domain is restricted to those
values for which the body of the quantifier is defined (determined by the dfn

predicate). For the universal quantifier, that means that the body must be
satisfied for all bindings for which the body does not overflow; similarly for
the existential quantifier, there must exist at least one binding for which the
body does not overflow and evaluates to true:

Jall r:R | φ(r)K ≡ ∀r ∈R ∖ {i ∣ r → i causes overflow in φ(r)} ● Jφ(r)K
Jsome r:R | φ(r)K ≡ ∃r ∈R ∖ {i ∣ r → i causes overflow in φ(r)} ● Jφ(r)K

An important subtlety to note about this definition is that it is more
strict than simply saying that, for a given binding, some subexpression in the
body of the quantifier is undefined (e.g., because of an arithmetic overflow);
additionally, it is crucial to ensure that the undefinedness is caused by this
particular binding and not something else (e.g., an addition of two integer
constants that overflows). Formally defining this causation relation at this
level would only clutter this semantics and defeat its main purpose—namely
to be intuitive and easy to understand. Instead, we formalize here how
formulas are evaluated (denoted with JK brackets) and what it means for
a formula/expression to be undefined (embodied in the dfn function); the
implementation-level semantics (Section 5.2), of course, provides a complete

9

formalization. A concrete example of applying the user-level semantics to
evaluate quantifiers can be found in Section 5.3.

We have already given the quantifier evaluation semantics; all other for-
mulas are either undefined or evaluate to the same value they do in the
standard Alloy Analyzer (denoted as A[φ], which is always defined):

JφK ≡ { ⊥ , if ¬dfn [φ]
A [φ] , otherwise

Quantifiers are always defined. This simply follows from the idea to
restrict quantification domains to bindings for which the quantifier body is
defined—if every instantiation of the body is defined, the quantifier as a
whole must also be defined:

dfn [all r ∶ R ∣ φ(r)] ≡ true dfn [some r ∶ R ∣ φ(r)] ≡ true

Integer expressions (i.e., those using Alloy’s arithmetic operators) are
defined all arguments are defined and the evaluation does not result in over-
flow:

dfn [α(i1, . . . , in)] ≡ dfn [i1] ∧ ⋅ ⋅ ⋅ ∧ dfn [in] ∧ ¬(α[i1, . . . , in] overflows)

Other expressions supported in Alloy include: (1) relational algebra op-
erators (e.g., union, intersection, etc.), (2) operators that take a relation
and produce an integer (e.g., the cardinality operator), and (3) operators
that take an integer and produce a relation (e.g., the int-to-expression cast
operator). They are all defined if all arguments are defined:

dfn [ψ(r1, . . . , rn)] ≡ dfn [r1] ∧ ⋅ ⋅ ⋅ ∧ dfn [rn]

Predicates are boolean formulas that relate one or more (either integer
or relational) expressions. In Alloy, predicates that relate integer expressions
correspond directly to integer comparison operators (e.g., less than, greater
than, equal to, etc.), and predicates that relate relational expressions cor-
respond to standard boolean operators in relational algebra (e.g., subset,
equality, etc.). Predicates are also defined if all arguments are defined:

dfn [φ(r1, . . . , rn)] ≡ dfn [r1] ∧ ⋅ ⋅ ⋅ ∧ dfn [rn]

A constant is defined unless it is equal to ⊥:

dfn [c] ≡ c ≠⊥

10

A formula is defined if it evaluates to either true or false when three-
valued logic truth tables (e.g., [9, Table A.1]) of propositional operators are
used (denoted here as ∧3, ∨3, ¬3 , ⇒3, and ⇔3). Before the three-valued
propositional operators can be applied, the operands must first be evaluated
to determine their definedness:

dfn [and(p, q)] ≡ (JpK ∧3 JqK) ≠⊥
dfn [or(p, q)] ≡ (JpK ∨3 JqK) ≠⊥
dfn [implies(p, q)] ≡ (JpK⇒3 JqK) ≠⊥
dfn [iff(p, q)] ≡ (JpK⇔3 JqK) ≠⊥
dfn [not(p)] ≡ (¬3JpK) ≠⊥

The semantics of the rest of the Alloy logic (in particular, of the relational
operators) remains unchanged.

5.2. Implementation-Level Semantics
A direct implementation of the user-level semantics in Alloy would entail

a three-valued logic, and the translation to SAT would thus require 2 bits for
a single boolean variable (to represent the 3 possible values), a substantial
change to the existing Alloy engine. Furthermore, such a change would
likely adversely affect the analysis performance of models that do not use
integer arithmetic. In this section, we show how the same semantics can be
achieved using the existing Alloy engine, merely by adjusting the evaluation
of elementary integer functions and integer predicates.

We call this semantics “implementation-level”, not because it shows how
boolean formulas and relational expressions are translated (rewritten) to
propositional formulas (to be solved by a SAT solver), but because it is
directly implementable on top of Kodkod, the solver used by the Alloy An-
alyzer. In this section, thus, we show the mathematical semantics of evalu-
ating formulas to boolean constants in the presence of arithmetic overflows;
in Section 6 we explain how we modified Kodkod to achieve this semantics.

