Proof-Carrying Data and Hearsay Arguments from Signature Cards

Alessandro Chiesa* Eran Tromer
Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory
32 Vassar St., Cambridge, MA 02139, USA
{alexch,tromer}@csail.mit.edu

Abstract:
Design of secure systems can often be expressed as ensuring that some property is maintained at every step of a distributed computation among mutually-untrusting parties. Special cases include integrity of programs running on untrusted platforms, various forms of confidentiality and side-channel resilience, and domain-specific invariants.

We propose a new approach, proof-carrying data (PCD), which circumnavigates the threat of faults and leakage by reasoning about properties of the output data, independently of the preceding computation. In PCD, the system designer prescribes the desired properties of the computation’s outputs. Corresponding proofs are attached to every message flowing through the system, and are mutually verified by the system’s components. Each such proof attests that the message’s data and all of its history comply with the specified properties.

We construct a general protocol compiler that generates, propagates and verifies such proofs of compliance, while preserving the dynamics and efficiency of the original computation. Our main technical tool is the cryptographic construction of short non-interactive arguments (computationally-sound proofs) for statements whose truth depends on “hearsay evidence”: previous arguments about other statements. To this end, we attain a particularly strong proof of knowledge.

We realize the above, under standard cryptographic assumptions, in a model where the prover has black-box access to some simple functionality — essentially, a signature card.

Keywords: secure distributed systems; computationally-sound proofs

1 Introduction

Security in distributed systems typically requires maintaining properties across the computation of multiple, potentially malicious, parties. Even when human participants are honest, the computational devices they use may be faulty (due to bugs or transient errors [11]), leaky (e.g., covert and side channels [48]) or adversarial (e.g., due to components from untrusted sources [12]).

We address the general problem of secure distributed computation when all parties are mutually untrusting and potentially malicious. Computation may be dynamic and interactive, and “secure” may be any property that is expressible as a predicate that efficiently checks each party’s actions.

Our approach, proof-carrying data (PCD), is based on augmenting every message passed in the distributed computation with a short proof string attesting to the fact that the message’s data, along with all of the distributed computation leading to that message, satisfies the desired property. These proofs are efficiently produced, verified and aggregated at every node. Ultimately, the proof string attached to the system’s final output attests that the whole computation had the desired property.

*I dedicate this paper to my father Corrado Chiesa. He was a loving dad and wonderful person.
1.1 Motivation and Goals

Motivation. Let us consider a few examples of security properties whose attainment, in the general case and under minimal assumptions, is a major open problem — and how they can be approached in the framework of proof-carrying data.

- **Integrity.** Consider parties engaged in a distributed computation. Each party is supposed to transmit messages produced by executing some program on his own inputs and earlier messages received from other parties. Can we obtain evidence that the computation’s final output is indeed the result of correctly following the prescribed program in the aforementioned process? For example, if the computation consists of a physics simulation (whether realistic or that of a virtual online world), can we obtain evidence that all parties have “obeyed the laws of physics”?

- **Information flow control.** Confidentiality and privacy are typically expressed as a negative condition forbidding certain effects. However, following the approach of information flow control (IFC) [27][55], one may instead reason about what computation is allowed and on what inputs.

 Thus, within a distributed computation, we can define the security property of intermediate results as being “consistent with a distributed computation that follows the IFC rules”. In IFC, intermediate results are labeled according to their confidentiality; PCD augments these with a proof string attesting to the validity of the label. Ultimately, a censor at the system perimeter lets through only the “non-secret” outputs, by verifying their associated label and proof string. Because verification inspects only the (augmented) output, it is inherently unaffected by anomalies (faults and leakage) in the preceding computation; only the censor needs to be trusted to properly verify proof strings.

- **Fault isolation and accountability.** Consider a distributed system consisting of numerous unreliable components. Let any communication across component boundaries carry a concise proof of correctness, and let each component verify the proofs of its inputs and generate proofs for its outputs. Whenever verification of a proof fails, the computation is locally aborted and outputs a proof of the wrongdoing. Damage is thus controlled and attributed. In principle this may be realized at any scale, from individual chips to whole organizational units.

 Many applications involve multiple such goals. For example, in cloud computing, clients are typically interested in both integrity [38] and confidentiality [62]. Further details and examples appear in Section 5.

Goals. Generalizing the above, we can state our goal: a compiler that, given a protocol for distributed computation, and a security property (in the form of a predicate to be verified at every node of the computation), yields an augmented protocol that verifies the security property.

We wish this compiler to respect the original distributed computation, i.e., it should preserve communication, dynamics and efficiency:

- **Preserve the communication graph:** Parties should not be required to engage in additional communication channels beyond those of the original distributed computation. For example: protecting the distributed computation carried out by a system of hardware components should not require each chip to continuously communicate with all other chips; agents executing in the “cloud” should remain trustworthy even when their owners are offline; and parties should be able to conduct joint computation on a remote island and later re-join a larger multiparty computation.

- **Allow dynamic computations:** The compiler should allow for inputs that are provided on the fly (e.g., determined by human interaction, random processes, or nondeterministic choices).

- **Minimize the blowup in communication and computation:** The induced overhead in communication between parties, and computation within parties, should be kept at a minimum (e.g., at most a local polynomial blowup).

This implies, in particular, that scalability is preserved: if the original computation can be jointly conducted by numerous parties, then the compiler produces a secure distributed computation has the same property.
1.2 Our Approach

Proof system. In our approach, *proof-carrying data*, every piece of data flowing through a distributed computation is augmented by a short proof string that certifies the data as compliant with some desired property. These proofs can be propagated and aggregated as the computation proceeds.

Let us illustrate our approach by a simple scenario. Alice has some input x and a function F. She computes $y := F(x)$ at a great expense, along with a proof string π_y for the claim “$y = F(x)$”, and then publishes the pair (“$y = F(x)$”, π_y) on her webpage. A week later, Bob comes across Alice’s webpage, notices the usefulness of $F(x)$, and and wants to use it as part of his computations: he picks a function G and computes $z := G(y)$. To convince others that the combined result is correct, Bob also generates a new proof string π_z for the claim “$z = G(F(x))$”, using both the transcript of his own computation of G on y, and Alice’s proof string π_y. (See Figure 1 for a diagram.) Crucially, Bob does not have to recompute $F(x)$. The size of π_z is merely polylogarithmic in Bob’s own work (i.e., the time to compute G on y and the size of the statement “$z = G(F(x))$”), and is essentially independent of the past work by Alice.

We generalize the above scenario to any distributed computation. Also, we generalize “correctness” to be any property that should hold at every node of the computation. More precisely, we consider properties that can be expressed as a requirement that every step in the computation satisfies some *compliance predicate* C computable in polynomial time; we call this notion *C-compliance*. Thus, each party receives inputs that are augmented with proof strings, computes some outputs, and augments each of the outputs with a new proof string that will convince the next party (or the verifier of the ultimate output) that the output is consistent with a C-compliant computation.

See Figure 2 for a high-level diagram of this idea.1

We thus define and construct a *proof-carrying data (PCD) system* primitive that fully encapsulates the proof system machinery, and provides a simple but very general “interface” to be used in applications.

PCD generalizes the “incrementally verifiable computation” of Valiant 68. The latter compiles a (possibly super-polynomial-time) machine into a new machine that always maintains a proof for the correctness of its internal state. PCD extends this in several essential ways: allowing for the computation to be dynamic (interactive and nondeterministic); allowing for multiple parties and arbitrary communication graphs; and allowing for an arbitrary compliance predicate, instead of considering only the special case of correctness. These greatly expand expressibility, but entail significant technical challenges (for example, dynamic computation forces us to recursively aggregate proofs in polynomially-long chains, instead of the logarithmically-deep trees of 68, and this requires a much stronger knowledge extractor). Crucially, our construction circumvents a major barrier which precluded a satisfying proof of security even for the simpler functionality of incrementally verifiable computation.2

Construction and tools. Our main technical tool, potentially of independent interest, is *assisted-prover hearsay-argument (APHA) systems*. These are short non-interactive arguments (computationally-sound proofs) for statements whose truth depends on “hearsay evidence” from previous arguments, in the sense of the above “F and G” example. As pointed out by Valiant 68, this is not implied by standard sound-

1 Moreover, we obtain a proof-of-knowledge property (see 34 Sec. 4.7 for the definition), which implies that not only does there exist a C-compliant computation consistent with the output, but moreover this computation was actually “known” to whoever produced the proof. This is essential for applications that employ cryptographic functionality that is secure only against computationally-bounded adversaries, since an efficient cheating prover can only “know” efficient C-compliant computation.

