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Abstract

We presentspectral matting: a new approach to natural image matting that automaticallycomputes

a set of fundamental fuzzymatting components from the smallest eigenvectors of a suitably defined

Laplacian matrix. Thus, our approach extends spectral segmentation techniques, whose goal is to extract

hard segments, to the extraction of soft matting components. These components may then be used as

building blocks to easily construct semantically meaningful foreground mattes, either in an unsupervised

fashion, or based on a small amount of user input.

I. INTRODUCTION

Digital matting is the process of extracting a foreground object from an image along with an opacity

estimate for each pixel covered by the object. This operation enables compositing the extracted object

over a novel background, and thus constitutes an invaluabletool in image editing, video production, and

special effects in motion pictures.

In particular, the challenging case ofnatural image matting, which poses no restrictions on the

background, has received much research attention. Recognizing that the problem is inherently under-

constrained, all of the existing methods require the user toprovide additional constraints in the form of

a trimap [3], [21], [8] or a set of brush strokes [24], [14], [9]. Thus, the question of whether (or to what

degree) is it possible to automate the matting process, is ofconsiderable theoretical and practical interest.

In this paper we attempt to provide some new insights into this question. Our work is strongly influenced

by spectral segmentation methods [19], [25], [17], [26]. These methods analyze the smallest eigenvectors

of the image’s graph Laplacian matrix in order to obtain an unsupervised decomposition of the image

into a collection of hard segments. In this work, we extend this idea to unsupervised computation of a

collection of softmatting components.

Spectral segmentation methods, such as [19], resort to computation of real-valued eigenvectors as

an approximation necessary to transform an NP-complete optimization problem into a tractable one. In

contrast, we are not seeking a disjoint image partitioning,but rather attempt to recover the fractional

foreground coverage at each pixel. Specifically, we obtain our real-valued matting components via a

linear transformation of the smallest eigenvectors of thematting Laplacian matrix, introduced by Levin

et al. [14]. Once obtained, these matting components serve as building blocks for construction of complete

foreground mattes.

This concept is illustrated in Figure 1. Given the input image in Figure 1a, one can produce an

unsupervised disjoint hard partitioning of the image using, e.g., [26] (Figure 1b). In contrast, we compute
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(a) Input image (b) Hard segmentation (c) Alpha matte

(d) Matting components computed by our method.

Fig. 1. Spectral segmentation and spectral matting

a set of overlapping, fractional, matting components, visualized in Figure 1d. Combining three of these

components (framed in red) yields the foreground matte of the girl, shown in Figure 1c.

In summary, our main contribution is the introduction of theconcept of fundamental matting

components and a method for computing them in an unsupervised manner. We then proceed to describe

an unsupervised matting algorithm. Of course, just like unsupervised segmentation, unsupervised matting

is an ill-posed problem. Thus, we focus more on two extensions that use our fundamental matting

components to construct a particular matte: (i) present theuser with several matting alternatives to

choose from; or (ii) let the user specify her intent by just a few mouse clicks.

A shorter version of this paper appeared in [15].
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II. M ATTING COMPONENTS

Matting algorithms typically assume that each pixelIi in an input image is a linear combination of a

foreground colorFi and a background colorBi:

Ii = αiFi +(1−αi)Bi. (1)

This is known as thecompositing equation. In this work, we generalize the compositing equation by

assuming that each pixel is a convex combination ofK image layersF1, . . . ,FK :

Ii =
K

∑
k=1

αk
i Fk

i . (2)

The K vectorsαk are thematting components of the image, which specify the fractional contribution

of each layer to the final color observed at each pixel. The matting components are non-negative and

sum to one at every pixel. The intuitive motivation for having these components is that, similarly to the

individual low-level fragments in an over-segmented image, they may be used to construct higher level,

semantically meaningful foreground mattes, as demonstrated in Figure 1.

A desirable, although not required, property of the mattingcomponents issparsity: each component

should be either completely opaque or completely transparent over as many image pixels as possible.

This means that areas of transition between the different layers are limited to a small number of pixels,

and each pixel is influenced by a small number of layers.

In this paper, we explore the relationship between the matting components and the eigenvectors of

the matting Laplacian matrix [14]. Specifically, we show that under certain assumptions the matting

components are spanned by the smallest eigenvectors of the matting Laplacian. We then propose a method

for computing the matting components by finding an appropriate linear transformation and applying it to

these eigenvectors.

