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Abstract

We presentpectral matting: a new approach to natural image matting that automaticaltyputes
a set of fundamental fuzzynatting components from the smallest eigenvectors of a suitably defined
Laplacian matrix. Thus, our approach extends spectral eatation techniques, whose goal is to extract
hard segments, to the extraction of soft matting componditese components may then be used as
building blocks to easily construct semantically meanih@dreground mattes, either in an unsupervised

fashion, or based on a small amount of user input.

. INTRODUCTION

Digital matting is the process of extracting a foregroungeobfrom an image along with an opacity
estimate for each pixel covered by the object. This openagisables compositing the extracted object
over a novel background, and thus constitutes an invaluablen image editing, video production, and
special effects in motion pictures.

In particular, the challenging case oftural image matting, which poses no restrictions on the
background, has received much research attention. Reatogrthat the problem is inherently under-
constrained, all of the existing methods require the usgrewide additional constraints in the form of
a trimap [3], [21], [8] or a set of brush strokes [24], [14]].[Fhus, the question of whether (or to what
degree) is it possible to automate the matting process,¢smgiderable theoretical and practical interest.

In this paper we attempt to provide some new insights intedhiestion. Our work is strongly influenced
by spectral segmentation methods [19], [25], [17], [26]e3& methods analyze the smallest eigenvectors
of the image’s graph Laplacian matrix in order to obtain asupervised decomposition of the image
into a collection of hard segments. In this work, we extend ittea to unsupervised computation of a
collection of softmatting components.

Spectral segmentation methods, such as [19], resort to w@atign of real-valued eigenvectors as
an approximation necessary to transform an NP-completenattion problem into a tractable one. In
contrast, we are not seeking a disjoint image partitionlmg, rather attempt to recover the fractional
foreground coverage at each pixel. Specifically, we obtain real-valued matting components via a
linear transformation of the smallest eigenvectors ofrtiating Laplacian matrix, introduced by Levin
et al. [14]. Once obtained, these matting components serve aityiiblocks for construction of complete
foreground mattes.

This concept is illustrated in Figure 1. Given the input imag Figure la, one can produce an

unsupervised disjoint hard partitioning of the image usmg., [26] (Figure 1b). In contrast, we compute
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(@) Inp.ut. image (b) Hard segmentation (c) Alpha matte

(d) Matting components computed by our method.

Fig. 1. Spectral segmentation and spectral matting

a set of overlapping, fractional, matting components, alized in Figure 1d. Combining three of these
components (framed in red) yields the foreground matte efdginl, shown in Figure 1c.

In summary, our main contribution is the introduction of thencept of fundamental matting
components and a method for computing them in an unsupdrmsaner. We then proceed to describe
an unsupervised matting algorithm. Of course, just likeupasvised segmentation, unsupervised matting
is an ill-posed problem. Thus, we focus more on two exterssithrat use our fundamental matting
components to construct a particular matte: (i) presentuber with several matting alternatives to
choose from; or (i) let the user specify her intent by jusee fmouse clicks.

A shorter version of this paper appeared in [15].
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[I. MATTING COMPONENTS

Matting algorithms typically assume that each pikeh an input image is a linear combination of a

foreground colo and a background colds;:
li=oF+ (1—ai)B;. Q)

This is known as theompositing equation. In this work, we generalize the compositing equation by

assuming that each pixel is a convex combinatiotKdmage layers?,... FK:
C ek
li=) o'F" 2)
2

The K vectorsaX are thematting components of the image, which specify the fractional contribution
of each layer to the final color observed at each pixel. Thdaingatomponents are non-negative and
sum to one at every pixel. The intuitive motivation for hayithese components is that, similarly to the
individual low-level fragments in an over-segmented imagey may be used to construct higher level,
semantically meaningful foreground mattes, as demorestriat Figure 1.

A desirable, although not required, property of the matwognponents isparsity: each component
should be either completely opaque or completely transpareer as many image pixels as possible.
This means that areas of transition between the differgmtréaare limited to a small number of pixels,
and each pixel is influenced by a small number of layers.

In this paper, we explore the relationship between the nmattiomponents and the eigenvectors of
the matting Laplacian matrix [14]. Specifically, we show tthender certain assumptions the matting
components are spanned by the smallest eigenvectors ofattiegnLaplacian. We then propose a method
for computing the matting components by finding an approgtiaear transformation and applying it to

these eigenvectors.

[1l. SPECTRAL ANALYSIS

We start by briefly reviewing the basic theory of spectrainsegtation methods [5], [6], [7], [23], [11],
[1], [20], [19], [25], [17], [26]. These methods typicallyssociate with the image ax N affinity matrix
A, such adA(i, j) = e‘dii/"z, wheredj is some measure of the distance between the pixels (suchaas co
difference and geometric distance). One can then definedpatian matrixx- = D — A, whereD is the

diagonal matrixD(i,i) = ¥ ;A(i, j). L is a symmetric positive semidefinite matrix, whose eigetorsc
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capture much of the image structdre.