Syntax notes. For semantic function definitions, we use the expres-
sion fun_name[args...]σ whenever the content of the store is irrelevant;
otherwise, we either write fun_name[args...](x, i, q, b, σp) (which au-
tomatically assigns concrete variable names to store fields), or use the
dot notation to access store fields by name (e.g., σ.polarity). We use
the same square brackets to explicitly designate cases where a built-in
function or predicate (e.g., α, ρ, β) is to be applied to a number of
constant arguments to produce a concrete (constant) result.

11

To make all formulas denote (and thus avoid the need for a third boolean
value), a truth value must be assigned to an integer predicate even when some
of its arguments are undefined. The key idea behind our approach is that in
such cases a logic value can be assigned to make the subformula irrelevant
in the context of the entire (enclosing) formula (i.e., the Alloy model as a
whole). This is different from common approaches (e.g., [11, 12]) which in
those cases simply assign the value false. For example, the sentence e1< e2
will be true iff both e1 and e2 are defined and e1 is less than e2 (and similarly
for e1>= e2):

J lt(e1,e2) K ≡ Je1K < Je2K ∧ dfn [e1] ∧ dfn [e2]
J gte(e1,e2) K ≡ Je1K ≥ Je2K ∧ dfn [e1] ∧ dfn [e2]

Negation presents a challenge. Following the user-level semantics, nega-
tion of an integer predicate (e.g., !(e1< e2)) is still undefined if any argument
is undefined. Therefore, under the implementation-level semantics, !(e1< e2)
must also, despite the negation, evaluate to false if either e1 or e2 is un-
defined (and thus have exactly the same semantics as e1 ≥ e2). To achieve
this behavior, the polarity [13] of each expression must be known (which is,
loosely speaking, the number of enclosing negations). Evaluation of a binary
integer predicate can be then formulated (ignoring the stack of enclosing
quantifiers for the moment) as:

Jρ(e1, e2)K ≡ { ρ[Je1K, Je2K] ∧ (dfn [e1] ∧ dfn [e2]), if polarity is positive;
ρ[Je1K, Je2K] ∨ ¬(dfn [e1] ∧ dfn [e2]) otherwise.

The polarity approach is not compositional, since the meaning of the
negation of a formula is not simply the logical negation of the meaning of
that formula. For that reason, this approach violates the law of the excluded
middle, which, fortunately, will not be problematic, since the violation would
only be observable for variable bindings that result in overflow and such
bindings are excluded by the semantics (see Section 5.4).

In the presence of quantifiers, to achieve the goal of restricting quan-
tification domains to values that do not cause overflows, the key idea is to
assign truth values to formulas that overflow such that the associated bind-
ings to quantification variables become irrelevant. For example, consider the
following formula:

some x: Int | x > 0 and x+1 < 0

Kodkod unrolls this existential quantifier to a disjunction with as many
clauses as there are integers in the given scope. Assuming that the bitwidth

12

is set to 4 (integers ranging from -8 to 7), the clause in which x is bound to
7 will overflow. To make a clause in a disjunction of clauses irrelevant, the
truth value false must be assigned to it; in this context, therefore, we define
x+1 < 0 to be false when x is bound to 7.

Now consider an example involving a universal quantifier:

all x: Int | x+1 > x

Universal quantifiers get unrolled to a conjunction of clauses; making a bind-
ing irrelevant in this case means assigning the value true to the associated
clause. Assuming the same scope for integers, when x is bound to 7, we
define x+1 > x in this context to be true.

The semantics is formally defined in Figures 3–6. Expressions and for-
mulas are interpreted in the context of a store (defined in Figure 3(a)) which
for each variable (var) bound in an enclosing quantifier holds: (1) the value
of the variable in the particular binding (val), (2) whether the quantifier
is universal or existential (quant), and (3) its current polarity (polarity).
Here we only focus on handling integers, as the semantics of the relational
operators remains the same.

Evaluation of integer expressions (aeval) and boolean formulas (beval)
has the same effect as evaluation in the user-level semantics; it is elaborated
differently here simply to account for the need to pass the store. Every
time a negation is seen, the inner formula is interpreted in a store in which
the polarity is negated. Quantifiers are unfolded, with the body interpreted
in a new nested store (depending on the current polarity, the quantifier is
adjusted according to De Morgan’s laws). For the evaluation of top-level
formulas, an empty existential environment is presented.

The crucial differences lie in the evaluation of integer predicates (ieval).
Whereas in the user-level semantics predicates evaluate to true, false and
undefined, in this implementation semantics predicates evaluate only to true

or false. When a predicate would have been undefined in the user-level
semantics, its meaning will be either true or false, chosen in such a way
as to ensure that the associated binding becomes irrelevant. This choice is
represented by the auxiliary function ensureDfn, which determines the truth
value based on the current polarity and the stack of enclosing quantifiers.

As explained before, to make bindings resulting in overflow irrelevant,
it is enough to make predicates containing existentially quantified variables
evaluate to false and predicates containing universally quantified variables
evaluate to true. Therefore, all expressions with universally quantified vari-
ables are identified first (euniv) and a definedness condition for them (bundef)

13

(a) Syntactic Domains
Formula = BoolConst | IntPred(IntExpr, ..., IntExpr) |

BoolPred(Formula, ..., Formula) |

QuantFormula(VarDecl, Formula)

IntExpr = IntConst | IntVar | IntFunc(IntExpr, ..., IntExpr)

BoolConst = true | false

IntConst = ⊥ | 0 | -1 | 1 | -2 | 2 | ...

