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Motivation 

System and protocol security often fail when 
assumptions about software, platform, and 
environment are violated. 

PLATFORM SOFTWARE ENVIRONMENT 

bug attacks bugs physical 
side channels 

architectural 
side channels 

trojans tampering 

hardware trojans 
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High-level goal 

Ensure properties of a 
distributed computation 

when parties are 
mutually untrusting, 

faulty, leaky 
& 

malicious. 
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Example: 3-party correctness 

Alice 

z 
y←F(x) 

y 

Bob 

z←G(y) 

Carol 

is “z=G(F(x))” 
true? 

x, F G 
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Example: computationally-sound (CS) proofs [Micali 94] 

z←G(y) 
verify 
πz πz 

Bob can generate a proof string that is: 
•  Tiny (polylogarithmic in his own computation) 
•  Efficiently verifiable by Carol 

πz ←prove( 
 “z=G(F(x))”) 

Alice Bob Carol 
x, F G 

y←F(x) 
y z 

z=G(F(x)) 

However, now Bob recomputes everything... 
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Example: Proof-Carrying Data  [Chiesa Tromer 09] 
following Incrementally-Verifiable Computation  [Valiant 08] 

πy 
y←F(x) z←G(y) 

Each party prepares a proof string for the next one. 
Each proof is: 
•  Tiny (polylogarithmic in party’s own computation). 
•  Efficiently verifiable by the next party. 

Alice Bob Carol 
x, F G 

y verify 
πz πz 

z 

z=G(y) 
and I got a valid proof 

that “y=F(x)”  
y=F(x) 
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Related work: 
Secure multiparty computation [GMW87][BGW88][CCD88]	

y←F(x) z←G(y) 

Alice Bob Carol 
x, F G 

•  computational blowup is polynomial in the whole 
computation, and not in the local computation 

•  does not preserve communication graph 

But: 

•  parties and computation must be fixed in advance 
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Generalizing: 

The 
Proof-Carrying Data 

framework	
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Generalizing: distributed computations 

Distributed computation? 

m3 

m5 

mout 

Parties exchange messages and perform computation. 
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Generalizing: arbitrary interactions 

•  Arbitrary interactions 
– communication graph over time is any DAG 

m3 

m5 

mout 
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Generalizing: arbitrary interactions 

•  Computation and graph are determined on the fly 
– by each party’s local inputs: 

m3 

m5 

mout 

human inputs randomness program 
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Generalizing: arbitrary interactions 

•  Computation and graph are determined on the fly 
– by each party’s local inputs: 

m3 

m5 

mout 

human inputs randomness program 

How do we define correctness 
of a distributed computation? 
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C-compliance 

m3 

m5 

mout 

correctness is a compliance predicate C(in,code,out) 
that must be locally fulfilled at every node 

C 
code 

in out 

accept / reject 

(program, human inputs, randomness) 

C-compliant 
distributed 

computation 
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C-compliance 

correctness is a compliance predicate C(in,code,out) 
that must be locally fulfilled at every node 

Some examples: 
 C  = “none of the inputs are labeled secret” 
 C  = “the code was digitally signed by the sysadmin,  
          and executed correctly” 

 C  = “the code is type-safe and the output is indeed 
      the result of running the code” 

m3 

m5 

mout 

C 
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Goals	

•  Allow for any interaction between parties 

•  Preserve parties’ communication graph 
– no new channels 

•  Allow for dynamic computations 
– human inputs, indeterminism, programs 

•  Blowup in computation and communication is local 
and polynomial 

Ensure C-compliance while respecting the 
original distributed computation. 
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Dynamically augment computation with proofs strings 

In PCD, messages sent between parties are augmented 
with concise proof strings attesting to their “compliance”. 

Distributed computation evolves like before, except that 
each party also generates on the fly a proof string to 
attach to each output message. 

m5 

π5 

mout 

πout 

m3 

π3 

C 
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Model 

Every node has access to a simple, fixed, stateless 
trusted functionality -- essentially, a signature card. 

C 

m5 

π5 

mout 

πout 

m3 

π3 

SIR 
SIR 

SIR 

SIR 

SIR 

SIR 

•  Signed-Input-and-Randomness (SIR) oracle 
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Model 

Every node has access to a simple, fixed, trusted 
functionality -- essentially, a signature card. 