III. SPECTRAL ANALYSIS

We start by briefly reviewing the basic theory of spectral segmentation methods [5], [6], [7], [23], [11],

[1], [10], [19], [25], [17], [26]. These methods typically associate with the image anN×N affinity matrix

A, such asA(i, j) = e−di j/σ2
, wheredi j is some measure of the distance between the pixels (such as color

difference and geometric distance). One can then define the Laplacian matrixL = D−A, whereD is the

diagonal matrixD(i, i) = ∑ j A(i, j). L is a symmetric positive semidefinite matrix, whose eigenvectors
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capture much of the image structure.1

Consider the ideal case where the affinity matrixA captures exactly the fact that an image is composed

from several distinct clusters, orconnected components. That is, a subsetC of the image pixels is a

connected component of the image ifA(i, j) = 0 for every i, j such thati ∈ C, j /∈ C, and there is no

subset ofC which satisfies this property. LetmC denote the indicator vector of the componentC,

mC
i =







1 i ∈C

0 i /∈C
,

thenmC is a 0-eigenvector ofL (i.e., an eigenvector with eigenvalue 0).

Now suppose that the image consists ofK connected componentsC1, . . . ,CK such that{1, . . . ,N} =
⋃K

k=1Ck, whereCk are disjoint subsets of pixels. In this case the indicator vectors mC1, . . . ,mCK are all

independent, orthogonal 0-eigenvectors ofL. However, computing the eigenvectors ofL yields these

indicator vectors only up to rotation. This is the case sincefor any K ×K rotation matrixR the vectors

[mC1, . . . ,mCK ]R are also a basis for the nullspace ofL.

In real images, the affinity matrixA is rarely able to perfectly separate between the different pixel

clusters. Therefore, the LaplacianL usually does not have multiple 0-eigenvectors. However, ithas been

observed that the smallest eigenvectors ofL tend to be nearly constant within coherent image components.

Extracting the different components from the smallest eigenvectors is known asspectral rounding and has

attracted much attention [17], [26], [22], [27], [13]. The simplest approach [17] is to cluster the image

pixels using thek-means algorithm, and use perturbation analysis to bound the error of this algorithm

as a function of the connectivity within and between clusters. Other more recent methods [26], [27],

which inspired the approach taken in this work, explicitly search for a rotation matrix that brings the

eigenvectors as close as possible to binary indicator vectors.

A. Spectral Analysis with the Matting Laplacian

Our goal in this work is to derive an analogy between hard segmentation and matting and to show

that fuzzy matting components may be extracted from the smallest eigenvectors of the matting Laplacian,

similarly to the extraction of hard clusters described earlier.

1In fact, most spectral segmentation papers consider normalized affinity matrices such asD−1L or D−1/2LD−1/2. However,
in this work we focus onL itself as it is not clear how to justify the normalization in the case of the matting Laplacian. The
problem is that the off-diagonal elements of the matting Laplacian can be both negative and positive, and thus the matting cost
cannot be expressed as a sum of positive pairwise terms.
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1) The Matting Laplacian: The matting Laplacian was introduced by Levinet al. [14] in order to

evaluate the quality of a matte without explicitly estimating the foreground and background colors in

eq. (1). They show that if the colors of the background and theforeground within a local image window

w form two different lines in RGB space, then theα values withinw may be expressed as a linear

combination of the color channels:

∀i ∈ w αi = aRIR
i +aGIG

i +aBIB
i +b (3)

Thus, the matte extraction problem becomes one of finding thealpha matte that minimizes the deviation

from the linear model (3) over all image windowswq:

J(α ,a,b) = ∑
q∈I

∑
i∈wq

(

αi −aR
q IR

i −aG
q IG

i −aB
q IB

i −bq
)2

+ ε‖aq‖
2 (4)

whereε‖aq‖
2 is a regularization term ona. The linear model coefficientsa,b may be eliminated from

equation (4), yielding aquadratic cost in α alone,

J(α) = αT Lα . (5)

This cost has a trivial minimum, which is a constantα vector, and thus in the user assisted framework

described in [14],J(α) is minimized subject to user constraints.

In eq. (5),L is the matting Laplacian, a sparse symmetric positive semidefiniteN ×N matrix whose

entries are a function of the input image in local windows, depending neither on the unknown foreground

and background colors, nor on the linear model coefficients.L is defined as a sum of matricesL = ∑q Aq,

each of which contains the affinities among pixels inside a local windowwq:

Aq(i, j) =







δi j −
1

|wq|

(

1+(Ii−µq)
T (Σq + ε

|wq|
I3×3)

−1(I j −µq)
)

(i, j) ∈ wq

0 otherwise
, (6)

Hereδi j is the Kronecker delta,µq is the 3×1 mean color vector in the windowwq around pixelq, Σq

is a 3×3 covariance matrix in the same window,|wq| is the number of pixels in the window, andI3×3

is the 3×3 identity matrix.

Note that the matting Laplacian is fundamentally differentfrom a “standard” graph Laplacian matrix.

Standard Laplacian matrices are constructed using non-negative affinities A(i, j), and hence all off-

diagonal elements ofL are non-positive. On the other hand, according to eq. (6), the off-diagonal elements

of the matting Laplacian may have arbitrary signs. Thus, although we follow the terminology of Levin
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et al. [14], and refer to the matrixL as the matting Laplacian, it should be understood that this is an

extension of the standard term, as most important properties of graph Laplacians rely on the non-negative

affinity assumption.

