
1

Proof-Carrying Data
and Hearsay Arguments

from Signature Cards

Alessandro Chiesa and Eran Tromer

Innovations in Computer Science 2010
January 6, 2010

2

Motivation

System and protocol security often fail when
assumptions about software, platform, and
environment are violated.

PLATFORM SOFTWARE ENVIRONMENT

bug attacks bugs physical
side channels

architectural
side channels

trojans tampering

hardware trojans

3

High-level goal

Ensure properties of a
distributed computation

when parties are
mutually untrusting,

faulty, leaky
&

malicious.

4

Example: 3-party correctness

Alice

z
y←F(x)

y

Bob

z←G(y)

Carol

is “z=G(F(x))”
true?

x, F G

5

Example: computationally-sound (CS) proofs [Micali 94]

z←G(y)
verify
πz πz

Bob can generate a proof string that is:
•  Tiny (polylogarithmic in his own computation)
•  Efficiently verifiable by Carol

πz ←prove(
 “z=G(F(x))”)

Alice Bob Carol
x, F G

y←F(x)
y z

z=G(F(x))

However, now Bob recomputes everything...

6

Example: Proof-Carrying Data [Chiesa Tromer 09]
following Incrementally-Verifiable Computation [Valiant 08]

πy
y←F(x) z←G(y)

Each party prepares a proof string for the next one.
Each proof is:
•  Tiny (polylogarithmic in party’s own computation).
•  Efficiently verifiable by the next party.

Alice Bob Carol
x, F G

y verify
πz πz

z

z=G(y)
and I got a valid proof

that “y=F(x)”
y=F(x)

7

Related work:
Secure multiparty computation [GMW87][BGW88][CCD88]	

y←F(x) z←G(y)

Alice Bob Carol
x, F G

•  computational blowup is polynomial in the whole
computation, and not in the local computation

•  does not preserve communication graph

But:

•  parties and computation must be fixed in advance

8

Generalizing:

The
Proof-Carrying Data

framework	

9

Generalizing: distributed computations

Distributed computation?

m3

m5

mout

Parties exchange messages and perform computation.

10

Generalizing: arbitrary interactions

•  Arbitrary interactions
– communication graph over time is any DAG

m3

m5

mout

11

Generalizing: arbitrary interactions

•  Computation and graph are determined on the fly
– by each party’s local inputs:

m3

m5

mout

human inputs randomness program

12

Generalizing: arbitrary interactions

•  Computation and graph are determined on the fly
– by each party’s local inputs:

m3

m5

mout

human inputs randomness program

How do we define correctness
of a distributed computation?

13

C-compliance

m3

m5

mout

correctness is a compliance predicate C(in,code,out)
that must be locally fulfilled at every node

C
code

in out

accept / reject

(program, human inputs, randomness)

C-compliant
distributed

computation

14

C-compliance

correctness is a compliance predicate C(in,code,out)
that must be locally fulfilled at every node

Some examples:
 C = “none of the inputs are labeled secret”
 C = “the code was digitally signed by the sysadmin,
 and executed correctly”

 C = “the code is type-safe and the output is indeed
 the result of running the code”

m3

m5

mout

C

15

Goals	

•  Allow for any interaction between parties

•  Preserve parties’ communication graph
– no new channels

•  Allow for dynamic computations
– human inputs, indeterminism, programs

•  Blowup in computation and communication is local
and polynomial

Ensure C-compliance while respecting the
original distributed computation.

16

Dynamically augment computation with proofs strings

In PCD, messages sent between parties are augmented
with concise proof strings attesting to their “compliance”.

Distributed computation evolves like before, except that
each party also generates on the fly a proof string to
attach to each output message.

m5

π5

mout

πout

m3

π3

C

17

Model

Every node has access to a simple, fixed, stateless
trusted functionality -- essentially, a signature card.

C

m5

π5

mout

πout

m3

π3

SIR
SIR

SIR

SIR

SIR

SIR

•  Signed-Input-and-Randomness (SIR) oracle

18

Model

Every node has access to a simple, fixed, trusted
functionality -- essentially, a signature card.