QuantFormula = all | some

BoolPred = not1 | and2 | or2 | implies2 | iff2

IntPred = eq2 | neq2 | gt2 | gte2 | lt2 | lte2

IntFunc = neg1 | plus2 | minus2 | times2 | div2 | mod2 |

shl2 | shr2 | sha2 | bitand2 | bitor2 | bitxor2

Store = {var: IntVar, val: IntConst, quant: QuantFormula;

polarity: BoolConst, parent: Store} | {}

(b) Symbols
⊥ ∈ IntConst (undefined value) bi ∈ BoolConst (boolean constants)
ii ∈ IntConst (integer constants) pi ∈ Formula (formulas)
ei ∈ IntExpr (integer expressions) βi ∈ BoolPred (boolean predicates)
ρi ∈ IntPred (integer predicates) xi ∈ IntVar (integer variables)
αi ∈ IntFunc (arithmetic functions) qi ∈ QuantFormula (quantified formula)

(c) Stores
σ : Store (environment of nested quantifiers and variable bindings)

Figure 3: Overview of semantic domains, symbols, and stores to be used. Subscripts
in function and predicate names indicate their arities.

aeval : IntExpr → Store → IntConst

aeval[i]σ ≡ i
aeval[x](xσ, iσ, q, b, σp) ≡ if xσ = x then iσ else aeval[x]σp

aeval[α(i1, . . . , in)]σ ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

⊥, if ii =⊥ or ... or in =⊥;
⊥, if α[i1, . . . , in] overflows;
α[i1, . . . , in] otherwise.

aeval[α(e1, . . . , en)]σ ≡ aeval[α(aeval [e1]σ, . . . , aeval [en]σ)]σ

Figure 4: Evaluation of arithmetic operations (aeval). If any operand of an arith-
metic operation is undefined, the result is undefined too. The α[i1, . . . , in] syntax
applies the α integer predicate to given integer constants; the result is another
integer constant.

14

beval : Formula → Store → BoolConst

beval[b]σ ≡ b
beval[ρ(e1, e2)]σ ≡ ieval[ρ(e1, e2)]σ
beval[not(p)](x, i, q, b, σp) ≡ ¬ beval[p](x, i, q, ¬b, σp)
beval[β(p1, . . . , p2)]σ ≡ β [beval [p1]σ, . . . , beval [p2]σ]
beval[all x: Int | p]σ ≡ let q = (σ.polarity) ? all : some in

≡ ⋀
i∈Int

beval [p] (x, i, q, σ.polarity, σ)

beval[some x: Int | p]σ ≡ let q = (σ.polarity) ? some : all in

≡ ⋁
i∈Int

beval [p] (x, i, q, σ.polarity, σ)

Figure 5: Evaluation of boolean formulas. The new semantics (together with the
ieval function, Figure 6) ensures that quantifiers quantify over only those values
that do not cause any overflows.

ieval : IntPred → Store → BoolConst

ieval[ρ(e1, e2)]σ ≡ let b = ρ[aeval [e1]σ, aeval [e2]σ]in
ensureDfn [b,{e1, e2}]σ

ensureDfn : BoolConst → set IntExpr → Store → BoolConst

ensureDfn[b, ein] (x, i, q, bpol, σp) ≡
let σ = (x, i, q, bpol, σp) in

let euniv = {e ∣ e ∈ ein ∧ isUnivQuant [e]σ} in

let eext = ein ∖ euniv in

let bdef = (eext = ∅) ∨ ⋀
e∈eext

(aeval [e]σ ≠⊥) in

let bundef = (euniv ≠ ∅) ∧ ⋁
e∈euniv

(aeval [e]σ =⊥) in

if bpol then (b ∨ bundef) ∧ bdef
else (b ∨ ¬bdef) ∧ ¬bundef

isUnivQuant : IntExpr → Store → BoolConst

isUnivQuant[e] ({}) ≡ false

isUnivQuant[e] (x, i, q, b, σp) ≡ if x ∈ vars [e] then q = all

else isUnivQuant [e]σp
vars : IntExpr → set IntVar

vars[i] ≡ ∅
vars[x] ≡ {x}
vars[α(e1, . . . , en)] ≡ vars[e1] ∪ . . .∪ vars[en]

Figure 6: Evaluation of integer predicates. If any argument of an integer predicate is
undefined, the result is true if the expression is in a universally quantified context,
otherwise it is false. The ρ[i1, i2] syntax applies the ρ predicate to given integer
constants; the result is a boolean constant.

15

is computed as a disjunction of either being undefined. For all other argu-
ments (eext) the definedness condition (bdef) is a conjunction of all being
defined (as before). Finally, based on the value of the polarity flag (bpol),
the two conditions are attached to the base result (b).

Following the formalization in Figure 6, evaluating an integer predicate ρ
boils down to evaluating its arguments (e1, and e2), applying ρ to obtained
integer values, and appending the definedness condition to the previous re-
sult. Since ρ is a built-in integer comparison predicate, it can be applied
concretely to two given constants to obtain a concrete boolean constant (b)
corresponding to the result of the comparison. If any of the arguments eval-
uates to ⊥, the definedness condition appended in the next step will ensure
that the concrete value of b becomes irrelevant.