Fortunately, as we show below, some of the useful propertiesof standard graph Laplacian matrices

apply to the matting Laplacian as well. The first such property is that both types of Laplacians are

positive semidefinite matrices. For the standard graph Laplacian, this property is trivially implied from

the fact that the pairwise affinitiesA(i, j) are non-negative; for everyN-dimensional vectorx, it holds

that xT Lx = ∑i, j A(i, j)(xi − x j)
2 ≥ 0. The matting Laplacian is also positive semidefinite, but instead

of positive pairwise terms, it can be factored as a sum of positive terms consisting of the affinities in

3×3 windows; by construction of the matting Laplacian (see [14] for the exact derivation), for every

N-dimensional vectorx, it holds that

xT Aq x = mina,b ∑
i∈wq

(

xi −aR
q IR

i −aG
q IG

i −aB
q IB

i −bq
)2

+ ε‖aq‖
2 ≥ 0,

which impliesxT Lx = ∑q xT Aq x ≥ 0.

Another useful property of the matting Laplacian (6) is thatits smallest eigenvectors appear to capture

information about the fuzzy cluster assignments of pixels in the image, even before any user-specified

constraints are taken into account. This observation was already made by Levinet al. [14]; however, they

made no use of the eigenvectors beyond presenting them to theuser as guides for scribble placement. In

this work, we show that the smallest eigenvectors of the matting Laplacian span the individual matting

components of the image.

2) The Matting Laplacian’s Nullspace: To gain some understanding, we begin by studying the ideal

case. To justify the usage of spectral analysis to estimate matting components, our goal is to show

that under reasonable conditions, the actual matting components belong to the nullspace of the matting

Laplacian. We say that a matting componentαk is active in a local image windoww if there exists a

pixel i ∈ w for which αk
i > 0. The following claim states the conditions on the local color distribution in

each layer, under whichLαk = 0. The severity of the conditions is related to the number of active layers

in a local window. The least restricted case is when only one layer is active, in which the local color

distribution can be arbitrary complex. The most restrictedcase is when a window contains three active

layers (as in the case of a T-junction), and for such windows the theorem holds when each layer color

is locally uniform.

Claim 1: Let α1, . . . ,αK be the actual decomposition of the imageI into k matting components. The
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vectorsα1, . . . ,αK lie in the nullspace of the matting LaplacianL (given by eq. 6 withε = 0) if every

local image windoww satisfies one of the following conditions:

1) A single componentαk is active withinw.

2) Two componentsαk1,αk2 are active withinw and the colors of the corresponding layersFk1,Fk2

within w lie on two different lines inRGB space.

3) Three componentsαk1,αk2 and αk3 are active withinw, each layerFk1,Fk2,Fk3 has a constant

color within w, and the three colors are linearly independent.

Proof: The matting cost (5) measures the deviation between a matte and a linear function of the

color channels, over all local windows (eq. 4). Thus, in order to show that a matte componentαk

satisfiesLαk = 0 it suffices to show that for every local windoww, there existaR,aG,aB,b such that:

αk
i = aRIR

i +aGIG
i +aBIB

i +b, ∀i ∈ w. Below we show this for each of the three window types.

Case 1: Since the matting components sum to one at every image pixel, the single active component

αk must equal 1 withinw. Thus, it is easily expressed as a linear function of the image by setting

aR = aG = aB = 0 andb = 1.

Case 2: This case is equivalent to theorem 2 in [14].

Case 3: Assume wlog thatk1 = 1, k2 = 2, k3 = 3. Let F = [F1,F2,F3] be a 3×3 matrix of the uniform

layer colors, and fori ∈ w let αi = [α1
i ,α2

i ,α3
i ]T be a 3×1 vector of components values. We note that

Ii = Fαi. Since the 3 layer colors are linearly independent,F is invertible andαi = F−1Ii, which implies

that αk are linear functions of the image.

As in the case of standard Laplacians, when the smallest eigenvectors of the matting Laplacian are

computed, the result may be any linear combination of the different matting components, and recovering

the individual components is equivalent to linearly transforming the eigenvectors. It should be noted

that unlike hard segments, the matting components are not binary vectors and thus are not necessarily

orthogonal. Hence, while the eigenvectors are orthogonal,the transformation from eigenvectors to matting

components might be a general linear transformation and nota simple rotation.

To summarize, the main conclusion of the above discussion isthat whenever the matting components

of an image satisfy the conditions of claim 1, they may be expressed as a linear combination of the

0-eigenvectors ofL.