•  Signed-Input-and-Randomness (SIR) oracle 

x 
input 
string 

SIRSK 

r 
random 
string 

r ← {0,1}s 

σ ← SIGN(SK,(x,r))  

s 
length 

σ 
signature 
on (x,r) 

VK 
Similar assumptions: 
[Hofheinz Müller-Quade Unruh 05] 



19 

Sample application: type safety	

•  Using PCD, type safety can be maintained 
– even if underlying execution platform is untrusted 
– even across mutually untrusting platforms 

C(in,code,out) verifies that 
code is type-safe  &  out=code(in) 

•  Type safety is very expressive 
– Can express any computable property 
– Extensive literature on types that can be verified efficiently  
   (at least with heuristic completeness, which is good enough) 
– E.g., can do certain forms of confidentiality via IFC 
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Our results	
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Overview of Results 

Proof-Carrying Data (PCD): 
•  C-compliance 
•  Aggregate proof strings to generate new ones 
•  Simpler interface hides implementation details 

APHA PCD 

Assisted-Prover Hearsay-Arguments (APHA): 
•  Very strong variant of non-interactive CS proofs / arguments 

of knowledge (for NP) 
•  Proof system for a “single step” 

SIR SIR 
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Overview of Results 

universal 
arguments 

digital 
signatures 

collision-resistant 
hashing 

Need: 
•  Universal arguments (CS proofs) that are public-coin and 

constant-round                               [Barak Goldreich 02] [Micali 94]  
•  Signature schemes that are strongly unforgeable 

generic (from UOWHFs): [Goldreich 04] 
efficient: [Boneh Shen Waters 02] 

APHA PCD 

SIR SIR 

Both exist if Collision Resistant Hash schemes exist. 
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Rest of this talk	

collision-resistant 
hashing APHA PCD 

universal 
arguments 

digital 
signatures 

SIR SIR 

Rest of this talk: 
•  Intuition on how to aggregate proofs in “F and G” example 
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Proof aggregation 

Alice 

z y 
Bob Carol 

x 
G 

V 

P P 

V 

F 

πz πy 

y=F(x) z=G(y) and 
∃πy : V(“y=F(x)”,πy)=1 
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Soundness vs. proof of knowledge 

Alice 

z y 
Bob Carol 

x 
G 

V 

P P 

Need proof of knowledge: 

V 

V P 
π	
 1 

P 

F 

knowledge 
extractor valid w 

Pr[ ]≈1  

y=F(x) 

πz πy 

z=G(y) and 
∃πy : V(“y=F(x)”,πy)=1 

` 

strong 
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Must use PCPs for compression 

•  Probabilistically Checkable Proofs (PCPs) 
used to generate concise proof strings. 

Alice 

z y 
Bob Carol 

PCP 

x 
G 

V 

P P 
PCP 

V 

F 

πz πy 

(And there is evidence this is inherent [Rothblum Vadhan 09].) 
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Must use oracles for non-interactive proof of knowledge 

Alice 

z y 
Bob Carol 

πz πy 
PCP 

x 
G 

V 

P P 
PCP 

RO 

V 

F 
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PCP vs. oracles conflict 

•  PCP theorem does not relativize [Fortnow ‘94], not even 
with respect to a RO [Chang et al. ’92]  

•  this precluded a satisfying proof of security in [Valiant ‘08] 

Alice 

z y 
Bob Carol 

πz πy 
PCP 

x 
G 

V 

P P 

RO 

V 

F 

PCP 

V 
PCP 
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Our solution: 
Public-key crypto to the rescue 

Oracle signs answers using public-key signature: 
•   answers are verifiable without accessing oracle 
•   asymmetry allows us to break “PCP vs. oracle” conflict, and 

recursively aggregate proofs 

Alice 

z y 
Bob Carol 

πz πy 
PCP 

F 
x 

G 

V 

P P 
PCP 

OSK 

VK 

V 

SIR 
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Sketch of remaining constructions	

Constructing APHAs: 
•  Start with universal arguments 
•  De-interactivize by replacing public-coin messages with oracle queries 
•  Add signature to statement to force witness query (≈ [Chandran et al. 08]) 
•  Prove a very strong PoK by leveraging the weak PoK of UA 

Generalizing to PCD: 
•  Handle distributed-computation DAG, 

using APHA for the proofs along each edge. 
•  C-compliance: use fixed aggregation rule to reason about arbitrary 

computation by proving statements of the form: 
C(in,code,out)=1  &  “each input carries a valid APHA proof string” 

≈ Fiat-Shamir 
heuristic 
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Discussion	
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Applications	

UA 

SIG 

CRH APHA PCD 

SIR SIR 
type safety 
fault isolation & accountability 
multilevel security 
financial systems 
distributed dynamic 
  program analysis  

antispam email policies 
proof-carrying code 

Security design reduces to “compliance engineering”: 
write down a suitable compliance predicate C. 
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Proof-Carrying Data: 
Conclusions and open problems	

Contributions 
•  Framework for securing distributed computations between 

parties that are mutually untrusting and potentially faulty, 
leaky, and malicious. 