Consider the ideal case where the affinity makigaptures exactly the fact that an image is composed
from several distinct clusters, aonnected components. That is, a subset of the image pixels is a
connected component of the imageAifi, j) = 0 for everyi,j such thati € C, j ¢ C, and there is no

subset ofC which satisfies this property. LetC denote the indicator vector of the componént

1 ieC
0 i¢C

- =
thennt is a O-eigenvector of (i.e., an eigenvector with eigenvalue 0).

Now suppose that the image consistskottonnected componen@,...,Cx such that{1,... N} =
UkK:lck, whereC, are disjoint subsets of pixels. In this case the indicatators mC:,... m are all
independent, orthogonal 0-eigenvectorsLofHowever, computing the eigenvectors lofyields these
indicator vectors only up to rotation. This is the case sifzeany K x K rotation matrixR the vectors
[mC1,... m*]R are also a basis for the nullspacelof

In real images, the affinity matri is rarely able to perfectly separate between the differexelp
clusters. Therefore, the Laplaciarusually does not have multiple 0-eigenvectors. Howevdrag been
observed that the smallest eigenvectork ¢énd to be nearly constant within coherent image components
Extracting the different components from the smallestmigetors is known aspectral rounding and has
attracted much attention [17], [26], [22], [27], [13]. Thanplest approach [17] is to cluster the image
pixels using thek-means algorithm, and use perturbation analysis to bouacetior of this algorithm
as a function of the connectivity within and between clusté@ther more recent methods [26], [27],
which inspired the approach taken in this work, explicitsasch for a rotation matrix that brings the

eigenvectors as close as possible to binary indicator x&cto

A. Spectral Analysis with the Matting Laplacian

Our goal in this work is to derive an analogy between hard ssgation and matting and to show
that fuzzy matting components may be extracted from thelestaigenvectors of the matting Laplacian,

similarly to the extraction of hard clusters describediearl

Lin fact, most spectral segmentation papers consider namedakffinity matrices such @8~ 1L or D~1/2LD~1/2, However,
in this work we focus orl itself as it is not clear how to justify the normalization imetcase of the matting Laplacian. The
problem is that the off-diagonal elements of the mattingléeipn can be both negative and positive, and thus the rgattist
cannot be expressed as a sum of positive pairwise terms.
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1) The Matting Laplacian: The matting Laplacian was introduced by Lewnal. [14] in order to
evaluate the quality of a matte without explicitly estimatithe foreground and background colors in
eg. (1). They show that if the colors of the background anddheground within a local image window
w form two different lines in RGB space, then tle values withinw may be expressed as a linear

combination of the color channels:
View g =afIR+aC1®+aPIB+b (3)

Thus, the matte extraction problem becomes one of findinglihiga matte that minimizes the deviation
from the linear model (3) over all image windowg:
2
Noab)=5 5 (a —aQIf —agl® —agl —bq) "+ €|ag||? (4)
geliewy
wheree||ag|? is a regularization term oa. The linear model coefficients,b may be eliminated from

equation (4), yielding ajuadratic cost in a alone,
Ja)=a'La. (5)

This cost has a trivial minimum, which is a constantvector, and thus in the user assisted framework
described in [14]J(a) is minimized subject to user constraints.

In eq. (5),L is the matting Laplacian, a sparse symmetric positive semidefifite< N matrix whose
entries are a function of the input image in local windowgeateding neither on the unknown foreground
and background colors, nor on the linear model coefficidnts.defined as a sum of matrices= Y qAas

each of which contains the affinities among pixels insidecallovindow wg:

Gj— ﬁ (1—1— (L —Hq)T(Zq+ ‘W—Z‘IBXS)_l(Ij —Hq)> (i,]) € wg

0 otherwise

Aq(i, j) = (6)
Here & is the Kronecker deltg,q is the 3x 1 mean color vector in the windowg around pixelg, Zq
is a 3x 3 covariance matrix in the same windofwyg| is the number of pixels in the window, arigk 3
is the 3x 3 identity matrix.

Note that the matting Laplacian is fundamentally differbotn a “standard” graph Laplacian matrix.
Standard Laplacian matrices are constructed using noatimegaffinities A(i, j), and hence all off-
diagonal elements df are non-positive. On the other hand, according to eq. (6)pthdiagonal elements

of the matting Laplacian may have arbitrary signs. Thu$aaigh we follow the terminology of Levin
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et al. [14], and refer to the matrit. as the matting Laplacian, it should be understood that thiani
extension of the standard term, as most important progasfigraph Laplacians rely on the non-negative
affinity assumption.