•  Signed-Input-and-Randomness (SIR) oracle

x
input
string

SIRSK

r
random
string

r ← {0,1}s

σ ← SIGN(SK,(x,r))

s
length

σ
signature
on (x,r)

VK
Similar assumptions:
[Hofheinz Müller-Quade Unruh 05]

19

Sample application: type safety	

•  Using PCD, type safety can be maintained
– even if underlying execution platform is untrusted
– even across mutually untrusting platforms

C(in,code,out) verifies that
code is type-safe & out=code(in)

•  Type safety is very expressive
– Can express any computable property
– Extensive literature on types that can be verified efficiently
 (at least with heuristic completeness, which is good enough)
– E.g., can do certain forms of confidentiality via IFC

20

Our results	

21

Overview of Results

Proof-Carrying Data (PCD):
•  C-compliance
•  Aggregate proof strings to generate new ones
•  Simpler interface hides implementation details

APHA PCD

Assisted-Prover Hearsay-Arguments (APHA):
•  Very strong variant of non-interactive CS proofs / arguments

of knowledge (for NP)
•  Proof system for a “single step”

SIR SIR

22

Overview of Results

universal
arguments

digital
signatures

collision-resistant
hashing

Need:
•  Universal arguments (CS proofs) that are public-coin and

constant-round [Barak Goldreich 02] [Micali 94]
•  Signature schemes that are strongly unforgeable

generic (from UOWHFs): [Goldreich 04]
efficient: [Boneh Shen Waters 02]

APHA PCD

SIR SIR

Both exist if Collision Resistant Hash schemes exist.

23

Rest of this talk	

collision-resistant
hashing APHA PCD

universal
arguments

digital
signatures

SIR SIR

Rest of this talk:
•  Intuition on how to aggregate proofs in “F and G” example

24

Proof aggregation

Alice

z y
Bob Carol

x
G

V

P P

V

F

πz πy

y=F(x) z=G(y) and
∃πy : V(“y=F(x)”,πy)=1

25

Soundness vs. proof of knowledge

Alice

z y
Bob Carol

x
G

V

P P

Need proof of knowledge:

V

V P
π	
 1

P

F

knowledge
extractor valid w

Pr[]≈1

y=F(x)

πz πy

z=G(y) and
∃πy : V(“y=F(x)”,πy)=1

`

strong

26

Must use PCPs for compression

•  Probabilistically Checkable Proofs (PCPs)
used to generate concise proof strings.

Alice

z y
Bob Carol

PCP

x
G

V

P P
PCP

V

F

πz πy

(And there is evidence this is inherent [Rothblum Vadhan 09].)

27

Must use oracles for non-interactive proof of knowledge

Alice

z y
Bob Carol

πz πy
PCP

x
G

V

P P
PCP

RO

V

F

28

PCP vs. oracles conflict

•  PCP theorem does not relativize [Fortnow ‘94], not even
with respect to a RO [Chang et al. ’92]

•  this precluded a satisfying proof of security in [Valiant ‘08]

Alice

z y
Bob Carol

πz πy
PCP

x
G

V

P P

RO

V

F

PCP

V
PCP

29

Our solution:
Public-key crypto to the rescue

Oracle signs answers using public-key signature:
•  answers are verifiable without accessing oracle
•  asymmetry allows us to break “PCP vs. oracle” conflict, and

recursively aggregate proofs

Alice

z y
Bob Carol

πz πy
PCP

F
x

G

V

P P
PCP

OSK

VK

V

SIR

30

Sketch of remaining constructions	

Constructing APHAs:
•  Start with universal arguments
•  De-interactivize by replacing public-coin messages with oracle queries
•  Add signature to statement to force witness query (≈ [Chandran et al. 08])
•  Prove a very strong PoK by leveraging the weak PoK of UA

Generalizing to PCD:
•  Handle distributed-computation DAG,

using APHA for the proofs along each edge.
•  C-compliance: use fixed aggregation rule to reason about arbitrary

computation by proving statements of the form:
C(in,code,out)=1 & “each input carries a valid APHA proof string”

≈ Fiat-Shamir
heuristic

31

Discussion	

32

Applications	

UA

SIG

CRH APHA PCD

SIR SIR
type safety
fault isolation & accountability
multilevel security
financial systems
distributed dynamic
 program analysis

antispam email policies
proof-carrying code

Security design reduces to “compliance engineering”:
write down a suitable compliance predicate C.