The definedness condition function (ensureDfn) takes a boolean constant
(b), a set of integer expressions (ein), and a store. If all received expres-
sions are defined, the result is b; otherwise the result is computed so that
the associated binding in the enclosing quantifiers becomes irrelevant. Con-
cretely, the ensureDfn function splits ein into two sets, euniv and eext, first
containing expressions with universally quantified integer variables, and the
second all others (which are implicitly considered as existentially quantified).
The conditions associated with the existentially and universally quantified
expressions (bdef and bundef) state that none of the expressions are unde-
fined, or at least one is undefined, respectively. If the polarity is positive
(the easiest way to think about it is the case when there are no enclosing
negations), the final result is computed as (b ∨ bundef) ∧ bdef. Intuitively, if
any existentially quantified expression is undefined (bdef equal to false), the
result must be false (since false is the value that makes a binding irrelevant
inside an existential quantifier); if any universally quantified expression is
undefined (bundef equal to true), the result must be true (since true makes
a binding irrelevant inside a universal quantifier); otherwise, the result is
exactly equal to the original value b. When the polarity is negative, the
same reasoning applies, except that the conditions need to be flipped, so bdef
becomes ¬bundef, and bundef becomes ¬bdef.

The helper functions used in the definition of ensureDfn, isUnivQuant and
vars are straightforward. An expression is universally quantified if any of its
variables (computed by a simple top-down algorithm embodied in the vars

function) is quantified over by a universal quantifier (information about the
enclosing quantifiers is directly accessible from the store).

Finally, the user-level semantics also allows relational expressions to be
undefined, for example, when the int-to-expression cast operator is applied to
an undefined integer expression. Under the user-level semantics, whenever a

16

boolean predicate is applied to a number of relational expressions, the result
is undefined if at least one of its arguments is undefined; here, however, a
truth value must be assigned for all cases. The way this is done is analogous
to evaluating integer predicates (ieval), which we already formally defined.

5.3. Correspondence Between the Two Semantics
To show that our low-level semantics correctly implements the high-level

user semantics, it is enough to establish a correspondence between the two
definitions of quantifiers (the low-level semantics only introduced a change
to the semantics of quantifiers). Following directly from the two definitions,
this is equivalent to proving that whenever an expression p(x) is undefined
by the laws of three-valued logic (i.e., dfn[p(x)] is false), if x is universally
quantified then beval[p(x)] evaluates to true, else it evaluates to false.

This hypothesis could be proved by a structural induction on expressions.
Instead of giving a complete proof, we explain several interesting cases in-
stead.

As said earlier, the low-level evaluation of integer predicates is where the
crucial differences lie. Let us therefore consider the case when p(x) is an
integer predicate, ρ(e1(x), e2(x)). Furthermore, let us assume that e1(x)
is undefined, which makes p(x) undefined as well. In this context, polarity
is positive, and the value of beval[ρ(e1(x), e2(x))] becomes the value of
ensureDfn. There are two cases to consider: (1) if x is universally quantified,
euniv contains both e1 and e2, bundef becomes true, bdef is true by default, so
the result is also true regardless of the base value b; (2) if x is existentially
quantified, eext contains both e1 and e2, bdef becomes false, bundef is false

by default, so the result is also false, as expected.
Let us now assume that p(x) is a negation of an integer predicate, p(x) =

¬ρ(e1(x), e2(x)), and that e1(x) is again undefined. Despite the negation,
p(x) is still undefined, so the low-level evaluation should behave exactly as
in the previous case. The result of beval[p(x)] now becomes a negation
of the value returned by ensureDfn, which, in contrast, now evaluates in a
context where the polarity is negative. Following exactly the same derivation
as before, it can be shown that ensureDfn now returns false for the universal
case, and true for the existential case (because of the negative polarity), so
the end result of beval[p(x)] remains the same, as expected.

Another class of interesting examples is those with nested quantifiers.
Consider the following formula:
run {

all x: Int | some y: Int | y = 3 and (x = 3 implies plus[x,x] = plus[y,y])

} for 3 Int

17

Applying the user-level semantics, this formula evaluates to

Jall x:Int | some y:Int | f[x,y]K
= ∀x ∈ Int ∖ {xOF} ● Jsome y:Int | f[x,y]K
= ∀x ∈ Int ∖ {xOF} ● ∃y ∈ Int ∖ {yOF} ● Jf[x,y]K

where f[x,y] is y = 3 and (x = 3 implies plus[x,x] = plus[y,y]). The set of ex-
cluded bindings for variable x, {xOF}, is a set of all integers for which plus[x,x]

overflows (which is the only subexpression containing variable x that can pos-
sibly be undefined); similarly, {yOF} is a set of all integers for which plus[y,y]

overflows. In both cases, the excluded bindings are equal to {−3,2,3}. Since
the only binding that satisfies f[x,y] is x→ 3, y → 3, the formula as a whole
is unsatisfiable. Now following the implementation-level semantics (the def-
inition of the ensureDfn function), the eext set contains plus[y,y]; given the
binding x→ 3, y → 3, bdef evaluates to false, and since the polarity is positive
(bpol is true), ensureDfn returns false, thus, the formula as a whole is, again,
unsatisfiable.