Fortunately, as we show below, some of the useful propediestandard graph Laplacian matrices
apply to the matting Laplacian as well. The first such prgpéstthat both types of Laplacians are
positive semidefinite matrices. For the standard graphdcgh, this property is trivially implied from
the fact that the pairwise affinitie&(i, j) are non-negative; for eved-dimensional vectok, it holds
that X"Lx = 3; jA(i, j)(x —x;)? > 0. The matting Laplacian is also positive semidefinite, mstead
of positive pairwise terms, it can be factored as a sum oftipesierms consisting of the affinities in
3 x 3 windows; by construction of the matting Laplacian (se€] [fo4 the exact derivation), for every
N-dimensional vectok, it holds that

X' Agx=minap 3 (x —aglt —agl® —agl® - ba)” + &gl > 0.

iEWg

which impliesx"Lx = 3 ,x"Agx > 0.

Another useful property of the matting Laplacian (6) is thstsmallest eigenvectors appear to capture
information about the fuzzy cluster assignments of pixelshie image, even before any user-specified
constraints are taken into account. This observation wasdy made by Leviet al. [14]; however, they
made no use of the eigenvectors beyond presenting them twstreas guides for scribble placement. In
this work, we show that the smallest eigenvectors of theintattaplacian span the individual matting
components of the image.

2) The Matting Laplacian’s Nullspace: To gain some understanding, we begin by studying the ideal
case. To justify the usage of spectral analysis to estimatting components, our goal is to show
that under reasonable conditions, the actual matting coens belong to the nullspace of the matting
Laplacian. We say that a matting componeitis active in a local image windoww if there exists a
pixel i € w for which aik > 0. The following claim states the conditions on the locabcalistribution in
each layer, under whichak = 0. The severity of the conditions is related to the number tiffadayers
in a local window. The least restricted case is when only @yerl is active, in which the local color
distribution can be arbitrary complex. The most restriatede is when a window contains three active
layers (as in the case of a T-junction), and for such winddvestheorem holds when each layer color
is locally uniform.

Claim 1: Let al,...,aX be the actual decomposition of the imagmto k matting components. The
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vectorsa?,... ak lie in the nullspace of the matting Laplacian(given by eq. 6 withe = 0) if every
local image windoww satisfies one of the following conditions:

1) A single component® is active withinw.

2) Two componentsrt, a*2 are active withinw and the colors of the corresponding lay&ts, Fk

within w lie on two different lines inRGB space.

3) Three componenta®,a*2 and a*¢ are active withinw, each layer=k, Fk2, F% has a constant

color within w, and the three colors are linearly independent.

Proof: The matting cost (5) measures the deviation between a madteadinear function of the
color channels, over all local windows (eq. 4). Thus, in ortte show that a matte componeat
satisfiesL ak = 0 it suffices to show that for every local window, there existaR, a®,aB,b such that:
ak=aRiR+a®1C +aBIB +b, Viecw. Below we show this for each of the three window types.

Case 1: Since the matting components sum to one at every image, ghelsingle active component
a* must equal 1 withinw. Thus, it is easily expressed as a linear function of the enbyg setting
aR=aC=aP=0andb=1.

Case 2: This case is equivalent to theorem 2 in [14].

Case 3: Assume wlog thak; = 1, ko = 2, k3 = 3. LetF = [F1,F? F3] be a 3x 3 matrix of the uniform
layer colors, and foi € w let a; = [al,a?,a®]" be a 3x 1 vector of components values. We note that
l; = Fa;. Since the 3 layer colors are linearly independénis invertible anda; = F~2I;, which implies
that a® are linear functions of the imag.

As in the case of standard Laplacians, when the smalleshwagtors of the matting Laplacian are
computed, the result may be any linear combination of ther@iht matting components, and recovering
the individual components is equivalent to linearly tramsfing the eigenvectors. It should be noted
that unlike hard segments, the matting components are narywvectors and thus are not necessarily
orthogonal. Hence, while the eigenvectors are orthogdmalransformation from eigenvectors to matting
components might be a general linear transformation andarsimple rotation.

To summarize, the main conclusion of the above discussitimaiswhenever the matting components
of an image satisfy the conditions of claim 1, they may be esped as a linear combination of the
0-eigenvectors of..