2Valiant 68 offers two constructions: one that assumes the existence of a cryptographic primitive that is nonstandard and arguably implausible 68 Theorem 1, and one whose overall security is conjectured directly without any reduction 68 Section 1.3 under “The Noninteractive CS Knowledge Assumption”. The difficulty seems inherent; see Section 12. In our model, we attain provable security under standard generic cryptographic assumptions.
ness; the latter merely says that if the verifier for a statement \(z = G(F(x)) \) is convinced then there exists a witness for that statement. But if the witness is supposed to contain a proof string \(\pi_y \) for another statement \(y = F(x) \), the mere existence of \(\pi_y \) (that would be accepted by the verifier) is useless: such \(\pi_y \) may exist regardless of the truth of the statement \(y = F(x) \), since the soundness of the argument is merely computational. We actually need to show that if the proof string for \(z = G(F(x)) \) was generated efficiently, then a valid proof string for \(y = F(x) \) can be generated with essentially the same efficiency (and acceptance probability) and is thus also convincing. Technically, this is captured by a particularly strong proof-of-knowledge property.

Our construction of APHA systems is built on argument systems \[37\][4]. Specifically, we use universal arguments \[6\] which (following \[43\] and computationally-sound proofs \[53\]) invoke the PCP theorem \[5\] to achieve compact proofs and efficient verification. However, such argument systems do not by themselves suffice: where they offer a strong proof-of-knowledge property \[30\][68], they do so by relying on random oracles, which precludes nesting of proofs since the underlying PCP system does not relativize \[31\][18]. Even in the restricted case of incrementally-verifiable computation \[68\], this difficulty precluded a satisfying proof of security.

We address this problem, both in general and for the special case of \[68\], by extending the model with a new assumption: an oracle that is invoked by the prover, but not by the verifier. The former facilitates knowledge extraction, while the latter allows for aggregation of proof strings. The oracle provides a simple signed-input-and-randomness functionality: for every invocation, it augments the input \(x \) with some fresh randomness \(r \), and outputs \(r \) along with a signature on \((x, r)\) under a secret key \(sk \) embedded in the oracle. This is discussed next.

1.3 Model and Trust

We assume that all parties have black-box access to the aforementioned signed-input-and-randomness functionality. Concretely, we think of this oracle as realized by hardware tokens, such as existing signature cards, TPM chips or smart-cards. It can also be implemented by a trusted Internet service (see \[21\] for a demonstration). Alternative realizations include obfuscation and multiparty computation; see Section 3.6 for further discussion.

Comparable assumptions have been used in previous works, as setup assumptions to achieve universally-composable functionality that is otherwise impossible \[16\]. In this context, Hofheinz et al. \[39\] assume signature cards similar to ours. The main differences in the requisite functionality is that we require the card to generate random strings and include them in its output and signature (a pseudorandom generator suffices — see Section 3.5), and to use slightly stronger signature schemes (see Section 2).

The more general result of Katz \[42\] assumes that parties can embed functionality of their choice in secure tokens and send it to each other; follow-up works in similar models include \[54\][17][25]. However, in our case we cannot afford a model where parties generate tokens and send them to all other parties, since this does not preserve the communication graph of the original computation. Thus, our model is closer to that of \[39\].

For simplicity, we assume the following setup and trust model. A trusted party generates a signature key pair \((sk, vk)\) and many signed-input-and-randomness tokens containing \(sk \). Each party is
told \(vk \) and receives a token. All parties trust the manufacturer and the tokens, in the sense that each party, upon seeing a signature on some \((x, r)\) that verifies under \(vk \), believes that the signature was produced by some token queried on \((x, [r])\).

One can easily adapt this to a certificate-authority model where each token uses its own secret key \(sk \), and publishes the corresponding public key \(vk \) along with a certificate for \(vk \) (i.e., a signature under the key of a trusted certificate authority).

1.4 Our Results

In summary, we present the following results:

An argument system for hearsay. We define *assisted-prover hearsay-argument* (APHA) systems: non-interactive arguments for \(\text{NP} \) which can efficiently prove statements that recursively rely on earlier APHA proof strings, using a very strong proof-of-knowledge property. We construct these in a model where the prover has black-box access to a simple stateless functionality, namely signing (under a secret key) every input along with fresh randomness. Our construction relies on standard generic assumptions: collision-resistant hashing schemes and signature schemes (see Figure 3).

Distributed computations and proof-carrying data. We propose proof-carrying data (PCD) as a framework for expressing and enforcing security properties, and formally define *proof-carrying data* (PCD) systems that capture the requisite protocol compiler and computationally-sound proof system. We construct this primitive under the same assumptions as above (see Figure 3).

Applications. We discuss a number of open problems in the security of real-world applications, where PCD offers a powerful solution approach by circumventing current difficulties.

1.5 Previous Approaches

Proof aggregation As discussed in Section 1.2, our aggregation-of-proofs approach is related to incrementally verifiable computation [68]. Both are built on top of efficient argument systems [37][14]: specifically, CS proofs [53] and universal arguments [6].

Metaproofs [65] also involve recursive aggregation of proofs, but using very different techniques; these seek statistical soundness rather than conciseness and efficient verification.

Signatures of knowledge [19] and their main application of delegatable anonymous credentials [8] yield proofs that are aggregatable, but at the expense of the proof size or the number of times aggregation (in their case, delegation) is allowed.

The problem of ensuring properties of a distributed computation has been previously studied by a variety of approaches.

Secure multiparty computation. Secure multiparty computation [36][9][20] considers the problem of correctly executing multiparty protocols in the presence of adversaries. Our approach follows that of [36] in that parties prove to each other, by cryptographic means, that they have been behaving correctly. The main differences are as follows. First, we address a more general setting, where the computation does not have to be known in advance to the parties. Second, [36][9][20] is unsatisfactory in the sense of not preserving the communication graph of the original computation: even the simple “\(F \) and \(G \)” example of Section 1.2 would require *everyone on the Internet* to talk to each other. By contrast, in the PCD approach, parties
perform only local computation to produce proof strings “on the fly”, and attach them to outgoing data packets. Conversely, the constructions in this paper are not zero-knowledge.

Distributed algorithms. Distributed algorithms [52] typically address achieving specific properties of a global nature (e.g., consensus). By contrast, we offer a general protocol compiler for ensuring local properties of individual steps in the distributed computation. In this sense the problems are complementary. Indeed, trusted tokens turn out to be a powerful tool for global properties as well, as shown by A2M [22] and TrInc [50].

Platforms, languages, and static analysis. Integrity can be achieved by running on suitable fault-tolerant systems. Confidentiality can be achieved by platforms with suitable information flow control mechanisms [27][55], e.g., at the operating-system level [47][69]. Various invariants can be achieved by statically analyzing programs, and by programming language mechanisms such as type systems [3][26].

The inherent limitations of these approaches (beside their difficulty) is that the output of such computation can be trusted only if one trusts the whole platform that executed it; this renders them ineffective in the setting of mutually-untrusting distributed parties.

Proof-carrying code. Proof-carrying code (PCC) [56] addresses scenarios in which a host wishes to execute code received from untrusted producers, and would like to ascertain that the code adheres to some rules (e.g., because the execution environment is not inherently confining). In the PCC approach, the producer augments the code with formal, efficiently-checkable proofs of the desired properties — typically, using the aforementioned language or static analysis techniques. Such systems have been built for scenarios such as packet filter code [57], mobile agents [58] and compiled Java programs [23].

PCC and PCD thus address disjoint scenarios, by different techniques (see Table 1 for a summary). However, the two approaches can be composed: a potentially powerful way to express security properties is to require messages to be correctly produced by some program prg that has desired properties (e.g., type safety), and then prove these properties of prg using proof-carrying code. Here, the PCD compliance predicate C consists of running the PCC verifier on prg and then executing prg.

Dynamic analysis. Dynamic analysis monitors the properties of a program’s execution at run time (e.g., [59][60][56]). Our approach can be interpreted as extending dynamic analysis to the distributed setting, by allowing parties to (implicitly) monitor the program execution of all prior parties without actually being present during the executions.

Fabric. The Fabric system [51] is similar to PCD in motivation, but takes a very different approach. Fabric addresses execution in a network of nodes which have partial trust in each other. Nodes express their information flow and trust policies, and the Fabric platform (through a combination of static and runtime techniques) ensures that computation and data will be delegated across nodes only when requisite trust relations exist for preserving the information flow policy. Thus, Fabric is a practical system that allows “as much delegation as we are sure is safe” across a system of partially-trusting nodes (where a violated trust relation will undermine security). In contrast, PCD allows (somewhat different) security properties to be preserved across an arbitrary network of fully-mistrustful nodes, but with a much higher overhead.