•  Explicit construction, under standard generic assumptions, in 
a “signature cards” model. 

•  Suggested applications. 

Ongoing and future work 
•  Reduce requirement for signature cards, or prove necessity.  
•  Add zero-knowledge constructions. 
•  Achieve Practicality (PCPs are notorious for “polynomial” overheads). 
•  Identify and implement applications. 
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.	
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.	
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Construction sketch 

APHA systems	
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What we have and what we need 

Needed: 
•  Highly-compressing non-interactive arguments 
•  Proof-of-knowledge property that’s strong enough to 

prove “hearsay”: 
statements whose truth relies on previous 
arguments heard from others. 

•  In the assisted prover model. 

We call these 
Assisted Prover Hearsay Arguments 
(APHA) systems. 
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Universal arguments [Barak and Goldreich ‘02] 

UA 
prover 

UA 
verifier r2 

r1 

resp1 

resp2 

•  public coin: r1 and r2 are just random coins 
•  temporal dependence: 

r2 is sent only after resp1 is received 

Start with universal arguments: 
Efficient interactive arguments of knowledge with 
constant rounds and public coins. 
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De-interactivize universal arguments: first try 

Prover interacts with random oracle, not with verifier: 
•  obtains signed random strings 

almost-APHA 
prover 

random 
oracle 

almost-APHA 
verifier 

random 
oracle 

UA 
prover 

UA 
verifier 
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De-interactivize universal arguments 

Prover interacts with SIR oracle, not with verifier: 
•  obtains random strings 
•  temporal ordering enforced by having each oracle query 

include the preceding transcript 

almost-APHA 
prover 

SIR 
oracle 

almost-APHA 
verifier 

SIR 
oracle 

UA 
prover 

UA 
verifier 

≈ Fiat-Shamir 
heuristic 
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Enhance proof of knowledge 

•  Forces prover to get signature on witness 
•  Knowledge extractor finds witness by examining the queries 
  → strong proof of knowledge 

APHA 
prover 

SIR 
oracle 

APHA 
verifier 

SIR 
oracle 

almost-
APHA 
prover 

almost-
APHA 
verifier 

SIR 
oracle 

SIR 
oracle 

get signature on 
the witness 

“x ∈ L 
and 

  σ is a 
signature on a 

witness for x ∈ L” 

σ 
w 

cf. [Chandran 
 Goyal 
 Sahai 08] 
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Can now do F and G example 

We can now do the above example! 

... how about proof-carrying data? 

Alice 

z y 
Bob Carol 

PCP 

x 

PCP 

G 

V 

P P 

V 

F 

πz πy 
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PCD systems	
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PCD systems 

PCD systems are wrappers around APHA systems, with: 
– Simpler interface for applications 

(no need to reason about theorems and proofs) 
– Simpler proof-of-knowledge property 

(APHAs have a very technical “list extraction” 
definition) 

– C-compliance 
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PCD definition 

At every node, a party uses the PCD prover PPCD: 

PPCD 

Osk 

zin1,   πin1 

zin2,  πin2 

C, VK 

πout 

Proofs are checked by the PCD verifier: 
VPCD(C, VK, z*, π) decides 
if π is a convincing proof for z*. 

code 

zout 
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PCD definition 

PCD systems satisfy 
• efficient verifiability:  

 TIME(VPCD(C, VK, z, π)) = polylog(time to make π)   
 (actually, much better... ) 
• completeness via a relatively efficient prover: 
 if computation is C-compliant, then the proof output by 

prover convinces verifier. Moreover: 
 TIME(PPCD(...)) = poly(time to check C) 
  + polylog(time to generate inputs’ proofs)  
• proof of knowledge: from any convincing prover, can extract a 

whole C-compliant computation 
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Back to F and G 

• Having APHA systems, we can already do 
the above example 

• How to generalize to C-compliance? 

Alice 

z y 
Bob Carol 

πz πy PCP 

x 

PCP 

G 

V 

P P 

V 

F 
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Adding C-compliance 

Alice z y 
Bob Carol 

πz πy PCP 

F 
x 

PCP 

G 

V 

P P 

C C 

•  “Export” the choice of computation to be an 
input to a “fixed rule of aggregation” 

V 
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PCD Machine 

Alice z y 
Bob Carol 

πz πy PCP 

F 
x 

PCP 

G 

V 

P P 

C C 

•  Such fixed rule we call the PCD machine, 
and it depends on C 

PCD 
machine 

V 
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.	