In most real images, the assumptions of claim 1 don't holad#and thus the matting Laplacian might
not have multiple 0-eigenvectors. Yet if the layers are eidfitly distinct, they are generally captured by
the smallest eigenvectors bf For example, Figure 2 shows the smallest eigenvectors feakimage,

all exhibiting the fuzzy layer boundaries. We have empiljcabserved that the matting components of
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Fig. 2. The smallest eigenvectors of the matting Laplactaritfe image in Figure 1a. Linear combinations of these eigeors
produced the matting components shown in Figure 1d.

real images are usually spanned quite well by the smallgeheectors of the matting Laplacian. Indeed,

the components shown in Figure 1d were obtained as lineabications of the smallest eigenvectors.

B. From Eigenvectors to Matting Components

As explained above, recovering the matting componentsefrttage is equivalent to finding a linear
transformation of the eigenvectors. Recall that the mgitiomponents should sum to 1 at each image
pixel, and they should be near 0 or 1 for most image pixelgesthe majority of image pixels are usually
opaque. Thus, we are looking for a linear transformationhef ¢igenvectors that would yield a set of
nearly binary vectors. More formally, & = [e!,..,eX] be theN x K matrix of eigenvectors. Our goal is

then to find a set oK linear combination vectorg® that minimize
Z]aikyyﬂl—ai"]y, wherea® = Ey* )
I

subject toZ ak=1

If 0 < y<1is used (in our implementatiop= 0.9), then|aX|¥ +|1— aX|¥ is a robust score measuring
the sparsity of a matting component (plotted in Figure 3)thalit the requiremerd¥ = EyX the sparsity
term would be minimized by binary vectors, but as the vectdrare restricted to linear combinations of
the eigenvectors they must maintain the fuzzy layer boueslafAlthough we do not explicitly constrain
the a values to be between 0 and 1, in practice the resulting vakresto lie in this range due to the
sparsity penalty.

The above cost is of course a non-convex one and we optimiegdtively using Newton’s method [4],
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|0L|0'9+| 1—(X|O'9

p(o)=]

Fig. 3. Sparsity scorep(a) = |a|®®+|1— a|%9 favoring binarya values

which amounts to a sequence of second order approximat@men a guess for the values af‘ we
defineu® as the second derivative XY, U0 |aX|¥=2), and similarlyvk 0 |1— aX|(¥-2). The second
order approximation to eq. (7) reads as minimizing

gu!‘|aik|2+vik\1—ori"\2, wherea® = Ey* (8)

|
;

subject to Z ak=1

As this problem has now become one of quadratic optimizatinder linear constraints, the optimal
solution can be computed in closed form by inverting%x K2 matrix. For that we defingk = diag(u*)

andVK = diag(V¥). We also defin&vk = ET(UX+V*)E and1 as a vector of ones. It may be shown that
the K2 elements ofy?,...,y¥ are the solution for:

(1d i . a | [ E1 ]

0 w2iw? wi WK EvZ+Eul

o wl o owdgwl ... owK y=| EV¥ +EU |, 9)
0 wi wl o WK 4wl | ] EVK +Eut |

where Id is theK x K identity matrix. Given an initial guess, our algorithm a@évely solves a sequence
of second order optimization problems of the form of eq. (@) ases the solution of each iteration to
reweight the following one. We note that the Weigbfs(andvik) are higher when the current guess for

ori" is close to 0 (or 1) and are lower when the guess is farther dxgay these values. Thus, the effect
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of the reweighting step is to pull toward O (or 1) thaseentries for which the current guess is already
close, and to loosen the relation for pixels for which thesguis far anyway. For example, if the current
guess foraX is close to 0, them! > VK and thus the term¥|aX|?>+vK|1— ak|? pulls the alpha component
at this pixel toward O much stronger than toward 1.

Since the cost (7) is not convex, the result of the Newtongssstrongly depends on the initialization.
One useful way to initialize the process is to applk-eneans algorithm on the smallest eigenvectors
of the matting Laplacian and project the indicator vectdrshe resulting clusters onto the span of the
eigenvectorsE:

ak=EETnC". (10)

The effect of this projection step is to find a linear combimrabf eigenvectors that minimizes the squared

distance tar®™. We note that the resulting matting components sum to onegsi
Za": EET(Zka) —EET1=1. (11)

The last equality follows from the fact that the constantteebelongs to the nullspace of the matting
Laplacian. As a result, projecting the hard clusters presid legal solution for eq. (7). We also note
that despite the fact thatC" are binary vectors, the projection typically features furmtte boundaries.
This is due to the fact that, as illustrated in Figure 2, thalist eigenvectors all maintain the fuzzy
layer structure, and thus simply do not suffice to span thd Bagmentation boundaries.

In practice, we typically use a larger number of eigenvectban the number of matting components
to be recovered. Using more eigenvectors makes it possibdbtain sparser components. The reason is
that more basis elements span a richer set of vectors (inxthenge case, if alN eigenvectors are used,
any binary vector can be generated). A number of examplesudsinating the extraction of soft matting

components are given in Figures 1 and 4.