1.6 Organization

In Section 2, we set up preliminaries. In Section 3, we define and construct hearsay-argument systems, and discuss the inherent difficulties involved as well as their resolution by assisted-prover model. In Section 4, we define proof-carrying data systems and construct them using the results of the previous sections. In Section 5, we discuss some potential applications. In Section 6, we conclude and suggest open problems.

2 Preliminaries

General notation. We let ϵ denote the empty string, and \mathbb{N} the positive integers. For $n \in \mathbb{N}$,
we denote by \([n]\) the set \([1, \ldots, n]\). We say that a function \(\mu: \mathbb{N} \rightarrow [0, 1]\) is negligible if, for every positive polynomial \(p\), \(\mu(n) < 1/p(n)\) for all sufficiently large \(n\).

If \(M\) is a Turing machine, then \(\langle M \rangle\) is its description (on occasion identified with \(M\)) and \(\text{time}_M(x)\) is the time that \(M\) takes to halt on input a string \(x\). If \(C\) is a circuit \(C\), then \(\langle C \rangle\) is its representation and \(|C|\) is its size. For a probability distribution \(D\), we denote by \(y \leftarrow D\) drawing an element from \(D\). Similarly, \(y \leftarrow (x)\) denotes the output of the machine or circuit \(M\) on input \(x\); if \(M\) is a probabilistic machine then \(y\) is a random variable.

For a directed graph \(G = (V, E)\), and vertex \(v \in V\), \(\text{in}(v)\) are the incoming edges of \(v\), \(\text{out}(v)\) its outgoing edges, \(\text{parents}(v)\) are its neighbors across \(\text{in}(v)\), and \(\text{children}(v)\) are its neighbors across \(\text{out}(v)\).

Universal arguments. We use universal arguments [6], a variant of CS proofs [53]. These are an efficient interactive argument system for proving membership into the universal set \(S_U\), defined as the set of all tuples \(y = (M, x, t)\) for which there exists a witness \(w\) such that \(M(x, w)\) accepts within \(t\) steps. We denote by \(R_U\) the witness relation of the universal set, and by \(R_U(y)\) the set of valid witnesses for a given instance \(y\).

A universal argument consists of a prover \(P_{UA}\) and a verifier \(V_{UA}\). For an instance \(y = (M, x, t)\), universal arguments are efficient in the sense that the complexity of the verifier \(V_{UA}\) is polynomial in \(|y|\), i.e., in \(\text{poly}(|M| + |x| + \log t)\). Moreover, the complexity of the prover \(P_{UA}\) is polynomial in \(|M| + |x| + \text{time}_M(x, w)\). Beyond the usual computational soundness required of an argument system, universal arguments also satisfy a weak proof-of-knowledge property. This property (defined in [4]) is essential in one of our proofs.

The universal argument construction of Barak and Goldreich [6] is a public-coin, 4-message protocol built from any collision-resistant hashing scheme ([35, Sec. 6.2.2.2]). The aforementioned efficiency comes from the use of a PCP system [5] for compressing proofs (following Micali [53] and Kilian [44]). While PCP constructions are notorious for being efficient only in the asymptotic sense, there are indications [10] that recent progress approaches practicality.

Signature schemes. We denote a signature scheme \(\text{SIG}\) by a triple \((G_{SIG}, S_{SIG}, V_{SIG})\) consisting of the key generation, signing, and verification algorithms respectively. (See [35] Sec. 6.1.)

We use signature schemes that, beyond satisfying the standard property of security against chosen message attack, also satisfy the (independent) property of security against signature-only forgery: it is infeasible for a chosen-message attack to forge a hitherto-unseen signature that is valid for any message (the forger is not required to say which one).

It is simple to construct such a scheme: start from a signature scheme that is secure against chosen message attack, and modify its signature algorithm to append the message to the signature (and modify the verification algorithm accordingly). However, the parameters of our construction require concise signatures whose length is independent of the message (i.e., merely polynomial in the security parameter).

This can be achieved using a hash-then-sign approach. Starting with any super-secure signature scheme \([5, 6]\) \((C_{SIG}', S_{SIG}', V_{SIG}')\) and a collision-resistant hash function \(H\), we can construct a signature scheme \((C_{SIG}, S_{SIG}, V_{SIG})\) as follows:

\[\text{SIG}(m) = (C_{SIG}(m), H(V_{SIG}(m)), m)\]

A super-secure signature scheme (also called a strongly non-malleable one) allows a signature \(\sigma\) for message \(m\) to be verified if and only if \(\sigma = (C_{SIG}(m), \ast, m)\).

<table>
<thead>
<tr>
<th></th>
<th>Proof-carrying data</th>
<th>Proof-carrying code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message</td>
<td>data</td>
<td>executable code</td>
</tr>
<tr>
<td>Statement about</td>
<td>specific past history</td>
<td>all future executions</td>
</tr>
<tr>
<td>Proof method</td>
<td>cryptography + compliance predicate</td>
<td>formal methods</td>
</tr>
<tr>
<td>Main computation executed by</td>
<td>prover (sender)</td>
<td>verifier (host)</td>
</tr>
<tr>
<td>Recursively aggregatable</td>
<td>yes</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Table 1: Comparison between proof-carrying data and proof-carrying code.
resistant hashing scheme H_s ([35, Sec. 6.2.2.2]), we derive $(G_{SIG}, S_{SIG}, V_{SIG})$ as follows. The key generation algorithm G_{SIG} invokes $(sk', vk') \leftarrow G_{SIG}$, and generates a public seed s for the hash function. To sign a message m, $S_{SIG}((sk', s), m)$ computes $h = H_s(m)$ and $\sigma' = S_{SIG}(sk, h)$, and outputs $\sigma = (h, \sigma')$. To verify an alleged signature $\sigma = (h, \sigma')$ for m, $V_{SIG}((vk, s), m, \sigma)$ computes $h' = H_s(m)$, verifies $h = h'$ and runs $V'_{SIG}(vk', h, \sigma')$. Security is easily verified.

The super-secure signature schemes used above are known to exist if one-way functions exist [35, Theorem 6.5.2]. Moreover, there are efficient constructions based on the computational Diffie-Hellman assumption in bilinear groups [13], and generic transformations from regular signature schemes [40].

Therefore, in the rest of this paper, when we mention a signature scheme SIG, we shall assume that it is secure against chosen message attack and against signature-only forgery, and that it produces short signatures. This is without loss of generality, because our constructions already assume the existence of collision-resistant hashing schemes (e.g., to obtain universal arguments).

3 An Argument System for Hearsay

3.1 Overview

We introduce a new argument system for NP, which can prove statements based on “hearsay evidence”, i.e., statements expressed by a decision procedure that itself relies on proofs generated by earlier, recursive invocations of the proof system (as in the "F and G" example of Section 1.2).

At a high level, our goal is a proof system with the following features:

- **Non-interactive**, so that (i) its proof strings can be forwarded and included as part of the “hearsay evidence” for subsequent proofs, and so that (ii) its proof strings can be used to augment unidirectional communication in proof-carrying data.

- **Efficient**, so that proof strings (and their verification) are much shorter than the time to decide statements they attest to.

- **Aggregatable**, which means that it can generate an argument for a statement decided by a procedure that verifies “hearsay evidence” that is the aggregation of at most polynomially many arguments.

We call an argument system that satisfies the above set of properties a hearsay-argument system. In our construction the prover is assisted by an oracle, so we define and obtain an assisted-prover hearsay-argument system.

Next, we explain why achieving the above properties involves a fundamental difficulty, and show how we resolve it by introducing an assisted prover. After that, we define the new argument system, then state which assumptions are sufficient to construct it, and then exhibit a construction for those assumptions. Finally, we discuss the realizability of an assisted prover.

3.2 Difficulties and Our Solution

In constructing an argument system that satisfies the properties discussed in Section 3.1, two opposing requirements arise:

1. **We must not use oracles.** While we know how to construct efficient argument systems using different approaches (using a short PCP and a Merkle tree [41] [53] [6], or using a long PCP and homomorphic encryption [41]), all known efficient argument system constructions are based on the PCP theorem, and there is some evidence that this is inherent [63]. Since the PCP theorem does not relativize [31] (not even with respect to a random oracle [18]), these systems cannot prove statements that are decided by a procedure that accesses an oracle. Thus, to allow recursive aggregation of proofs, it seems the system cannot rely on oracles.

2. **We must use oracles.** Efficient non-interactive argument systems for NP are only known to exist in the random oracle model, where the verifier needs access to the random oracle. Moreover and more fundamentally, in order to prove statements involving “hearsay evidence”, we need a proof-of-knowledge property — as discussed in Section 1.2 mere soundness does not suffice. To support repeated aggregation of such proofs, the proof-of-knowledge must be of a very strong form: a very efficient online [60] [30] knowledge extractor with a tight success probability. The only known approach to
such knowledge extraction is to force the prover
to expose the witness in queries to an oracle.