In most real images, the assumptions of claim 1 don’t hold exactly, and thus the matting Laplacian might

not have multiple 0-eigenvectors. Yet if the layers are sufficiently distinct, they are generally captured by

the smallest eigenvectors ofL. For example, Figure 2 shows the smallest eigenvectors for areal image,

all exhibiting the fuzzy layer boundaries. We have empirically observed that the matting components of
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Fig. 2. The smallest eigenvectors of the matting Laplacian for the image in Figure 1a. Linear combinations of these eigenvectors
produced the matting components shown in Figure 1d.

real images are usually spanned quite well by the smallest eigenvectors of the matting Laplacian. Indeed,

the components shown in Figure 1d were obtained as linear combinations of the smallest eigenvectors.

B. From Eigenvectors to Matting Components

As explained above, recovering the matting components of the image is equivalent to finding a linear

transformation of the eigenvectors. Recall that the matting components should sum to 1 at each image

pixel, and they should be near 0 or 1 for most image pixels, since the majority of image pixels are usually

opaque. Thus, we are looking for a linear transformation of the eigenvectors that would yield a set of

nearly binary vectors. More formally, letE = [e1, ..,eK ] be theN×K matrix of eigenvectors. Our goal is

then to find a set ofK linear combination vectorsyk that minimize

∑
i,k

|αk
i |

γ + |1−αk
i |

γ , whereαk = Eyk (7)

subject to∑
k

αk
i = 1

If 0 < γ < 1 is used (in our implementationγ = 0.9), then|αk
i |

γ + |1−αk
i |

γ is a robust score measuring

the sparsity of a matting component (plotted in Figure 3). Without the requirementαk = Eyk the sparsity

term would be minimized by binary vectors, but as the vectorsαk are restricted to linear combinations of

the eigenvectors they must maintain the fuzzy layer boundaries. Although we do not explicitly constrain

the α values to be between 0 and 1, in practice the resulting valuestend to lie in this range due to the

sparsity penalty.

The above cost is of course a non-convex one and we optimize ititeratively using Newton’s method [4],
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Fig. 3. Sparsity score:ρ(α) = |α|0.9 + |1−α|0.9 favoring binaryα values

which amounts to a sequence of second order approximations.Given a guess for the values ofαk
i we

defineuk
i as the second derivative of|αk

i |
γ , uk

i ∝ |αk
i |

(γ−2), and similarlyvk
i ∝ |1−αk

i |
(γ−2). The second

order approximation to eq. (7) reads as minimizing

∑
i,k

uk
i |αk

i |
2 + vk

i |1−αk
i |

2, whereαk = Eyk (8)

subject to∑
k

αk
i = 1

As this problem has now become one of quadratic optimizationunder linear constraints, the optimal

solution can be computed in closed form by inverting aK2×K2 matrix. For that we defineU k = diag(uk)

andV k = diag(vk). We also defineW k = ET (U k +V k)E and1 as a vector of ones. It may be shown that

the K2 elements ofy1, . . . ,yK are the solution for:






















Id Id Id · · · Id

0 W 2 +W 1 W 1 · · · W K

0 W 1 W 3 +W 1 · · · W K

...
...

...
. . .

...

0 W 1 W 1 · · · W K +W 1























y =























E1

Ev2 +Eu1

Ev3 +Eu1

...

EvK +Eu1























, (9)

where Id is theK×K identity matrix. Given an initial guess, our algorithm iteratively solves a sequence

of second order optimization problems of the form of eq. (8) and uses the solution of each iteration to

reweight the following one. We note that the weightsuk
i (andvk

i ) are higher when the current guess for

αk
i is close to 0 (or 1) and are lower when the guess is farther awayfrom these values. Thus, the effect
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of the reweighting step is to pull toward 0 (or 1) thoseα entries for which the current guess is already

close, and to loosen the relation for pixels for which the guess is far anyway. For example, if the current

guess forαk
i is close to 0, thenuk

i ≫ vk
i and thus the termuk

i |αk
i |

2+vk
i |1−αk

i |
2 pulls the alpha component

at this pixel toward 0 much stronger than toward 1.

Since the cost (7) is not convex, the result of the Newton process strongly depends on the initialization.

One useful way to initialize the process is to apply ak-means algorithm on the smallest eigenvectors

of the matting Laplacian and project the indicator vectors of the resulting clusters onto the span of the

eigenvectorsE:

αk = EET mCk
. (10)

The effect of this projection step is to find a linear combination of eigenvectors that minimizes the squared

distance tomCk
. We note that the resulting matting components sum to one, since

∑
k

αk = EET (∑
k

mCk
) = EET 1 = 1. (11)

The last equality follows from the fact that the constant vector belongs to the nullspace of the matting

Laplacian. As a result, projecting the hard clusters provides a legal solution for eq. (7). We also note

that despite the fact thatmCk
are binary vectors, the projection typically features fuzzy matte boundaries.

This is due to the fact that, as illustrated in Figure 2, the smallest eigenvectors all maintain the fuzzy

layer structure, and thus simply do not suffice to span the hard segmentation boundaries.