IV. GROUPING COMPONENTS

So far we have shown how matting components may be extracedthe matting Laplacian. However,
usually the matting components are not a goal in their owmrasis ultimately interested in recovering
a complete matte for some foreground object. Fortunatdlyhat is needed to obtain a complete matte
is to specify which of the components belong to the foregdouret b denote aK-dimensional binary

vector indicating the foreground components (= 1 iff aX is a foreground component). The complete
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Fig. 4. A number of test images and the matting componentgeted from them using our method. A random color is
assigned to each component for visualization purposes.

foreground matte is then obtained by simply adding the fanegd components together:
o= Zb“a" (12)

For example, the matte in Figure 1c was obtained by addingctmponents highlighted in red in
Figure 1d.

For the applications discussed below, one would like to ca@pnultiple grouping hypotheses. If the
smallest eigenvalues aren’t exactly zero (which is the dasenost real images) we can also measure
the quality of the resultingr-matte asa'La, wherel is the matting Laplacian (eq 6). When a large
number of hypotheses is to be tested, multiplying each lingsi¢ byl. might be too expensive. However,
if each hypothesis is just a sum of matting components we oast@mpute the correlations between the

matting components vik and store them in & x K matrix ®, where
ok ) =a¥La'. (13)
The matte cost can then be computed as
J(a)=b"db, (14)

where b is a K dimensional binary vector indicating the selected compteThus, if® has been

pre-computedJ(a) can be evaluated i®(K?) operations instead dd(N) operations.
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Fig. 5. Unsupervised matting results for a few images. Theotheses are ordered according to their score.

A. Unsupervised Matting

Given an image and a set of matting components we would likplibthe components into foreground
and background groups and pull out a foreground object. dfglouping criterion takes into account
only low level cues, then we just search for a grouping with llest matting cost, as defined by eq. (14).
However, the matting cost is usually biased toward mattestwhssign non constant values only to a
small subset of the image pixels (in the extreme case, therbate is a constant one). The spectral
segmentation literature suggest several criteria whidranme this bias. One approach is to search for
guotient cuts (e.g. normalized cuts [19]) which score a suthe ratio between the cost of the cut and

the size of the resulting clusters. A second approach isdk for balanced cuts [13] where the size of
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each cluster is constrained to be above a certain percehedfrtage size. In this work, we follow this
latter approach and rule out trivial solutions by consiggrnly groupings which assign at least 30% of
the pixels to the foreground and at least 30% of the pixel©iéoltackground. When the numb€rof
matting components is small we can enumerate ‘alhgpotheses and select the one with the best score
using eq. (14).

Figure 5 shows some results produced by the unsupervisathghapproach described above. In two
of these examples the hypothesis with the highest scoreethderresponds to the “correct” foreground
matte, while in one example (bottom row) the “correct” mattas ranked fourth. Note that in all
of these examples the other high-ranked hypotheses are sgeitsible as well, considering that our
approach does not attempt to perform any high-level imagierstanding. Of course, it isn't hard to
find examples where unsupervised matting fails, and thetfastexamples in figure 5 illustrate such
failures. In general, whenever the foreground or backgioninjects consist of several visually distinct
components, the assignment with the minimal matting coghtmot correspond to our visual perception.
In fact, it is well known within the image segmentation conmity that while unsupervised bottom-up
cues can efficiently group coherent regions in an image, #rer@l image segmentation problem is
inherently ambiguous, and requires additional infornmatio practice, such as in the case of hard image
segmentation, the foreground/background assignment rayuidled by several additional cues, such as
top-down models [2], color statistics [18], or motion anatdse cues. Thus, we believe that the main
practical use of matting components is in the supervisdihgetaind focus on user-guided matting in the

remainder of this paper.

B. User-Guided Matting

We now consider an interactive setting, where the user gultee matting process toward the extraction
of the desired foreground matte. In such a setting the foregit/background assignment of some of the
components is determined by the user, thereby reducing uhsher of legal hypotheses to be tested.
Given very minimal foreground and background constraiiitss usually possible to rule out trivial
solutions, so there is no need to explicitly keep the sizeamhegroup above a certain threshold (as in
the unsupervised case). In this case we can speed up thé $eawsn optimal foreground/background
assignment of components using a graph min-cut formulation

1) Optimizing assignments in the components graph: To efficiently search for the optimal fore-
ground/background assignment we approximate the mattisg(eq. 14) as a sum of pairwise terms. This

enables us to approximate the search for the optimal foveghbackground assignment as a min-cut
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problem in a graph whose nodes are the matting componemtsylaose edge weights represent matting
penalty. Since the function we are trying to minimize is nab-snodular in general, we rewrite eq. (14)
as a sum of non-negative local and pairwise tedifts) = E(b), whereb is the binary vector representing
the components imr. Alternatively, one could use algorithms for minimizingmsubmodular functions
such as the QPBO method. (see [12] for a review on such méthods