Previous difficulties. The tension between
the above two requirements arises in Valiant’s
work [68]. On one hand, he uses CS proofs as non-
interactive arguments. Hence, his construction is
ill-defined: it requires generating (PCP-based) CS
proofs for statements decided by a procedure that
needs oracle access. Therefore, one can at best
conjecture (as done in [68]) that the construction,
once the random oracle has been instantiated by an
appropriate function ensemble, is secure.

Moreover, in order to prove the existence of an
efficient knowledge extractor with a tight success
probability, he exhibits a procedure that examines
a prover’s calls to the random oracle. However,
once the random oracle has been instantiated, the
procedure fails since there are no oracle calls to
examine.

This difficulty seems inherent: Valiant’s con-
struction uses an online knowledge extractor that
observes an execution of a prover only through its
inputs, outputs, and oracle calls (of which there are
none after instantiation), and the online knowledge
extractor must be able to extract a witness of size
3\(n\) given a proof string of size only \(n\). The exis-
tence of such a procedure would imply that for any
NP language, the witnesses can be compressed by
a factor of 3, which seems unlikely.

Lastly, note that the proof-of-knowledge prop-
erty we require is even stronger than [68] aimed
for, in terms of the knowledge extractor’s tight-
ness. This is because incrementally verifi-
cable computation allows proofs to be aggregated
in a logarithmically-deep tree, so a multiplica-
tive blowup can be tolerated at every extrac-
tion step. Conversely, PCD systems must handle
polynomially-long chains of proofs, and can thus
tolerate an additive blowup per extraction step; hence the knowledge extractor can do little more
than merely run the prover.

Our solution. We manage to simultaneously
satisfy the above requirements, by requiring the
prover to access an oracle but not requiring the ver-
ifier to do so. A high-level description follows.

We start with the interactive protocol for public-
coin, constant-round universal arguments. By
granting the prover access to a signed-input-and-
randomness oracle (informally defined in Sec-
tion 3.4 and to be formally defined in Section 3.4),
we turn this into a non-interactive protocol: the
prover obtains the public-coin challenges from the
oracle instead of the verifier (in a way that also en-
forces the proper temporal dependence).

The oracle signs its answers using a public-key
signature scheme, so that the oracle’s random an-
swers are verifiable without access to the oracle.
This asymmetry breaks the tension of the two re-
quirements above, i.e., it breaks the “PCP vs. or-
acles” tension.

Additionally, we require the prover to obtain a
signature for the witness that he uses to generate
an argument, thus forcing the prover to query the
oracle with the witness. This yields a very strong
form of proof-of-knowledge property.

We exploit two (related) properties of the ora-
ucle: explicitness and temporal dependence. See-
ing the oracle’s signature on \((x, r)\) implies that \(r\)
was drawn at random after \(x\) was explicitly written
down. In the construction, \(x\) will be (for example)
a purported prover message in an interactive argu-
ment, and \(r\) will be the verifier’s (public-coin) re-
sponse. Such forcing of temporal ordering is rem-
iniscient of the Fiat-Shamir heuristic [29]. Extrac-
tion of witnesses from oracle queries was used by
Pass [60], Fischlin [30] and Valiant [68]. Our ap-
proach of using signatures to force oracle queries
is similar in spirit to that of Chandran et al. [17].

The introduction of an oracle accessible by the
prover is, of course, an extra requirement of our
model. Yet given the discussion above, it seems
inevitable. In Section 3.6 we argue that the spe-
cific oracle that we choose, a signed-input-and-
randomness oracle, is reasonable in practice.

3.3 Definition of APHA Systems

We define assisted-prover hearsay-argument
(APHA) systems and discuss their properties.
An APHA system is a triple of machines
\((G_{APHA}, P_{APHA}, V_{APHA})\) that works as follows:

- the oracle generator \(G_{APHA}\): for a security pa-
parameter \(\kappa \in \mathbb{N}\), \(G_{APHA}(1^\kappa)\) outputs the descrip-
tion of a probabilistic\(^6\) stateless oracle \(O\) to as-
sist the prover, together with \(O’s\) verification
key \(vk\);

\(^6\) While our constructions are given for a probabilistic ora-
acle, in Section 3.5 we discuss how to “derandomize” the oracle
and make it deterministic.
• the **prover** P_{APHA}: for a verification key vk, an instance $y = (M, x, t)$, and a string w such that (y, w) is in the witness relation R_{APHA} of the universal set S_{APHA} (i.e., the machine M, on input x and w, accepts within t steps), $P_{\text{APHA}}^G(vk, y, w)$ outputs a proof string π for the claim that $y \in S_{\text{APHA}}$; and

• the **verifier** V_{APHA}: for a verification key vk, an instance y, and a proof string π, $V_{\text{APHA}}(vk, y, \pi)$ accepts if π convinces him that $y \in S_{\text{APHA}}$.

The triple $(G_{\text{APHA}}, P_{\text{APHA}}, V_{\text{APHA}})$ must satisfy three properties — the first two are essentially the following sense. By examining only the oracle cheating prover circuit $APHA$ of size O, the length of a proof string π is efficiently large, i.e., the proof string length is $\text{poly}(\kappa + |(M)| + |x| + \text{polylog}(t))$.

- **Completeness via a relatively-efficient prover:** For every $\kappa \in \mathbb{N}$ and $(y, w) \in R_{\text{APHA}}$,

\[
\Pr[V_{\text{APHA}}(vk, y, \pi) = 1 | (O, vk) \leftarrow G_{\text{APHA}}(1^\kappa) ;
\pi \leftarrow P_{\text{APHA}}^G(vk, y, w)] = 1
\]

(where the probability is taken over the internal randomness of G_{APHA} and O). Furthermore, there exists a polynomial p such that for every $\kappa \in \mathbb{N}$, $(O, vk) \in G_{\text{APHA}}(1^\kappa)$, and $((M, x, t), w) \in R_{\text{APHA}}$,

\[
time_{P_{\text{APHA}}^G}(vk, (M, x, t), w) \leq p(\kappa + |(M)| + |x| + \text{time}_M(x, w)) .
\]

Note that $\text{time}_M(x, w) \leq t$.

- **List extraction:** There exists a list extractor circuit LE such that for every (possibly cheating) prover circuit \tilde{P} of size $\text{poly}(\kappa)$, for all sufficiently large κ, if \tilde{P} convinces V_{APHA} then LE extracts a list containing a witness:

\[
\Pr[V_{\text{APHA}}(vk, y, \pi) = 1 \implies \left(\exists (y, \pi_i, w_i) \in \text{extlist} \text{ s.t. } y_i = y, \pi_i = \pi \right) \]

\[
\text{and } (\forall (y, \pi_i, w_i) \in \text{extlist} \text{ s.t. } y_i = y, \pi_i = \pi : (y_i, w_i) \in R_{\text{APHA}}) \bigg| (O, vk) \leftarrow G_{\text{APHA}}(1^\kappa) ; (y, \pi) \leftarrow \tilde{P}^G(vk) ; \text{extlist} \leftarrow LE(\langle \tilde{P}(vk), O \rangle) > 1 - \mu(\kappa)
\]

(where the probability is taken over the internal randomness of G_{APHA} and O), for some negligible function μ. Furthermore, $|\text{LE}|$ is $\text{poly}(\kappa)$.

Definition 1 (APHA System). An *assisted-prover hearsay-argument system* with security parameter κ is a triple of polynomial-time machines $(G_{\text{APHA}}, P_{\text{APHA}}, V_{\text{APHA}})$, where G_{APHA} is a probabilistic, P_{APHA} is deterministic with oracle access, and V_{APHA} is a deterministic, that satisfies the following conditions:

- **Efficient verification:** There exists a polynomial p such that for any $\kappa \in \mathbb{N}$, $(O, vk) \in G_{\text{APHA}}(1^\kappa)$, instance $y = (M, x, t)$, and proof string π,

\[
time_{V_{\text{APHA}}}(vk, y, \pi) \leq p(\kappa + |y|) .
\]

In particular, $|\pi| \leq p(\kappa + |y|)$, i.e., the proof string length is $\text{poly}(\kappa + |(M)| + |x| + \text{polylog}(t))$.