As an exercise, the reader may want to check that if the quantifiers
in the previous formula swap places, the result does not change. When
plus[x,y] = plus[x,y] is used instead of plus[x,x] = plus[y,y], the order of quan-
tification does matter: the formula
all x: Int | some y: Int | y = 3 and (x = 3 implies plus[x,y] = plus[x,y])

is not satisfiable, but
some y: Int | all x: Int | y = 3 and (x = 3 implies plus[x,y] = plus[x,y])

is, because the two arithmetic expressions are both treated as “existen-
tially” quantified in the former case, and “universally” in the latter. This
behavior is not simply an artifact of our formalization. Rather, it is by
design, as our intention was to have all x: Int | some y: Int | plus[x,y] > x

be false (indeed, in a bounded setting, for x = MAXINT, there is no integer
that can be added to it to obtain an integer greater than MAXINT), and
some y: Int | all x: Int | plus[x,y] > x be true (for, e.g., y = 1, every integer
x when added to it can only produce a number greater than x).

5.4. The law of the excluded middle
We mentioned earlier that our non-compositional rule for negation breaks

the law of the excluded middle. Usually, this is not a problem.
Consider checking the theorem that all integers (within the bitwidth of

3) when multiplied by two are either less than zero or not less than zero:
check { all x: Int | x.mul[2] < 0 or !(x.mul[2] < 0) } for 3 Int

18

If we run the Alloy Analyzer with overflow prevention turned on, this sen-
tence is interpreted as “for all integers x s.t. x times two does not overflow,
x times two is either less than zero or not less than zero”, and thus no coun-
terexample is found, which is consistent with classical logic.

Similarly, if we ask the Alloy Analyzer to find all instances of x where x

multiplied by two is either less or not less than zero, we will not get all inte-
gers from the domain, but only those that do not overflow when multiplied
by two.

run {

some x: Int | x.mul[2] < 0 or !(x.mul[2] < 0)

} for 3 Int

instances
x = -2, x = 0

x = -1, x = 1

In a sense, however, the violation of the law of the excluded middle is
visible if truth is associated with whether or not a check yields a counterex-
ample at all. For example, a check of whether 4 plus 5 is equal to 6 plus 3
for the bitwidth of 4 (Int = {-8, ..., 7}) does not return a counterexample,
but neither does a check of whether 4 plus 5 is different from 6 plus 3.

check { 4.plus[5] = 6.plus[3] } for 4 Int -- no counterexample found

check { 4.plus[5] != 6.plus[3] } for 4 Int -- no counterexample found

Though this might at first appear confusing, it is consistent with our design
goal: indeed, for a bitwidth of 4, there is no non-overflowing instance in
which 4 plus 5 is either equal to or different from 6 plus 3.

6. Implementation in Circuits

Detecting arithmetic overflows at the level of relational logic would be
difficult, and probably inefficient. We therefore implemented our approach at
the level of the translation to propositional logic, as an extension to Kodkod.

The Alloy Analyzer delegates the core task of finding satisfying models to
Kodkod [4], a bounded constraint solver for relational first-order logic. Kod-
kod works by translating a given relational formula (together with bounds)
into an equivalent propositional formula and using an of-the-shelf SAT solver
to check its satisfiability.

Even though the goal here is to translate the input formula into a digital
circuit (instead of evaluating it to a boolean constant), the denotational
semantics we defined in Section 5.1 still applies, simply because all logic
operators used in our formalization are also available at the level of digital
gates. We only had to modify Kodkod’s translation of appropriate terms,
directly following the formal semantics presented in this paper. In summary,
we changed:

19

• the translation of arithmetic operations to generate an additional one-
bit overflow circuit which is set if and only if the operation overflows.
We used textbook overflow circuits for all arithmetic operations sup-
ported by Kodkod, and the definition in Figure 4 to propagate this
information from the operands to the operation result;

• the way the store gets updated so that it additionally keeps track of the
polarity and the quantification stack (the store is defined in Figure 3,
and how it gets updated in Figure 5);

• the translation of boolean predicates so that the original circuit rep-
resenting the predicate result is extended to include the definedness
conditions, exactly as defined in Figure 6;

7. Evaluation

The goal of our evaluation is twofold: (1) test the new semantics as em-
bodied in code within the Alloy Analyzer 4.2 and make sure that all the
anomalies presented in Section 3 are fixed, as well as spurious counterex-
amples caused by integer overflows in several other prototypical cases are
eliminated, and (2) provide some evidence about potential effects (in terms
of scalability of the analysis) the new semantics might have on existing mod-
els already using integer arithmetics.

7.1. Exhaustive Testing of the New Translation Scheme
To ensure the correctness of the new semantics, as well as the implemen-

tation of the new translation scheme, we ran a series of exhaustive tests (up
to a finite bound) and verified that the results were as expected.