We define the energi(b) as
B(0) = 3 B(b) + 5 B (0 b)° (15)

where E(0) = = if the k-th component is constrained to belong to the foregroudl) = o if the
component is constrained as background, and 0 otherwiselefine the pairwise term we note that

Pk =54 @' (this follows from the fact that (3 ax) = L1=0, and thusb1=0) and as a result

b’ db = Z — @' (b —b")2 (16)
Therefore, if we defin€y = —¢*! we obtain that
ZEkJ (=02 =J(a). (17)

However, in order to search for a min-cut efficiently, we uggoaitive approximation and defirtg | =
max(0, —¢*!). To justify this approximation we can prove the approximatis exact in all local image
windows for which no more than two components are active. Wieod components are extracted from
an image, the majority of image windows will be associatethwio more than two components (that
is, no more than two components will be active). Indeed, weshampirically observed that for most
matting component pairg®! < 0.

Claim 2: The correlationp®! between components,, a; will be negative if every local image window
w satisfies one of the following conditions:

(cl) ak=0view

(c2) al=0view

(c3) ak=1-al vicw

Proof. Following eq. (6), we rewrite the correlation between comgris via the matting Laplacian

as a sum of correlations over local windows:

o = o Lo = ZakTan', (18)
e
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Our result Leviret al. [14] Wang-Cohen [24] Random Walk [8] Poisson [21]

Fig. 6. A comparison of mattes produced by different mattingthods from minimal user input (yellow scribbles indicate
foreground, while green scribbles indicate background).

wherelq is anN x N matrix, if (i, j) e wg Lq(i, j) is defined using eq. (6), arig(i, j) = 0 otherwise. We
will show that under the above conditions',‘Tan' < 0 for every image windowv,. This will follow

immediately ifak = 0 or al =0 Vi € w. For the third case, we note that
a¥"Lga' = " Lg(1— a¥) =" —aK Lqak < 0, (19)

Where* follows from the condition (c3);* follows from the fact that the matting cost of the constant
vector is 0, and™* follows from the fact that each of thie; matrices is positive semidefinitg.

Using the above graph formulation, finding the optimal focegpd/background assignment does not
involve an exponential search and is found efficiently ingtipolynomial in the number of components,
as a graph min-cut. As a result, if the matting componentspagecomputed, the optimal matte may
be computed very rapidly, enabling interactive responsasser input. The computational challenges of
our algorithm are equivalent to those of conventional gpéstegmentation techniques. Specifically, it
takes our unoptimized matlab implementation a couple ofuteis to compute the matting components
for the images in Figure 6. However, this pre-processing st be done offline, and once the matting
components are available, it only takes an additional fewosds to construct a matte given the user’s
constraints.

2) Matte extraction using user scribbles: Figure 6 presents a few examples where a foreground matte
was extracted from an image based on a small number of faradréwhite) and background (black)
markings provided by the user. The second column shows thatiregy matte extracted by the approach

described above (the scribbles are used to reduce the spaditing hypotheses: a component is
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Input Constraints Matte

Fig. 7. The middle region is not constrained, and the metHddewin et al. assigns it an average non-opaque value.

constrained to belong to the foreground whenever its aregant a white scribble). The remaining
columns show the mattes generated from the same input by detuoh previous methods [14], [24],
[8], [21]. None of these previous approaches is able to recavreasonable matte from such minimal
user input. In particular, although our approach uses theesaatting Laplacian as [14], our results are
very different from those obtained by directly minimizingetquadratic matting cost (5) subject to user-
specified constraints. The main drawback of such direchopdtion is that whenever an image contains
distinct connected components without any constraintsiénthem, a quadratic cost such as (5) tends to
assign them some average non-opaque values, as demahslydtee simple example in Figure 7. The
core of this problem is that the quadratic cost of [14] plasisng assumptions on the foreground and
background distributions, but imposes no restrictionsaonThus, it searches focontinuous solutions
without taking into account that, for a mostly opaque fooegrd object, the matte should be strictly 0
or 1 over most of the image.