- **Completeness via a relatively-efficient prover:** For every $\kappa \in \mathbb{N}$ and $(y, w) \in R_{\text{APHA}}$,

\[
\Pr[V_{\text{APHA}}(vk, y, \pi) = 1 | (O, vk) \leftarrow G_{\text{APHA}}(1^\kappa) ;
\pi \leftarrow P_{\text{APHA}}^G(vk, y, w)] = 1
\]

(where the probability is taken over the internal randomness of G_{APHA} and O). Furthermore, there exists a polynomial p such that for every $\kappa \in \mathbb{N}$, $(O, vk) \in G_{\text{APHA}}(1^\kappa)$, and $((M, x, t), w) \in R_{\text{APHA}}$,

\[
time_{P_{\text{APHA}}^G}(vk, (M, x, t), w) \leq p(\kappa + |(M)| + |x| + \text{time}_M(x, w)) .
\]

Note that $\text{time}_M(x, w) \leq t$.
Proof of knowledge. The list-extraction property implies the standard proof-of-knowledge property, in which a knowledge extractor directly outputs a witness corresponding to an instance-proof pair that convinces the verifier (indeed, the knowledge extractor need only run the list extractor LE and locate the relevant triple in the list).

Adaptive soundness. As always, proof-of-knowledge implies soundness: if the prover convinces the verifier (with probability better than $1/p(\kappa)$) then a witness can be extracted with nonzero probability and thus exists. Moreover, APHA systems are adaptively sound, i.e., soundness holds even when the prover choose the instance for which he wishes to produce a proof string. In particular, the instance may depend on the oracle and vk.

3.4 Construction of an APHA System

In the assisted-prover model, every party has black-box access to a certain functionality. In our case, the black-box functionality is defined as follows:

Definition 2 (Signed-Input-and-Randomness functionality). Let $SIG = (\text{SIG}, S_{\text{SIG}}, V_{\text{SIG}})$ be a signature scheme. Let $\kappa \in \mathbb{N}$ be the security parameter of SIG. Given sk_1 and sk_2 (generated by $G_{\text{SIG}}(1^\kappa)$), the signed-input-and-randomness (SIR) functionality with respect to sk_1 and sk_2, denoted O_{sk_1,sk_2}, is given by the probabilistic machine defined as follows: On input (x,s) where $x \in \{0,1\}^*$ and $s \geq 0$, O_{sk_1,sk_2} does the following:

1. $r \leftarrow \{0,1\}^*$
2. If $s = 0$, $\sigma \leftarrow S_{\text{SIG}}(sk_1,(x,r))$
3. If $s > 0$, $\sigma \leftarrow S_{\text{SIG}}(sk_2,(x,r))$
4. Output (r,σ)

Our main technical result is constructing APHA systems from constant-round public-coin universal arguments and signature schemes:

Theorem 3.1 (APHA from universal arguments and signatures). APHA systems whose oracle is signed-input-and-randomness can be built from any signature scheme and (public-coin, constant-round) universal arguments.

Such public-coin, constant-round universal arguments are known to exist if collision-resistant hashing schemes exist [6] Theorem 1.1], and likewise for signatures schemes (see Section 2). We thus deduce the existence of APHA systems under a mild, generic assumption:

Corollary 3.2 (Existence of APHA systems). Assuming the existence of collision-resistant hashing schemes, there exist APHA systems whose oracle is signed-input-and-randomness.

Let us proceed to prove Theorem 3.1 by constructing an APHA system, following the intuition presented in Section 3.2. The oracle generator G_{APHA} is constructed as follows.

Algorithm 1 (G_{APHA}). The oracle generator G_{APHA}, on input a security parameter $\kappa \in \mathbb{N}$, does the following:

1. $(sk_1,vk_1) \leftarrow G_{\text{SIG}}(1^\kappa)$
2. $(sk_2,vk_2) \leftarrow G_{\text{SIG}}(1^\kappa)$
3. $vk \equiv (vk_1,vk_2)$
4. $(O) \equiv (O_{sk_1,sk_2})$, where O_{sk_1,sk_2} is a SIR oracle
5. Output $((O),vk)$

To prove $y \in S_{\text{SIG}}$, we will not invoke universal arguments directly on the instance $y = (M,x,t)$, but rather on an a slightly larger augmented instance $y_{\text{aug}} = (M_{\text{aug}},x_{\text{aug}},t_{\text{aug}})$. The augmented machine M_{aug} invokes M to check an (alleged) witness w for y, and also verifies an (alleged) signature on y and w. (The prover will be forced to query the oracle on w in order to obtain such a signature, and this will facilitate knowledge extraction.) Let us define the subroutine AUG that maps y to y_{aug}:

Algorithm 2 (AUG). Let $p(\kappa,m)$ be a polynomial that bounds the running time of V_{SIG} with security parameter κ on messages of length at most m. Fix a security parameter $\kappa \in \mathbb{N}$ and let $(O,vk) \in G_{\text{APHA}}(1^\kappa)$ and parse vk as (vk_1,vk_2). Let $y = (M,x,t)$ be an instance, and let σ be an (alleged) signature on a witness for y. The subroutine AUG, on input (vk_1,σ,y), does the following:

1. $x_{\text{aug}} \equiv (vk_1,\sigma,y)$
2. $t_{\text{aug}} \equiv t + p(\kappa,m)$ where $m \equiv |(\text{"inst-wit"},y,1^t,\epsilon)|$
3. Define M_{aug} to be the machine that, on input (x, w), works as follows
 (a) Let b_1 be the output of $V_{\text{SIG}}(\text{vk}_1, (\text{inst-wit}, y, w), \epsilon, \sigma)$
 (b) Let b_2 be the output of $M(x, w)$ after running for t steps
 (c) Output $b_1 \wedge b_2$
4. Output $y_{\text{aug}} \equiv (M_{\text{aug}}, x_{\text{aug}}, t_{\text{aug}})$

We proceed to describe the construction of the prover P_{APHA} and verifier V_{APHA}. Let p_1 and p_2 be polynomials such that, given an instance y of length n, the first message of V_{UA} has length $p_1(n)$ and the second message of V_{UA} has length $p_2(n)$.

Algorithm 3 (P_{APHA}). Fix a security parameter κ and let $(O, \text{vk}) \in G_{\text{APHA}}(1^\kappa)$. Let $y = (M, x, t)$ be an instance and w be a string, supposedly such that $(y, w) \in R_{\text{UA}}$. The prover $P_{\text{APHA}}^O(y, w, \pi)$ does the following:

1. Obtain a signature of the witness. Call O with query $q_0 \equiv (\text{inst-wit}, y, w, \epsilon, \sigma)$ to obtain answer $a_0 = (\epsilon, \sigma)$.
2. Compute the augmented instance. Parse vk as $(\text{vk}_1, \text{vk}_2)$; compute $y_{\text{aug}} \leftarrow \text{AUG}(\text{vk}_1, \text{vk}_2, y)$.
3. Simulate V_{UA}'s first message. Call O with query $q_1 \equiv (y_{\text{aug}}, p_1(|y_{\text{aug}}|))$ to obtain answer $a_1 = (r_1, \sigma_1)$.
4. Compute P_{UA}'s first message. Execute the first step of $P_{\text{UA}}(y_{\text{aug}}, w)$, using r_1 as the verifier’s first message, to obtain resp_1, the prover’s first response.
5. Simulate V_{UA}’s second message. Call O with query $q_2 \equiv (\text{resp}_1, a_1, p_2(|y_{\text{aug}}|))$ to obtain answer $a_2 = (r_2, \sigma_2)$.
6. Compute P_{UA}'s second message. Continue the above execution of $P_{\text{UA}}(y_{\text{aug}}, w)$, using r_2 as the verifier’s second message, to obtain resp_2, the prover’s second (and last) response.
7. Package the signature and (part of) the transcript into a preliminary proof string. Define $\pi' \equiv (\sigma, \tau)$, where $\tau \equiv (a_1, \text{resp}_1, a_2, \text{resp}_2)$.
8. Obtain a signature on the instance and preliminary proof. Call O with query $q_3 \equiv (\text{proof}, \pi', 0)$ to obtain answer $a_3 = (\epsilon, \sigma')$.
9. Output the signed proof. Output $\pi \equiv (\pi', \sigma')$.