7.1.1. Basic Arithmetic Tests
The unit test in Figure 7 exhaustively checks whether overflows are de-

tected in all supported binary arithmetic functions. It dynamically con-
structs all possible expressions in the form of

ret = {i op j},

where i and j are integers drawn from {-16, . . . , 15}, and op is an arithmetic
operator drawn from {+, -, *, /, %}. For each case, it first computes the
expected result using Java built-in arithmetic operators (which certainly will
not overflow in this small scope). If the computed result falls outside of the
[-16, 15] range, an overflow is expected, that is, no satisfying instance is

20

public void testArithmeticOverflows() {

int bw = 5, l = -(1 << (bw - 1)), h = (1 << (bw - 1));

IntOperator[] ops = new IntOperator[]{PLUS, MINUS, MULTIPLY, DIVIDE, MODULO};

for (IntOperator op: ops) for (int i=l; i<h; i++) for (int j=l; j<h; j++) {

// f: ret = Int[(i op j)]

Formula f = ret.eq(compose(op, constant(i), constant(j)).toExpression());

int javaRes = -1;

try { javaRes = exeJava(op, i, j); } catch(ArithmeticException e){ continue; }

if (javaRes >= h || javaRes < l) {

try { exeKodkod(f); fail("Overflow not detected"); } catch(NoSolution e){}

} else {

assertEquals("Wrong result", javaRes, exeKodkod(f));

}

}

}

Figure 7: A Kodkod unit test that exhaustively checks overflow detection for all formulas
in the form of ret = {i op j}, where i and j are integers drawn from {-16, . . . , 15},
and op is an arithmetic operator drawn from {+, -, *, /, %}. Helper method exeJava

computes the expected result. Method exeKodkod runs Kodkod to solve a given formula,
then evaluates ret against the solution and converts the result to integer (if the formula
was unsatisfiable, throws the NoSolution exception).

expected to be found by Kodkod; otherwise, the value of ret returned by
Kodkod is expected to be equal to the value obtained in Java.

A slightly modified version of this test uses the same ideas to check all
expressions in the form of

ret = (some {i op j} => {i op j} else {-1}).

This test shows that a constraint can be written to check whether an inte-
ger expression overflows. The formula above uses that feature to assign a
default value (-1) to ret whenever i op j overflows. One might (wrongly)
expect this entire formula to be unsatisfiable when {i op j} overflows; recall-
ing the semantics, however, applying the int-to-expression cast operator to
an overflowing integer expression (i op j) results in an undefined relational
expression, then applying the some boolean predicate to it yields false (since
the polarity is positive), which finally selects the else branch (regardless of
the evaluation of the then branch).

Yet another variation of the same test uses relations in place of integer
constants i and j, so that it can ask Kodkod to enumerate all valid solutions
to ret = {i op j}. It then checks that the result exactly matches the set of
all non-overflowing solutions computed in Java.

21

7.1.2. Testing Tautologies
Table 1 shows the list of arithmetic tautologies that we checked for coun-

terexamples using Kodkod.

decl precondition postcondition
a, b: Int a > 0 && b > 0 a + b > 0 && a + b > a && a + b > b

a, b: Int a < 0 && b < 0 a + b < 0 && a + b < a && a + b < b

a, b: Int a > 0 && b < 0 a - b > 0 && a - b > a && a - b > b

a, b: Int a < 0 && b > 0 a - b < 0 && a - b < a && a - b < b

a, b: Int a > 0 && b > 0 a * b > 0 && a * b >= a && a * b >= b

a, b: Int a < 0 && b < 0 a * b > 0 && a * b >= -a && a * b >= -b

a, b: Int a > 0 && b < 0 a * b < 0 && -(a * b) > a && -(a * b) > -b

a, b: Int a < 0 && b > 0 a * b < 0 && -(a * b) > -a && -(a * b) > b

Table 1: List of checked arithmetic tautologies.

For the purpose of exercising various polarity cases (that is, nestings of
negations and quantifiers), for each row from Table 1 we ran the test on the
following equivalent formulas.

all decl | pre => post

!!(all decl | pre => post)

all decl | !!(pre => post)

all decl | !(pre && !post)

all decl | !pre || post

!(some decl | !(pre => post))

!!!(some decl | !(pre => post))

!(some decl | pre && !post)

!(some decl | !!(pre && !post))

!(some decl | !(!pre || post))

The cardinality operator (#) returns the number of elements in a given
relation. If that number is greater than the largest integer in the scope, the
operation overflows, often causing anomalies especially difficult to debug. To
ensure that our new semantics correctly prevents overflows in those cases,
we checked the following tautologies:

all s: set univ | #s >= 0

no s: set univ | #s < 0

all s: set univ | (some s) iff #s > 0

all s, t: set univ | #(s + t) >= #s && #(s + t) >= #t

all s, t: set univ | s in t => #s <= #t

all s, t: set univ | (no s & t && some s) => #(s + t) > #t

As expected, none of the tautologies could be refuted given the integer
bitwidth of 5.

7.2. Effects on Models with Integer Arithmetic
Finding suitable models for evaluating the new approach is difficult, be-

cause most Alloy models do not involve arithmetic, in part because of the

22

problem of overflow that motivated this work.
To evaluate the approach of this paper, we took a previously published

model of a flash filesystem [14], which uses arithmetic operations and whose
analysis is non-trivial, and compared its execution under the old (Alloy4) and
new (Alloy4.2) analysis schemes. This model involves both assertions (that
certain properties hold) and simulations (that produce sample scenarios).
First, we checked that there are no new spurious counterexamples, and that
none of the expected valid scenarios are lost. This was not the focus of our
evaluation, however, since the design of the analysis ensures it. Rather, our
concern was that the addition of new clauses to the SAT formula generated
by the Analyzer might increase translation and solving time.