3) Matte extraction by component labeling: Once the matting components of an image have been
computed, placing hard constraints by a set of scribbles wimep is not the only way for the user
to specify her intent. The matting components suggest a mase direct user interaction mode which
wasn’t possible until now: in this mode the user is presemti#d the precomputed matting components
and may simply label some of them as background or foregroting labeled components then become
constrained accordingly in the min-cut problem. The adwgetof such an interface is illustrated in
Figure 8, where the large fuzzy hair areas do not lend therséd placement of hard constraints. Thus,
the best trimap we could practically expect leaves suchsareeonstrained (Figure 8c). The least squares
matte of [14] populates these areas with average gray vétgsre 8d). In contrast, by searching for the
cheapest assignment of matting components consistenthvattrimap, we obtain the matte in Figure 8e.
In this case no over-smoothing is observed, but some of theyfhair was not selected to belong to the
foreground. However, if the user is allowed to directly selidiree additional components (highlighted

in red in Figure 8g) as foreground, we obtain the matte in f&df.
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(b) Input (c) Trimap

(d) Levin et al. [14] from (e) Components from trimap
trimap

Y
(g9) Matting components

Fig. 8. Benefits of direct component labeling.

V. QUANTITATIVE EVALUATION

To quantitatively evaluate our approach and compare it pwittvious methods we captured ground

truth data. Three different dolls were photographed in tfroha computer monitor displaying seven
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(a) A few test images (b) A comparison with other matting et (c) Spectral matting vs. hard segmentation

Fig. 9. Quantitative evaluation

different background images (Figure 9a). A ground truthtenatas then extracted for each doll using a
least squares framework [20]. Each image was downsamplgfiGa 820 pixels, and the tests described
below were performed on (overlapping) 20@00 windows cropped from these images. For our approach,
60 matting components were extracted using the 70 smalilgsivectors of each cropped window. The
running time of our unoptimized matlab implementation (08.2GHz CPU) was a few minutes for each
200x 200 window.

To design a comparison between matte extraction using mgattbmponents and previous matting
algorithms we need to address the two non compatible itesfaand it is not clear how to measure
the amount of user effort involved in each case. While pneviapproaches were designed to work with
hard constraints (scribbles or trimap) our new approaclblesaa new interaction mode by component
selection. Therefore, in our experiments we attempted teroene how well can each approach do, given
the best possible user input. Thus, we first used the grouitid tnatte to generate an “ideal” trimap. The
unknown region in this trimap was constructed by taking &ejs whose ground truth matte values are
between M5 and 095, and dilating the resulting region by 4 pixels. The rasgltrimap was used as
input for four previous matting algorithms: Levet al. [14], Wang and Cohen [24], random walk matting
[8], and Poisson matting [21]. We also ran our method twicedoh experiment: (i) using the same trimap
to provide a partial labeling of the matting componentdpfeed by a min-cut computation, as described
in section 1V-B; and (ii) using the ground truth matte to selthe subset of matting components that
minimizes the distance of the resulting matte from the gdowath, thus simulating the ideal user input
via the direct component picking interface. The SSD erretsvben the mattes produced by the different
methods and the ground truth matte (averaged over thediffdrackgrounds and the different windows)

are plotted in Figure 9b. It is apparent that given a suffityeprecise trimap, our method offers no
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real advantage (when given the same trimap as input) ovelets-squares matting of Leviet al.,
which produced the most numerically accurate mattes. Heweavhen simulating the best labeling of
components, our approach produced the most accurate matteserage.

While our experiment compares the quality of mattes proddizam an ideal input, a more interesting
comparison might be to measure the amount of user time ejfor extracting a satisfactory matte with
each approach. Ideally, we would also like to measure whdtreo what degree) a component picking
interface is more intuitive than a scribble based interf&ech a comparison involves a non trivial user
study, and is left for future work.

Given the strong analogy between spectral matting and haedtrsl segmentation, we would like
to gain some intuition about the possible advantage of usiaging components versus standard hard
segmentation components (also known as super-pixels)af$wer, of course, depends on the application.
If the final output is a hard segmentation, matting companenbbably do not offer an advantage over
standard hard components. On the other hand, when the gaaluizzy matte it is better to explicitly
construct matting components, as we do, rather than firspatera hard segmentation and then feather
the boundaries (as in [16], [18], for example). To show tle, compare the two approaches. We first
extract matting components from each of the test images eledtsthe subset of matting components,
which will minimize the distance from the ground truth mafiéne second approach is to select a subset
of hard components (we used the available implementatiovuodnd Shi [26]) that best approximates
the ground truth. We then apply morphological operations fimve experimented with several constant
radius erosion windows) on the resulting hard mask, cre&timap and run the matting algorithm of [14].
However, since the optimal radius of the erosion windowrgjty depends on the local image structure
and varies over the image, it is impossible to obtain an ithgakp with a constant radius window. This
problem is illustrated visually in Figure 10.

Figure 9c shows the SSD errors (averaged over the diffet@rkdvounds and the different windows)
of the two approaches, which indicate that optimally pigkthe matting components indeed results in

more accurate mattes than those obtained by featheringdaskgmentation.