Algorithm 4 (V_{APHA}). Fix a security parameter κ and let $(O, \text{vk}) \in G_{\text{APHA}}(1^\kappa)$. Let $y = (M, x, t)$ be an instance and let π be an (alleged) proof string for “$y \in S_{\text{UA}}$”. The verifier $V_{\text{APHA}}(\text{vk}, y, \pi)$ does the following:

1. Parse vk as $(\text{vk}_1, \text{vk}_2)$; parse π as (π', σ'), where $\pi' \equiv (\sigma, \tau)$, $\tau \equiv (a_1, \text{resp}_1, a_2, \text{resp}_2)$, $a_1 = (r_1, \sigma_1)$, and $a_2 = (r_2, \sigma_2)$.
2. Verify that the signature is valid. Check that $V_{\text{SIG}}(\text{vk}_1, (\text{proof}, \pi', 0), \sigma') = 1$.
3. Compute the augmented instance. $y_{\text{aug}} \leftarrow \text{AUG}(\text{vk}_1, \text{vk}, y)$.
4. Verify that the transcript is consistent. Check that:
 (a) \(V_{\text{SIG}}(vk_2, (y_{\text{aug}}, r_1), \sigma_1) = 1 \) and \(|r_1| = p_1(|y_{\text{aug}}|) \)
 (b) \(V_{\text{SIG}}(vk_2, ((\text{resp}_1, a_1), r_2), \sigma_1) = 1 \) and \(|r_2| = p_2(|y_{\text{aug}}|) \).
5. Verify that the transcript is convincing. Check that the third step of \(V_{\text{UA}}(y_{\text{aug}}) \), using \(r_1 \) and \(r_2 \) as the verifier’s first and second messages, and using \(\text{resp}_1 \) and \(\text{resp}_2 \) as the prover’s first and second messages, accepts.

3.5 Correctness of the APHA Construction

We complete the proof of Theorem 3.1 by showing that the above construction is indeed an APHA system. Efficient verifiability, as well as completeness, is achieved by a relatively-efficient prover, follow directly from the construction.

The remaining property, list-extraction, is fulfilled by the following list extractor \(\text{LE} \):

Algorithm 5 (\(\text{LE} \)). Given \(vk \) and a prover-oracle interaction transcript \(\langle P(vk), O \rangle \), \(\text{LE}(\langle P(vk), O \rangle) \) does the following:

1. extlist \(\leftarrow \text{newLIST()} \)
2. In the transcript \(\langle P(vk), O \rangle \), let \((q_1, a_1), \ldots, (q_i, a_i) \) be the query-answer pairs in which the query is of the form \(q_i = (\text{"proof"}, \pi_i) \).
3. for \(i \in [i] \) do:
 (a) Parse \(\pi_i \) as \((\sigma_i, tr_i) \) and \(a_i \) as \((\epsilon, \sigma_i) \).
 (b) Find some \((q, a) \in \langle P(vk), O \rangle \) such that \(a = (\epsilon, \sigma_i) \) and \(q \) is of the form \(q = (\text{"inst-wit"}, y, w) \).
 (c) Add \((y, (\pi_i, \sigma_i'), w) \) to extlist.
4. Output extlist.

Claim 3.3. \(\text{LE} \) fulfills the \textbf{list-extraction} property of \((G_{\text{APHA}}, P_{\text{APHA}}, V_{\text{APHA}}) \).

The following is an overview of the proof structure; see [21] for details.

Proof sketch. To prove the success of \(\text{LE} \), we define a sequence of intermediate constructions of increasing power, starting from universal-argument systems (with a weak proof of knowledge property) and ending at APHA systems (with full-fledged list extraction). Each construction is built via black-box access to the functionality proved for the preceding one.

First construction: adaptivity. Starting from a universal-argument system \((P_{\text{UA}}, V_{\text{UA}}) \), which has a weak proof-of-knowledge (PoK) property, we show how to construct a pair of machines \((P_1, V_1) \) for which the weak PoK property holds even when the prover itself adaptively chooses the claimed instance \(y \). The prover has oracle access to a functionality \(O_1 \) that outputs random strings upon request; the prover interacts with \(O_1 \), and then outputs an instance \(y \) and a proof string \(\pi_1 \) for the claim \("y \in S_1" \). When verifying the output of the prover, we allow \(V_1 \) to see all the query-answer pairs of the prover to \(O_1 \).

\(V_1 \) works by requiring a (possibly cheating) prover \(P_1 \) to produce a transcript of the universal-argument protocol which \(V_{\text{UA}} \) would have accepted, and, moreover, by verifying that the public-coin challenges in the transcript were obtained by \(P_1 \), in the right order, as answers from \(O_1 \).

We show that whenever a prover \(P_1 \) convinces \(V_1 \) on some instance \(y \) of its choice, \(P_1 \) can be converted into a cheating \(P_{\text{UA}} \) that convinces \(V_{\text{UA}} \) on \(y \), from which a witness for \("y \in S_1" \) can be extracted using the universal-argument knowledge extractor \(E_{\text{UA}} \). We thus obtain a knowledge extractor \(E_1 \).

Second step: stateless oracle. Starting from the pair of machines \((P_1, V_1) \), we show how to construct a triple of machines \((G_2, P_2, V_2) \) for which the weak PoK property still holds. This time, the prover has oracle access to a stateless probabilistic oracle \(O_2 \) generated by \(G_2 \), instead of the aforementioned stateful oracle \(O_1 \). On input \(x, O_2 \) outputs a random string \(r \) together with a signature on \((x, r) \). When verifying the output of the prover, this time \(V_2 \) does not see the query-answer pairs of the prover to \(O_2 \). Instead, it verifies the signatures in the transcript provided by the prover, to be convinced that the queries were made to \(O_2 \).

That is, \(V_2 \) requires a (possibly cheating) prover \(P_2 \) to produce a proof string that \(V_1 \) would have accepted, along with corresponding signatures that are valid under the verification key of \(O_2 \).

As before (but by a different technique), we show that whenever a prover \(P_2 \) convinces \(V_2 \) on some instance \(y \) of its choice, \(P_2 \) can be converted
into a prover \tilde{P}_1 that convinces V_1 on y, from which a witness for \("y \in S_\ell\) can be extracted using the knowledge extractor E_1. We thus obtain a knowledge extractor E_2.

Third step: list extraction. Starting from (G_2, P_2, V_2), we show how to construct a triple of machines $(G_{\text{APHA}}, P_{\text{APHA}}, V_{\text{APHA}})$ that is an APHA system. Similarly to the previous step, provers for V_{APHA} have access to a stateless signed-input-and-randomness oracle O (following Definition 2), generated by G_{APHA}; however, $(G_{\text{APHA}}, P_{\text{APHA}}, V_{\text{APHA}})$ satisfies a PoK property in a much stronger sense, specified by the [PHGA list-extraction property] and its list-extractor LE.

This “knowledge boosting” relies on forcing the prover to explicitly state its witness in some query to O.

V_{APHA} works by requiring the (possibly cheating) prover \tilde{P} to produce a proof string that V_2 would have accepted; however, the proof string should not be about the claim \("y \in S_\ell\)” (for some instance y chosen by the prover), but about some related claim \("y_{\text{aug}} \in S_\ell\)” where y_{aug} is derived from y. Essentially, the prover can convince V_2 that \("y_{\text{aug}} \in S_\ell\)” only if it knows a signature, that verifies under the verification key of O, for a valid witness that \("y \in S_\ell\)”.

Thus, the prover is forced to explicitly query O on such a witness — and this query can be found by the knowledge extractor.

Crucially, the knowledge extractor E_2 is not invoked by the APHA list extractor LE; rather, E_2 is used just in the proof of correctness of LE, in a reduction from failure of LE to forgeability of signatures.\footnote{This is similar in spirit to the extractor abort lemma of Chandran et al. [17].} Since signatures are forgeable with negligible probability, the polynomial loss of the weak PoK amounts to just a small increase in the security parameter.

Thus, we show that whenever V_{APHA} accepts the output of \tilde{P} we can (with all but for negligible probability) efficiently find a valid witness for the instance output by \tilde{P} among the queries of \tilde{P} to O, which is the main ingredient of the proof of correctness of the list extractor LE.

3.6 Realizability of an Assisted Prover

Our construction attain APHA systems (and eventually PCD systems) assuming black-box access to single, fixed functionality: signed-input-and-randomness. This functionality is stateless, and is parametrized by a single concise secret (the signing key sk).

Communication. The communication between the prover and the oracle O is as low as one could hope for given our approach to knowledge extraction (see Section 3.2): linear in the witness size $|w|$, and polynomial in the instance $|y|$ and security parameter κ. Moreover, only four queries are needed. Note that the total communication is linear in the length of the original witness w for the statement $y = (M, x, t) \in S_t$, rather than (as in non-interactive CS proofs) a much longer PCP witness which contains the whole t-step execution of $M(x, w)$.

Computation. Using the hash-then-sign approach, and typical hash function constructions, the computational complexity of the signed-input-and-randomness functionality is essentially linear in its communication complexity size and polynomial in the security parameter.

Realization. How would such an oracle be provided in reality? As noted earlier, similar requisites arose in related works [17][42][54][17][25][50]. One well-studied option is to use a secure hardware token that is tamper-proof and leak-proof. Indeed, similar signing tokens are already prescribed by German law [28]. Similarly, the functionality can be embedded in cryptographic coprocessors, TPM chips, and general-purpose smartcard such as TEMs [24]. Alternatively, one may hope that this specific functionality can be obfuscated, either in the strict virtual-box-box sense [7] or (for real-world security applications) in some heuristic sense. Lastly, the functionality can be realized via standard MPC techniques between multiple parties, tokens, or services, if the requisite fraction of honest participants is available.