In practice, we typically use a larger number of eigenvectors than the number of matting components

to be recovered. Using more eigenvectors makes it possible to obtain sparser components. The reason is

that more basis elements span a richer set of vectors (in the extreme case, if allN eigenvectors are used,

any binary vector can be generated). A number of examples demonstrating the extraction of soft matting

components are given in Figures 1 and 4.

IV. GROUPING COMPONENTS

So far we have shown how matting components may be extracted from the matting Laplacian. However,

usually the matting components are not a goal in their own, asone is ultimately interested in recovering

a complete matte for some foreground object. Fortunately, all that is needed to obtain a complete matte

is to specify which of the components belong to the foreground. Let b denote aK-dimensional binary

vector indicating the foreground components (i.e.bk = 1 iff αk is a foreground component). The complete
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Fig. 4. A number of test images and the matting components extracted from them using our method. A random color is
assigned to each component for visualization purposes.

foreground matte is then obtained by simply adding the foreground components together:

α = ∑
k

bkαk (12)

For example, the matte in Figure 1c was obtained by adding thecomponents highlighted in red in

Figure 1d.

For the applications discussed below, one would like to compare multiple grouping hypotheses. If the

smallest eigenvalues aren’t exactly zero (which is the casefor most real images) we can also measure

the quality of the resultingα-matte asαT Lα , whereL is the matting Laplacian (eq 6). When a large

number of hypotheses is to be tested, multiplying each hypothesis byL might be too expensive. However,

if each hypothesis is just a sum of matting components we can pre-compute the correlations between the

matting components viaL and store them in aK ×K matrix Φ, where

Φ(k, l) = αkT
Lα l. (13)

The matte cost can then be computed as

J(α) = bT Φb, (14)

where b is a K dimensional binary vector indicating the selected components. Thus, if Φ has been

pre-computed,J(α) can be evaluated inO(K2) operations instead ofO(N) operations.
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Input Hypothesis 1 Hypothesis 2 Hypothesis 3 Hypothesis 4 Hypothesis 5

Fig. 5. Unsupervised matting results for a few images. The hypotheses are ordered according to their score.

A. Unsupervised Matting

Given an image and a set of matting components we would like tosplit the components into foreground

and background groups and pull out a foreground object. If the grouping criterion takes into account

only low level cues, then we just search for a grouping with the best matting cost, as defined by eq. (14).

However, the matting cost is usually biased toward mattes which assign non constant values only to a

small subset of the image pixels (in the extreme case, the best matte is a constant one). The spectral

segmentation literature suggest several criteria which overcome this bias. One approach is to search for

quotient cuts (e.g. normalized cuts [19]) which score a cut as the ratio between the cost of the cut and

the size of the resulting clusters. A second approach is to look for balanced cuts [13] where the size of
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each cluster is constrained to be above a certain percent of the image size. In this work, we follow this

latter approach and rule out trivial solutions by considering only groupings which assign at least 30% of

the pixels to the foreground and at least 30% of the pixels to the background. When the numberK of

matting components is small we can enumerate all 2K hypotheses and select the one with the best score

using eq. (14).

Figure 5 shows some results produced by the unsupervised matting approach described above. In two

of these examples the hypothesis with the highest score indeed corresponds to the “correct” foreground

matte, while in one example (bottom row) the “correct” mattewas ranked fourth. Note that in all

of these examples the other high-ranked hypotheses are quite sensible as well, considering that our

approach does not attempt to perform any high-level image understanding. Of course, it isn’t hard to

find examples where unsupervised matting fails, and the lasttwo examples in figure 5 illustrate such

failures. In general, whenever the foreground or background objects consist of several visually distinct

components, the assignment with the minimal matting cost might not correspond to our visual perception.

In fact, it is well known within the image segmentation community that while unsupervised bottom-up

cues can efficiently group coherent regions in an image, the general image segmentation problem is

inherently ambiguous, and requires additional information. In practice, such as in the case of hard image

segmentation, the foreground/background assignment may be guided by several additional cues, such as

top-down models [2], color statistics [18], or motion and focus cues. Thus, we believe that the main

practical use of matting components is in the supervised setting, and focus on user-guided matting in the

remainder of this paper.

B. User-Guided Matting

We now consider an interactive setting, where the user guides the matting process toward the extraction

of the desired foreground matte. In such a setting the foreground/background assignment of some of the

components is determined by the user, thereby reducing the number of legal hypotheses to be tested.

Given very minimal foreground and background constraints,it is usually possible to rule out trivial

solutions, so there is no need to explicitly keep the size of each group above a certain threshold (as in

the unsupervised case). In this case we can speed up the search for an optimal foreground/background

assignment of components using a graph min-cut formulation.

1) Optimizing assignments in the components graph: To efficiently search for the optimal fore-

ground/background assignment we approximate the matting cost (eq. 14) as a sum of pairwise terms. This

enables us to approximate the search for the optimal foreground/background assignment as a min-cut
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problem in a graph whose nodes are the matting components, and whose edge weights represent matting

penalty. Since the function we are trying to minimize is not sub-modular in general, we rewrite eq. (14)

as a sum of non-negative local and pairwise termsJ(α) = E(b), whereb is the binary vector representing

the components inα . Alternatively, one could use algorithms for minimizing non-submodular functions

such as the QPBO method. (see [12] for a review on such methods).