VI. DISCUSSION

In this work we have derived an analogy between standardd)hspectral image segmentation
and image matting, and have shown how fundamental mattingpooents may be automatically
obtained from the smallest eigenvectors of the matting a@ph. From the practical standpoint, matting

components can help automate the matte extraction prooesseduce user effort. Matting components
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Input Ground truth matte  Matte from components Automatic hard segments

Automatic trimaps (eroding the hard segmentation withedéht radii)

Mattes prodched from the trimaps in the previous row

Fig. 10. Spectral matting vs. obtaining trimaps from a hagnsentation.

also suggest a new mode of user control over the extracte@:mdiile in previous methods the result is
controlled by placement of hard constraints in image ardasrevthe matte is either completely opaque
or completely transparent, our new approach may provideutiee with a simple intuitive preview of
optional outputs, and thus enables the user to directlyrobtite outcome in the fractional parts of the
matte as well.

Limitations. Our method is most effective in automating the matte extvacprocess for images
that consist of a modest number of visually distinct compdsieHowever, for highly cluttered images,
component extraction proves to be a more challenging taskam example, consider the case shown
in Figure 11. The input image consists of a large number ofllse@mponents. Projecting the
ground truth matte (Figure 11a) on the subspace spannedebyGhsmallest eigenvectors results in
a poor approximation (Figure 11b). Recall that since thetingaitomponents are obtained via a linear

combination of the eigenvectors, they can do no better tharetgenvectors themselves, and thus Figure
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input image

(@) (b) (©

Fig. 11. Demonstration of limitations. Top: input image;t®m: Ground truth matte (a); Mattes from 70 (b) and 400 (c)
eigenvectors.

11b is the best matte that we could hope to construct from upOtonatting components. Thus, it is
quite clear that this number of components is insufficiengrimduce an accurate matte for this image. A
better matte may be obtained from the 400 smallest eigeonge(Eigure 11c), but even this matte leaves
room for improvement. We have not been able to test more tB@nefgenvectors due to computational
limitations. We have empirically observed that this praobls significantly reduced if matting components
are computed in local image windows independently, and ametly investigating methods for stitching
together components obtained in different windows.

One major challenge in spectral matting is determining fhy@epriate number of matting components
for a given image. This is a fundamental difficulty shared Byspectral segmentation methods. While
the question of automatically selecting the number of camepts has been investigated (e.g. [27]), this
parameter is still often manually adjusted. For the appbos described in this paper we found that a
useful strategy is to over-segment the image and group thgpanents later using additional cues. A
second free parameter in the algorithm is the number of sstadigenvectors from which the components
are formed (the number should be larger or equal to the numbeomponents). In practice, we have
observed that the performance is not very sensitive to tbreber and all results in this paper were
obtained using the 70 smallest eigenvectors. Figure 12 dstrates the effect of varying the number

of matting components and the number of eigenvectors. Itbeaseen, that usually it is better to use a
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eig= 15, comp= 20 eig= 30, comp=20 eig= 50, comp=20 eig= 7020 eig= 200, comp= 20

Fig. 12. The effect of changing the number of eigenvectors the number of matting components on the resulting matte.

large number of matting components and a large number oheggeors, but this obviously makes the

algorithm slower. When too many matting components are ,usathe regions in the alpha matte may
become too transparent. This is due to some matting compoiieat were not grouped correctly by the

min-cut algorithm. The algorithm is much less sensitive® humber of eigenvectors being used. Using
50 to 200 eigenvectors usually produced similar resultshtiuld be noted that increasing the number
of eigenvectors makes the resulting alpha matte more opaguegives more freedom to the non-linear
optimization, which looks for opaque solutions. (In thererie case, using all eigen-vectors will produce
binary mattes).

Future directions. An important potential advantage of pre-segmenting thegenato matting
components is the option to compute meaningful color orurexhistograms, or other statistics, within
each component. The histogram similarity can provide arotmportant cue to guide component
grouping. This ability might significantly improve mattiradgorithms which make use of color models,
such as [24]. For example, the current strategy in [24] isuitdban initial color model using only the

small number of pixels under the scribbles. This simpleidh#ation is known to make the algorithm
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sensitive to small shifts in the scribble location.

Given the growing interest in the matting problem and thgdaamount of recent matting research, it

seems that an important future challenge is the design ofparopriate comparison between different

user interaction modes and different matting algorithiise Ground truth data collected in this work is

a step toward this goal, yet a proper user study is requiredder to evaluate the amount of user time

required for producing good results with each method.

Our code and ground truth data are availablenaty. vi si on. huji.ac.il/Spectral Matti ng
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