Removing randomness. The randomness of the signed-input-and-randomness functionality is not essential: one could replace the fresh random bits with pseudorandom bits obtained by a pseudorandom function, applied to the input, whose seed is kept secret. In this way, one only has to trust the token to hide its secret bits (the signing key and the seed) and to operate correctly, but not to also generate random bits. Indeed, our constructions do not
require the randomness from the token to be fresh for repeated queries with the same input, and security holds even if the randomness comes from a pseudorandom function. Intuitively, this holds since even with a randomized oracle, adversaries can replay old answers.

4 Proof-Carrying Data Systems

We define and construct proof-carrying data (PCD) systems, which realize the framework of proof-carrying data. The following subsections are organized as follows: in Section 4.1, we define the notion of compliance for distributed computation; in Section 4.2, we define PCD systems and discuss their properties; in Section 4.3, we construct a PCD system, and, in Section 4.4, we sketch its correctness.

4.1 Compliance of Computation

We begin by specifying our notion of distributed computation.

Definition 3 (Distributed computation transcript). A distributed computation transcript (abbreviated transcript) is a triple \(DC = (G, code, data) \) representing a directed acyclic multi-graph \(G = (V, E) \) with labels code on the vertices and labels data on the edges. Vertices represent the computation of programs, and edges represent messages sent between these programs. Each non-source vertex \(v \) is with labeled its program code, denoted \(code(v) \). Each edge \((u, v)\) is labeled by \(data(u, v) \), which is the data that is (allegedly) output by the program of \(u \) and is given as input to the program of \(v \). Each source vertex has a single outgoing edge, carrying an input of the distributed computation; there are no programs at sources, so we set their label to \(\bot \). The final output of the distributed computation is the data carried along edges going into sinks.

An augmented distributed computation transcript (abbreviated augmented transcript) is a quadruple \(ADC = (G, code, data, proof) \) such that \((G, code, data) \) is a transcript, and proof is an additional labeling on the edges of \(G \), specifying proof strings carried along those edges. (See Figure 5.)

Given a transcript \(DC = (G, code, data) \), at times we need to consider the part of the distributed computation up to a certain point. For an edge \((u, v) \in E\), we define the transcript of \(DC \) up to \((u, v)\), denoted \(DC_{(u, v)} = (G', code', data') \), to be the labeled subgraph induced by the subset of vertices consisting of \(v \), \(u \) and all ancestors of \(u \).

A transcript captures the propagation of information via messages in the distributed computation, and thus the graph is acyclic by definition. A party performing several steps of computations on different inputs at different times is represented by distinct corresponding vertices.

Next, we define what we mean for a distributed computation to be compliant, which is our notion of “correctness with respect to some specification”. We capture compliance via an efficiently computable predicate \(C \) that is required to hold true at each vertex, when given the program of the vertex together with its inputs and (alleged) outputs.

Definition 4 (C-compliance). A compliance predicate \(C \) is a polynomial-time computable predicate on strings. A distributed computation transcript \(DC = (G, code, data) \) is C-
If for every vertex $v \in V$ it holds that $C(\text{data}(\text{in}(v)), \text{code}(v), \text{data}(\text{out}(v))) = 1$ (where $\text{data}(\text{in}(v))$ denotes the list of data labels on v’s parents, and analogously for $\text{data}(\text{out}(v))$).

Alternatives. One may consider stronger forms of compliance. For example, the compliance predicate could get as extra inputs the graph G and the identity of the vertex v (so that the compliance predicate “knows” which vertex the graph is examining). Stronger still, the compliance predicate could be *global*, and get as input the whole transcript $\text{DC} = (G, \text{code}, \text{data})$. However, our goal is to realize PCD in a dynamic setting, where future computations have not happened yet (and might even be unknown) and past computations have been long forgotten, so that compliance must indeed be decided locally. Therefore, we choose a *local* compliance predicate, which only gets as input the information that is locally available at a vertex, i.e., the program of the vertex together with its inputs and (alleged) outputs.

4.2 Definition of PCD Systems

We proceed to define proof-carrying data systems, starting with their structure and an informal description of their properties.

4.2.1 Structure of PCD systems

A PCD system consists of a triple of machines, $(G_{\text{PCD}}, P_{\text{PCD}}, V_{\text{PCD}})$, that works as follows:

- The PCD oracle generator G_{PCD}: for a security parameter κ, $G_{\text{PCD}}(\lambda)$ outputs the description of a probabilistic\footnote{The oracle can be derandomized; see Section 3.6\footnote{Without loss of generality, we restrict our attention to transcripts for which programs have exactly two inputs and one output.}} stateless oracle O, together with O’s verification key vk.
- The PCD prover P_{PCD}: Let vk be a verification key, let C be a compliance predicate, and let prg be a program with (alleged) output z_{out} and two inputs $z_{\text{in}1}$ and $z_{\text{in}2}$ with corresponding proof strings $\pi_{\text{in}1}$ and $\pi_{\text{in}2}$ (see Figure 6). Then $P_{\text{PCD}}^\kappa(vk, C, z_{\text{out}}, prg, z_{\text{in}1}, \pi_{\text{in}1}, z_{\text{in}2}, \pi_{\text{in}2})$ outputs a proof string π_{out} for the claim that z_{out} is an output consistent with a C-compliant transcript.
- The PCD verifier V_{PCD}: for a verification key vk, a compliance predicate C, an output z_{out}, and a proof string π_{out}, $V_{\text{PCD}}(vk, C, z_{\text{out}}, \pi_{\text{out}})$ accepts if π_{out} convinces him that z_{out} is an output consistent with a C-compliant transcript.

Using these algorithms, a distributed computation transcript is dynamically compiled into an *augmented* distributed computation transcript by adding a proof string to each edge (see Figure 5).

The process of generating proof strings is defined inductively, by having each (internal) vertex v in G use P_{PCD} to produce a new proof string π_{out} for its output z_{out} (given its inputs, their inductively generated proof strings, its program, and output).

More precisely, focusing on a particular edge $(u, v) \in E$, we recursively define the process of computing proof strings in DC up to (u, v); this process generates an augmented transcript of DC up to (u, v). Let $DC' = DC_{\{u, v\}}$ be the transcript of DC up to (u, v), and proof $: E' \rightarrow \{0, 1\}^*$ another label on the edges of DC' that carries proof strings (in addition to the label data† that carries the data). Initially, proof strings on the outgoing edges of sources are set to \bot. Then, taking each non-source non-sink vertex $w \in V'$ in some topological order12 let $w_{\text{in}1}, w_{\text{in}2}$ be the two parents of w, and let w_{out} be its the single child in DC'. Let $z_{\text{in}1} = \text{data}(w_{\text{in}1}, w), \pi_{\text{in}1} = \text{proof}(w_{\text{in}1}, w)$, $z_{\text{in}2} = \text{data}(w_{\text{in}2}, w), \pi_{\text{in}2} = \text{proof}(w_{\text{in}2}, w)$, $prg = \text{code}(w)$, and $z_{\text{out}} = \text{data}(w, w_{\text{out}})$. Then, recursively compute

$\pi_{\text{out}} \leftarrow P_{\text{PCD}}^\kappa(vk, C, z_{\text{out}}, prg, z_{\text{in}1}, \pi_{\text{in}1}, z_{\text{in}2}, \pi_{\text{in}2}),$

See Figure 6: Computation of the new proof string π_{out} for the output data z_{out} using the PCD prover $P_{\text{PCD}}^\kappa(vk, C, z_{\text{out}}, prg, z_{\text{in}1}, \pi_{\text{in}1}, z_{\text{in}2}, \pi_{\text{in}2})$.\footnote{Formally, since G is acyclic, we are oblivious to the choice of temporal order. In reality the proof strings are computed on-the-fly according to the temporal order by which the data messages are generated; by causality, this order is topological.}

\begin{center}
\begin{tabular}{c c c c}
\text{verification} & \text{key} & \text{compliance} \\
\hline
vk & C & π_{out}
\end{tabular}
\end{center}
and define $\pi_{\text{out}} \equiv \text{proof}(u, w_{\text{out}})$. The final output z of $DC' = DC_{(u, v)}$ has the proof string $z = \text{proof}(u, v)$.

4.2.2 Properties of PCD (intuitive)

The triple $(G_{\text{PCD}}, P_{\text{PCD}}, V_{\text{PCD}})$ must satisfy three properties. Analogously to APHA systems, the first two bound the complexity of proving and verifying, and the third is a strong proof-of-knowledge property (which, in particular, implies soundness). These are adapted to the context of distributed computation transcripts.