33

Proof-Carrying Data:
Conclusions and open problems	

Contributions
•  Framework for securing distributed computations between

parties that are mutually untrusting and potentially faulty,
leaky, and malicious.

•  Explicit construction, under standard generic assumptions, in
a “signature cards” model.

•  Suggested applications.

Ongoing and future work
•  Reduce requirement for signature cards, or prove necessity.
•  Add zero-knowledge constructions.
•  Achieve Practicality (PCPs are notorious for “polynomial” overheads).
•  Identify and implement applications.

34

.	

35

.	

36

Construction sketch

APHA systems	

37

What we have and what we need

Needed:
•  Highly-compressing non-interactive arguments
•  Proof-of-knowledge property that’s strong enough to

prove “hearsay”:
statements whose truth relies on previous
arguments heard from others.

•  In the assisted prover model.

We call these
Assisted Prover Hearsay Arguments
(APHA) systems.

38

Universal arguments [Barak and Goldreich ‘02]

UA
prover

UA
verifier r2

r1

resp1

resp2

•  public coin: r1 and r2 are just random coins
•  temporal dependence:

r2 is sent only after resp1 is received

Start with universal arguments:
Efficient interactive arguments of knowledge with
constant rounds and public coins.

39

De-interactivize universal arguments: first try

Prover interacts with random oracle, not with verifier:
•  obtains signed random strings

almost-APHA
prover

random
oracle

almost-APHA
verifier

random
oracle

UA
prover

UA
verifier

40

De-interactivize universal arguments

Prover interacts with SIR oracle, not with verifier:
•  obtains random strings
•  temporal ordering enforced by having each oracle query

include the preceding transcript

almost-APHA
prover

SIR
oracle

almost-APHA
verifier

SIR
oracle

UA
prover

UA
verifier

≈ Fiat-Shamir
heuristic

41

Enhance proof of knowledge

•  Forces prover to get signature on witness
•  Knowledge extractor finds witness by examining the queries
 → strong proof of knowledge

APHA
prover

SIR
oracle

APHA
verifier

SIR
oracle

almost-
APHA
prover

almost-
APHA
verifier

SIR
oracle

SIR
oracle

get signature on
the witness

“x ∈ L
and

 σ is a
signature on a

witness for x ∈ L”

σ
w

cf. [Chandran
 Goyal
 Sahai 08]

42

Can now do F and G example

We can now do the above example!

... how about proof-carrying data?

Alice

z y
Bob Carol

PCP

x

PCP

G

V

P P

V

F

πz πy

43

PCD systems	

44

PCD systems

PCD systems are wrappers around APHA systems, with:
– Simpler interface for applications

(no need to reason about theorems and proofs)
– Simpler proof-of-knowledge property

(APHAs have a very technical “list extraction”
definition)

– C-compliance

45

PCD definition

At every node, a party uses the PCD prover PPCD:

PPCD

Osk

zin1, πin1

zin2, πin2

C, VK

πout

Proofs are checked by the PCD verifier:
VPCD(C, VK, z*, π) decides
if π is a convincing proof for z*.

code

zout

46

PCD definition

PCD systems satisfy
• efficient verifiability:

 TIME(VPCD(C, VK, z, π)) = polylog(time to make π)
 (actually, much better...)
• completeness via a relatively efficient prover:
 if computation is C-compliant, then the proof output by

prover convinces verifier. Moreover:
 TIME(PPCD(...)) = poly(time to check C)
 + polylog(time to generate inputs’ proofs)
• proof of knowledge: from any convincing prover, can extract a

whole C-compliant computation

47

Back to F and G

• Having APHA systems, we can already do
the above example

• How to generalize to C-compliance?

Alice

z y
Bob Carol

πz πy PCP

x

PCP

G

V

P P

V

F

48

Adding C-compliance

Alice z y
Bob Carol

πz πy PCP

F
x

PCP

G

V

P P

C C

•  “Export” the choice of computation to be an
input to a “fixed rule of aggregation”

V

49

PCD Machine

Alice z y
Bob Carol

πz πy PCP

F
x

PCP

G

V

P P

C C

•  Such fixed rule we call the PCD machine,
and it depends on C

PCD
machine

V

50

.	