We define the energyE(b) as

E(b) = ∑
k

Ek(b
k)+∑

k,l

Ek,l(b
k −bl)2 (15)

where Ek(0) = ∞ if the k-th component is constrained to belong to the foreground,Ek(1) = ∞ if the

component is constrained as background, and 0 otherwise. Todefine the pairwise term we note that

φ k,k = ∑l 6=k φ k,l (this follows from the fact thatL(∑αk) = L1 = 0, and thusΦ1 = 0) and as a result

bT Φb = ∑
k,l

−φ k,l(bk −bl)2. (16)

Therefore, if we defineEk,l = −φ k,l we obtain that

∑
k,l

Ek,l(b
k −bl)2 = J(α). (17)

However, in order to search for a min-cut efficiently, we use apositive approximation and defineEk,l =

max(0,−φ k,l). To justify this approximation we can prove the approximation is exact in all local image

windows for which no more than two components are active. When good components are extracted from

an image, the majority of image windows will be associated with no more than two components (that

is, no more than two components will be active). Indeed, we have empirically observed that for most

matting component pairsφ k,l < 0.

Claim 2: The correlationφ k,l between componentsαk,αl will be negative if every local image window

w satisfies one of the following conditions:

(c1) αk
i = 0 ∀i ∈ w

(c2) α l
i = 0 ∀i ∈ w

(c3) αk
i = 1−α l

i ∀i ∈ w

Proof: Following eq. (6), we rewrite the correlation between components via the matting Laplacian

as a sum of correlations over local windows:

φ k,l = αkT
Lα l = ∑

q∈I
αkT

Lqα l, (18)
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Input Our result Levinet al. [14] Wang-Cohen [24] Random Walk [8] Poisson [21]

Fig. 6. A comparison of mattes produced by different mattingmethods from minimal user input (yellow scribbles indicate
foreground, while green scribbles indicate background).

whereLq is anN×N matrix, if (i, j) ∈wq Lq(i, j) is defined using eq. (6), andLq(i, j) = 0 otherwise. We

will show that under the above conditions,αkT
Lqα l < 0 for every image windowwq. This will follow

immediately ifαk
i = 0 or α l

i = 0 ∀i ∈ w. For the third case, we note that

αkT
Lqα l =∗ αkT

Lq(1−αk) =∗∗ −αkT
Lqαk ≤∗∗∗ 0, (19)

Where∗ follows from the condition (c3),∗∗ follows from the fact that the matting cost of the constant

vector is 0, and∗∗∗ follows from the fact that each of theLq matrices is positive semidefinite.

Using the above graph formulation, finding the optimal foreground/background assignment does not

involve an exponential search and is found efficiently in time polynomial in the number of components,

as a graph min-cut. As a result, if the matting components arepre-computed, the optimal matte may

be computed very rapidly, enabling interactive responses to user input. The computational challenges of

our algorithm are equivalent to those of conventional spectral segmentation techniques. Specifically, it

takes our unoptimized matlab implementation a couple of minutes to compute the matting components

for the images in Figure 6. However, this pre-processing step can be done offline, and once the matting

components are available, it only takes an additional few seconds to construct a matte given the user’s

constraints.

2) Matte extraction using user scribbles: Figure 6 presents a few examples where a foreground matte

was extracted from an image based on a small number of foreground (white) and background (black)

markings provided by the user. The second column shows the resulting matte extracted by the approach

described above (the scribbles are used to reduce the space of splitting hypotheses: a component is
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Input Constraints Matte

Fig. 7. The middle region is not constrained, and the method of Levin et al. assigns it an average non-opaque value.

constrained to belong to the foreground whenever its area contains a white scribble). The remaining

columns show the mattes generated from the same input by a number of previous methods [14], [24],

[8], [21]. None of these previous approaches is able to recover a reasonable matte from such minimal

user input. In particular, although our approach uses the same matting Laplacian as [14], our results are

very different from those obtained by directly minimizing the quadratic matting cost (5) subject to user-

specified constraints. The main drawback of such direct optimization is that whenever an image contains

distinct connected components without any constraints inside them, a quadratic cost such as (5) tends to

assign them some average non-opaque values, as demonstrated by the simple example in Figure 7. The

core of this problem is that the quadratic cost of [14] placesstrong assumptions on the foreground and

background distributions, but imposes no restrictions onα . Thus, it searches forcontinuous solutions

without taking into account that, for a mostly opaque foreground object, the matte should be strictly 0

or 1 over most of the image.