The new translation always results in a larger SAT formula, because extra
clauses are needed to rule out models that overflow. One might imagine
that adding clauses would cause the solving time to increase. On the other
hand, the additional clauses might result in a smaller search space, and thus
potentially reduce the search time.

We ran all checks that were present in the “concrete” module of the
model. The first 11 (run1 through run11) are simulations (which all find an
instance), and the remaining 5 (check1 through check5) are checks, which,
with the exception of check5, produce no counterexamples. For each check,
we measured both the translation and solving time, as shown in Table 2.
As expected, in some cases the analysis runs faster, and sometimes it takes
longer. In total, with the overflow prevention turned on, the entire analysis
finished in about 8 hours, as opposed to almost 12 hours that the same
analysis took otherwise.

run1 run2 run3 run4 run5 run6 run7 run8 run9

old 1.2 0.9 2.1 0.4 0.8 0.2 12.9 2.3 5.9 0.5 12.7 1.0 11.9 1.1 9.0 1.0 12.5 1.0
new 1.2 0.8 1.6 0.4 0.8 0.3 13.4 8.7 6.2 0.5 12.6 0.8 12.1 1.5 9.1 1.0 12.7 2.6
diff 0 0.1 0.5 0 0 -0.1 -0.5 -6.4 -0.3 0 0.1 0.2 -0.2 -0.4 -0.1 0 -0.2 -1.6
x 0 11.1 23.8 0 0 -50.0 -3.9 -278.3 -5.1 0 0.8 20.0 -1.7 -36.4 -1.1 0 -1.6 -160.0

run10 run11 check1 check2 check3 check4 check5 total

old 25.7 14.8 20.0 39.6 12.1 2190.7 12.0 30673.3 12.5 3713.2 12.3 3.0 74.3 5782.6 42663.5
new 25.9 12.5 20.2 12.6 12.2 1670.4 12.2 16741.9 12.7 3526.9 12.5 1.3 73.9 7083.5 29304.5
diff -0.2 2.3 -0.2 27 -0.1 520.3 -0.2 13931.4 -0.2 186.3 -0.2 1.7 0.4 -1300.9 13359.0
x -0.8 15.5 -1.0 68.2 -0.8 23.8 -1.7 45.4 -1.6 5.0 -1.6 56.7 0.5 -22.5 31.3

Table 2: Analysis times of all checks found in the “concrete” module of a flash
filesystem from [14]. All values are in seconds, except the values in the “x” row
which are in percents. “old” stands for the previous version of Alloy, whereas “new”
stands for the new version with overflow prevention turned on; “diff” is the difference
between “old” and “new”; whereas “x” is the speedup in percents (in both cases
negative values mean the version with overflow prevention turned on is faster).

23

8. Related Work

The problem addressed in this paper is an instance of the more general
problem of handling partial functions in logic. The most important differ-
ence, however, is that, in our case, the out-of-bound function applications
arise due to deficiencies in the analysis, rather than from the inherent se-
mantics of the logic. Requiring the user to introduce guards in the formal
description itself to mitigate the effects of undefinedness is therefore not
acceptable.

Despite this fundamental difference, our approach shares some features
of several previously explored approaches.

The Logic of Partial Functions (LPF) was proposed for reasoning about
the development of programs [9, 15], and was adopted in VDM [16]. In this
approach, not only integer predicates but also boolean formulas may be non-
denoting, so truth tables extended to a three-valued logic are needed. This
allows guards for definedness to be treated intuitively; thus, for example,
even when “x” is equal to zero, formula x!=0 => x/x=1, evaluates to true in
spite of x/x=1 being undefined. Our approach uses this three-valued logic for
determining whether the body of a quantified formula is undefined, but the
meaning of the formula as a whole is treated differently – masking the binding
that produces undefinedness rather than interpreting the quantification in
the same three-valued logic.

Our implementation-level semantics adopts the traditional approach to
partial functions (a term coined by Farmer [11]), in which all formulas must
be denoting but functions may be partial. Farmer’s approach, however,
leaves open whether, given an undefined a, !(a=a) and a!=a have different
meanings — an issue that in the standard setting is hard to resolve because of
the competing concerns of compositionality and preserving complementarity
of predicates. In our case, the non-compositional choice fits nicely with the
user-level semantics.

Like the Alloy Analyzer, SMT [17] solvers can also be used for model
finding. They all support unbounded integer arithmetic, so the problem
of overflows does not arise. However, using Alloy over SMT-based tools
has certain benefits, most notably the expressiveness of the Alloy relational
language. There are higher-level languages that build on SMT technologies
(e.g. Dafny [18]), but for a task similar to verifying Prim’s algorithm, such
tools are typically not fully automatic, and demand that the user provide
intermediate lemmas.

Model-based languages such as B [19] and Z [20], being designed for
specifying programs, make extensive use of partial functions. Both are based

24

on set theory, and model functions as relations. Whereas in Alloy out-of-
bounds applications of partial functions over uninterpreted types result in
the empty set, in B such an application results in an unknown value [21]
(consequently, propositions containing unknown values cannot be proved).
The initial specification of the Z notation [20] left the handling of partial
functions open.