3) Matte extraction by component labeling: Once the matting components of an image have been

computed, placing hard constraints by a set of scribbles or atrimap is not the only way for the user

to specify her intent. The matting components suggest a new,more direct user interaction mode which

wasn’t possible until now: in this mode the user is presentedwith the precomputed matting components

and may simply label some of them as background or foreground. The labeled components then become

constrained accordingly in the min-cut problem. The advantage of such an interface is illustrated in

Figure 8, where the large fuzzy hair areas do not lend themselves to placement of hard constraints. Thus,

the best trimap we could practically expect leaves such areas unconstrained (Figure 8c). The least squares

matte of [14] populates these areas with average gray values(Figure 8d). In contrast, by searching for the

cheapest assignment of matting components consistent withthe trimap, we obtain the matte in Figure 8e.

In this case no over-smoothing is observed, but some of the fuzzy hair was not selected to belong to the

foreground. However, if the user is allowed to directly select three additional components (highlighted

in red in Figure 8g) as foreground, we obtain the matte in Figure 8f.
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(a) (b) Input (c) Trimap

(d) Levin et al. [14] from
trimap

(e) Components from trimap (f) Component labeling

(g) Matting components

Fig. 8. Benefits of direct component labeling.

V. QUANTITATIVE EVALUATION

To quantitatively evaluate our approach and compare it withprevious methods we captured ground

truth data. Three different dolls were photographed in front of a computer monitor displaying seven
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Fig. 9. Quantitative evaluation

different background images (Figure 9a). A ground truth matte was then extracted for each doll using a

least squares framework [20]. Each image was downsampled to560×820 pixels, and the tests described

below were performed on (overlapping) 200×200 windows cropped from these images. For our approach,

60 matting components were extracted using the 70 smallest eigenvectors of each cropped window. The

running time of our unoptimized matlab implementation (on a3.2GHz CPU) was a few minutes for each

200×200 window.

To design a comparison between matte extraction using matting components and previous matting

algorithms we need to address the two non compatible interfaces, and it is not clear how to measure

the amount of user effort involved in each case. While previous approaches were designed to work with

hard constraints (scribbles or trimap) our new approach enables a new interaction mode by component

selection. Therefore, in our experiments we attempted to determine how well can each approach do, given

the best possible user input. Thus, we first used the ground truth matte to generate an “ideal” trimap. The

unknown region in this trimap was constructed by taking all pixels whose ground truth matte values are

between 0.05 and 0.95, and dilating the resulting region by 4 pixels. The resulting trimap was used as

input for four previous matting algorithms: Levinet al. [14], Wang and Cohen [24], random walk matting

[8], and Poisson matting [21]. We also ran our method twice ineach experiment: (i) using the same trimap

to provide a partial labeling of the matting components, followed by a min-cut computation, as described

in section IV-B; and (ii) using the ground truth matte to select the subset of matting components that

minimizes the distance of the resulting matte from the ground truth, thus simulating the ideal user input

via the direct component picking interface. The SSD errors between the mattes produced by the different

methods and the ground truth matte (averaged over the different backgrounds and the different windows)

are plotted in Figure 9b. It is apparent that given a sufficiently precise trimap, our method offers no
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real advantage (when given the same trimap as input) over theleast-squares matting of Levinet al.,

which produced the most numerically accurate mattes. However, when simulating the best labeling of

components, our approach produced the most accurate mattes, on average.

While our experiment compares the quality of mattes produced from an ideal input, a more interesting

comparison might be to measure the amount of user time required for extracting a satisfactory matte with

each approach. Ideally, we would also like to measure whether (or to what degree) a component picking

interface is more intuitive than a scribble based interface. Such a comparison involves a non trivial user

study, and is left for future work.

Given the strong analogy between spectral matting and hard spectral segmentation, we would like

to gain some intuition about the possible advantage of usingmatting components versus standard hard

segmentation components (also known as super-pixels). Theanswer, of course, depends on the application.

If the final output is a hard segmentation, matting components probably do not offer an advantage over

standard hard components. On the other hand, when the goal isa fuzzy matte it is better to explicitly

construct matting components, as we do, rather than first compute a hard segmentation and then feather

the boundaries (as in [16], [18], for example). To show this,we compare the two approaches. We first

extract matting components from each of the test images and select the subset of matting components,

which will minimize the distance from the ground truth matte. The second approach is to select a subset

of hard components (we used the available implementation ofYu and Shi [26]) that best approximates

the ground truth. We then apply morphological operations (we have experimented with several constant

radius erosion windows) on the resulting hard mask, create atrimap and run the matting algorithm of [14].

However, since the optimal radius of the erosion window strongly depends on the local image structure

and varies over the image, it is impossible to obtain an idealtrimap with a constant radius window. This

problem is illustrated visually in Figure 10.

Figure 9c shows the SSD errors (averaged over the different backgrounds and the different windows)

of the two approaches, which indicate that optimally picking the matting components indeed results in

more accurate mattes than those obtained by feathering a hard segmentation.

VI. D ISCUSSION

In this work we have derived an analogy between standard (hard) spectral image segmentation

and image matting, and have shown how fundamental matting components may be automatically

obtained from the smallest eigenvectors of the matting Laplacian. From the practical standpoint, matting

components can help automate the matte extraction process and reduce user effort. Matting components
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Input Ground truth matte Matte from components Automatic hard segments

Automatic trimaps (eroding the hard segmentation with different radii)

Mattes produced from the trimaps in the previous row

Fig. 10. Spectral matting vs. obtaining trimaps from a hard segmentation.

also suggest a new mode of user control over the extracted matte: while in previous methods the result is

controlled by placement of hard constraints in image areas where the matte is either completely opaque

or completely transparent, our new approach may provide theuser with a simple intuitive preview of

optional outputs, and thus enables the user to directly control the outcome in the fractional parts of the

matte as well.

Limitations: Our method is most effective in automating the matte extraction process for images

that consist of a modest number of visually distinct components. However, for highly cluttered images,

component extraction proves to be a more challenging task. As an example, consider the case shown

in Figure 11. The input image consists of a large number of small components. Projecting the

ground truth matte (Figure 11a) on the subspace spanned by the 70 smallest eigenvectors results in

a poor approximation (Figure 11b). Recall that since the matting components are obtained via a linear

combination of the eigenvectors, they can do no better than the eigenvectors themselves, and thus Figure
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input image

(a) (b) (c)

Fig. 11. Demonstration of limitations. Top: input image; Bottom: Ground truth matte (a); Mattes from 70 (b) and 400 (c)
eigenvectors.

11b is the best matte that we could hope to construct from up to70 matting components. Thus, it is

quite clear that this number of components is insufficient toproduce an accurate matte for this image. A

better matte may be obtained from the 400 smallest eigenvectors (Figure 11c), but even this matte leaves

room for improvement. We have not been able to test more than 400 eigenvectors due to computational

limitations. We have empirically observed that this problem is significantly reduced if matting components

are computed in local image windows independently, and are currently investigating methods for stitching

together components obtained in different windows.

One major challenge in spectral matting is determining the appropriate number of matting components

for a given image. This is a fundamental difficulty shared by all spectral segmentation methods. While

the question of automatically selecting the number of components has been investigated (e.g. [27]), this

parameter is still often manually adjusted. For the applications described in this paper we found that a

useful strategy is to over-segment the image and group the components later using additional cues. A

second free parameter in the algorithm is the number of smallest eigenvectors from which the components

are formed (the number should be larger or equal to the numberof components). In practice, we have

observed that the performance is not very sensitive to this number and all results in this paper were

obtained using the 70 smallest eigenvectors. Figure 12 demonstrates the effect of varying the number

of matting components and the number of eigenvectors. It canbe seen, that usually it is better to use a
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Input eig= 70, comp= 2 eig= 70, comp= 3 eig= 70, comp= 15 eig= 70, comp= 30

eig= 15, comp= 8 eig= 50, comp= 8 eig= 70, comp= 8 eig= 100, comp= 8 eig= 200, comp= 8

Input eig= 70, comp= 15 eig= 70, comp= 18 eig= 70, comp= 25 eig=70, comp= 40

eig= 15, comp= 20 eig= 30, comp= 20 eig= 50, comp= 20 eig= 70, comp= 20 eig= 200, comp= 20

Fig. 12. The effect of changing the number of eigenvectors and the number of matting components on the resulting matte.

large number of matting components and a large number of eigenvectors, but this obviously makes the

algorithm slower. When too many matting components are used, some regions in the alpha matte may

become too transparent. This is due to some matting components that were not grouped correctly by the

min-cut algorithm. The algorithm is much less sensitive to the number of eigenvectors being used. Using

50 to 200 eigenvectors usually produced similar results. Itshould be noted that increasing the number

of eigenvectors makes the resulting alpha matte more opaque, as it gives more freedom to the non-linear

optimization, which looks for opaque solutions. (In the extreme case, using all eigen-vectors will produce

binary mattes).

Future directions: An important potential advantage of pre-segmenting the image into matting

components is the option to compute meaningful color or texture histograms, or other statistics, within

each component. The histogram similarity can provide another important cue to guide component

grouping. This ability might significantly improve mattingalgorithms which make use of color models,

such as [24]. For example, the current strategy in [24] is to build an initial color model using only the

small number of pixels under the scribbles. This simple initialization is known to make the algorithm
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sensitive to small shifts in the scribble location.

Given the growing interest in the matting problem and the large amount of recent matting research, it

seems that an important future challenge is the design of an appropriate comparison between different

user interaction modes and different matting algorithms. The ground truth data collected in this work is

a step toward this goal, yet a proper user study is required inorder to evaluate the amount of user time

required for producing good results with each method.

Our code and ground truth data are available at:www.vision.huji.ac.il/SpectralMatting
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