Several different approaches have been proposed (see [22] for a survey);
in the end, it appears that the same approach as in B has evolved to be the
norm [21]. In both Z and B, integers are unbounded, and so the problems
of integer overflow do not arise. On the other side, the tools for discharging
proof obligations (e.g. Rodin [23]) are typically less automated than the
Alloy Analyzer.

9. Conclusion

We have presented a new first-order logic that provides a special treat-
ment of quantifiers to eliminate models yielding out-of-domain applications
of partial functions. The main motivation for the new logic was making an
automated analysis based on it sound with respect to counterexamples, even
in the presence of partial functions. In this paper, we focused on applying
this approach to integer functions (which in a bounded setting become par-
tial), with the goal of excluding the models containing arithmetic overflows.
We have extended the Alloy Analyzer—a bounded model finder based on a
relational first-order logic—accordingly, and thus eliminated its only source
of spurious counterexamples. Despite being focused on arithmetic overflows,
our approach is more general and readily applicable to a broader class of
partial functions.

Acknowledgments

This material is based upon work partially supported by the National
Science Foundation under Grant No. CCF-1138967. We would like to thank
Marc Frappier for carefully checking our formal semantics and suggesting
numerous improvements. We also thank the anonymous reviewers for their
thoughtful comments on the drafts of this paper.

[1] Alloy: A language and tool for relational models, http://alloy.mit.
edu/alloy.

[2] D. Gries, F. Schneider, A logical approach to discrete math, Texts and
monographs in computer science, Springer-Verlag, 1993.

25

http://alloy.mit.edu/alloy
http://alloy.mit.edu/alloy

[3] D. Jackson, Software Abstractions: Logic, language, and analysis, MIT
Press, 2006.

[4] E. Torlak, A Constraint Solver for Software Engineering: Finding Mod-
els and Cores of Large Relational Specifications, Ph.D. thesis, MIT
(2008).

[5] D. Marinov, S. Khurshid, TestEra: A Novel Framework for Automated
Testing of Java Programs, in: ASE’01, 2001.

[6] G. Dennis, A relational framework for bounded program verification,
Ph.D. thesis, MIT (2009).

[7] A. Milicevic, D. Rayside, K. Yessenov, D. Jackson, Unifying execution
of imperative and declarative code, in: ICSE, 2011.

[8] T. H. Cormen, C. Stein, R. L. Rivest, C. E. Leiserson, Introduction to
Algorithms, 2nd Edition, McGraw-Hill Higher Education, 2001.

[9] C. B. Jones, Reasoning about partial functions in the formal develop-
ment of programs, Electron. Notes Theor. Comput. Sci. 145.

[10] E. Torlak, D. Jackson, Kodkod: A relational model finder, in: O. Grum-
berg, M. Huth (Eds.), Tools and Algorithms for the Construction and
Analysis of Systems, Vol. 4424 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2007.

[11] W. M. Farmer, Reasoning about partial functions with the aid of a
computer, Erkenntnis 43.

[12] D. L. Parnas, Predicate logic for software engineering, IEEE Trans.
Softw. Eng. 19.

[13] Jean-Yves, Girard, Linear logic, Theoretical Computer Science 50 (1).

[14] E. Kang, D. Jackson, Formal Modeling and Analysis of a Flash Filesys-
tem in Alloy, in: Proceedings of the 1st international conference on
Abstract State Machines, B and Z, ABZ ’08, Springer-Verlag, Berlin,
Heidelberg, 2008.

[15] C. B. Jones, M. J. Lovert, Semantic Models for a Logic of Partial Func-
tions, Int. J. Software and Informatics 5 (1-2).

[16] C. B. Jones, Systematic software development using VDM (2nd ed.),
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

26

[17] C. Barrett, A. Stump, C. Tinelli, The SMT-LIB Standard: Version 2.0,
Tech. rep., Department of Computer Science, The University of Iowa
(2010).

[18] K. R. M. Leino, Dafny: An automatic program verifier for functional
correctness, in: LPAR-16, Vol. 6355 of LNCS, Springer, 2010.

[19] J. Abrial, A. Hoare, The B-Book: Assigning Programs to Meanings,
Cambridge University Press, 2005.

[20] J. Spivey, Understanding Z: a specification language and its formal se-
mantics, Cambridge tracts in theoretical computer science, Cambridge
University Press, 1988.

[21] B. Stoddart, S. Dunne, A. Galloway, Undefined Expressions and Logic
in Z and B, Formal Methods in System Design 15.

[22] R. Arthan, L. Road, Undefinedness in Z: Issues for Specification and
Proof, in: CADE-13 Workshop on Mechanization of Partial Functions,
Springer, 1996.

[23] J.-R. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta,
L. Voisin, Rodin: an open toolset for modelling and reasoning in Event-
B, STTT 12 (6).

27

	Introduction
	Alloy Background
	Prototypical Overflow Anomalies
	Motivating Example
	Approach
	User-Level Semantics
	Implementation-Level Semantics
	Correspondence Between the Two Semantics
	The law of the excluded middle

	Implementation in Circuits
	Evaluation
	Exhaustive Testing of the New Translation Scheme
	Basic Arithmetic Tests
	Testing Tautologies

	Effects on Models with Integer Arithmetic

	Related Work
	Conclusion