First, proof strings generated by the prover should be efficiently verifiable by the verifier: V_{PCD} halts in time that is polynomial in the security parameter κ, the size of the description of C, the length of z, and the logarithm of the time it took to generate π. (Our parameters are even better; see the analysis in Section 4.2.3.)

Second, the prover should be able to prove true statements using a reasonable amount of time. Whenever it is indeed the case that a transcript DC is C-compliant, if the above recursive process is used to generate a proof string π for the data z on some edge, then (z, π) are indeed accepted by V_{PCD}. Moreover, the above recursive process runs in time that is polynomial in the security parameter κ, the size of the description of C and the time it took to verify C-compliance at every node.

Third, soundness means that given a compliance predicate C and an output string z that is not consistent with any C-compliant transcript, no cheating prover circuit \hat{P} of size $\text{poly}(\kappa)$ can generate a convincing proof string π for z (except with non-negligible probability, over the randomness of the oracle and its verification key).

In order to preserve security for distributed computation that uses cryptographic functionality that is only computationally secure, we actually require a stronger property: proof of knowledge. A proof string π augmenting a piece of data z attests to the following. For any (possibly cheating) prover circuit \hat{P} of size $\text{poly}(\kappa)$, there exists a knowledge extractor E_{PCD} circuit such that, for any output string z, if \hat{P} produces a sufficiently convincing proof string π for z, then E_{PCD} can extract from \hat{P} a C-compliant transcript DC that has final output z. Also, $|E_{\text{PCD}}|$ is polynomial in $|\hat{P}|$ and the security parameter κ.

4.2.3 Properties of PCD (formal)

We proceed to capture the above intuition more formally. First, because provers and verifiers are concatenated in a recursive structure, in order to precisely quantify their complexity we need to define a recursive function over the transcript DC.

The recursive function that characterizes the complexity is as follows:

Definition 5 (Recursive Time up to an Edge). Let p be a positive polynomial, κ a security parameter, C a compliance predicate, and DC a transcript. Given $(u, v) \in E$, we define the recursive time of $DC_{(u, v)}$ denoted $T_p(\kappa, C, DC_{(u, v)})$, where T_p is recursively defined as follows:

- If u is a source vertex,
 $$T_p(\kappa, C, DC_{(u, v)}) \equiv p(\kappa + |\langle C\rangle|).$$

- Otherwise,
 $$T_p(\kappa, C, DC_{(u, v)}) \equiv$$
 $$\text{time}_C(\text{data}(\text{in}(u)), \text{code}(u), \text{data}(\text{out}(u))) +$$
 $$\sum_{u' \in \text{parents}(u)} p(\kappa + |\langle C \rangle| + |\text{data}(u', u)| +$$
 $$\log\left(T_p(\kappa, C, \text{data}(u', u), DC_{(u', u)})\right)\).$$

The essential property of this recursive function is that the cost of past computation decays as an iterated logarithm at every aggregation step, and thus converges very quickly. Hence, the time it takes to generate a proof π_{out} is essentially polynomial in the time it takes to merely locally check compliance, i.e., to compute $C((z_{\text{in}_1}, z_{\text{in}_2}), \text{prg}, (z_{\text{out}}))$, and verification time is logarithmic in that.

We can now state the definition of PCD systems.

Definition 6 (PCD System). A proof-carrying data system with security parameter κ is a triple of polynomial-time machines $(G_{\text{PCD}}, P_{\text{PCD}}, V_{\text{PCD}})$.

11) Our construction attains a stronger definition, where a fixed knowledge extractor can extract from any convincing prover by observing only its output and its interaction with the oracle (analogously to the APHA list extraction property). We use the above weaker definition for convenience of presentation.
where G_{PCD} is probabilistic, P_{PCD} is deterministic with oracle access, and V_{PCD} is deterministic, that satisfies the following conditions:

- **Efficient verification:** There exists a positive polynomial p such that for every $\kappa \in \mathbb{N}$, $(O, vk) \in G_{PCD}(1^\kappa)$, compliance predicate C, transcript DC, edge $(u, v) \in E$ with label $z = \text{data}(u, v)$, and proof string π,

$$\Pr \left[V_{PCD}(vk, C, z, \pi) = 1 \right] = 1$$

$$(O, vk) \leftarrow G_{PCD}(1^\kappa) ;$$

$$\pi \leftarrow A^O(vk, C, DC_{(u,v)}) = 1$$

(where the probability is taken over the internal randomness of G_{PCD} and O).

Furthermore, there exists a positive polynomial p such that for every $\kappa \in \mathbb{N}$, $(O, vk) \in G_{PCD}(1^\kappa)$, C-compliant computation DC, and edge $(v, w) \in E$ with label $z = \text{data}(v, w)$,

$$\Pr \left[V_{PCD}(vk, C, z, \pi) = 1 \right] = 1$$

$$(O, vk) \leftarrow G_{PCD}(1^\kappa) ;$$

$$\pi \leftarrow A^O(vk, C, DC_{(u,v)}) = 1$$

(where the probability is taken over the internal randomness of G_{PCD} and O), then E_{PCD} extracts a C-compliant distributed computation transcript DC consistent with the final output z (i.e., $z = \text{data}(u, v)$ and (u, v) is the unique incoming edge to the unique sink vertex v) with almost the same probability:

$$\Pr \left[DC \text{ is } C\text{-compliant } \land u, v \in V \land DC = DC_{(u, v)} \land z = \text{data}(u, v) \right]$$

$$(O, vk) \leftarrow G_{PCD}(1^\kappa) ;$$

$$DC \leftarrow E_{PCD}^O(vk, C, z) = 1$$

(where the probability is taken over the internal randomness of G_{PCD} and O), for some negligible function μ.

4.3 Construction of a PCD System

We show the following:

Theorem 4.1 (PCD from APHA). PCD systems can be built from APHA systems (using the same oracle).

Combining this with Corollary 3.2 we deduce the existence of PCD systems under mild standard assumptions:

Corollary 4.2 (Existence of PCD systems). Assuming the existence of collision-resistant hashing schemes, there exist PCD systems whose oracle is signed-input-and-randomness.

Given any APHA system $(G_{APHA}, P_{APHA}, V_{APHA})$, such as those of Section 5, we construct a PCD system $(G_{PCD}, P_{PCD}, V_{PCD})$ as follows.

The oracle generator is the same (i.e., $G_{PCD} = G_{APHA}$). The PCD prover and verifier will invoke those of APHA on specially crafted statements $(M_{PCD}, x, t) \in S^*_U$, where M_{PCD} is a fixed PCD machine (depending only on the compliance predicate C and the verification key vk) which specifies how to aggregate proof strings, check C locally and generate the new proof string.

Specifically, M_{PCD} gets as input a string $x = (z_{\text{out}}, d_{\text{out}})$, where z_{out} is the alleged output of the current vertex and d_{out} is the number of past aggregations, and a witness $w = (prg, z_{\text{in}}, \pi_{\text{in}}, z_{\text{in}}, \pi_{\text{in}})$ containing the program
prg of the current vertex, together with its inputs and their corresponding proof strings. The PCD machine will accept only if

1. it verifies, by invoking \(V_{\text{APHA}} \), that the proof strings of the inputs are valid, and
2. \(C((z_{in_1}, z_{in_2}), \text{prg}, (z_{out})) = 1 \), i.e.,

C-compliance holds.

For the “base case” \(d_{out} = 1 \), the PCD machine does not have previous proof strings to verify, so it will only check that C-compliance holds. Formally, the PCD machine is defined as follows:

Algorithm 6 (PCD Machine). Fix \(\kappa \in \mathbb{N} \) and let \((O, vk) \in G_{\text{PCD}}(1^\kappa)\). Let \(C \) be a compliance predicate, \(z_{\text{out}} \) the (alleged) output of a program \(\text{prg} \) with inputs \(z_{in_1} \) and \(z_{in_2} \), and \(\pi_{in_1} \) and \(\pi_{in_2} \) proof strings. Define \(x \equiv (z_{out}, d_{out}) \) and \(w \equiv (\text{prg}, z_{in_1}, \pi_{in_1}, z_{in_2}, \pi_{in_2}) \). The PCD machine with respect to \(C \) and \(vk \), denoted \(M_{\text{PCD}} \), is defined as follows: \(M_{\text{PCD}} \), on input \((x, w)\), does the following:

1. **Base case.** If \(\pi_{in_1} = \bot \), verify that \(d_{out} = 1 \) and \(C(\bot, \bot, z_{in_1}) = 1 \), otherwise reject.
2. **Recursive case.** If \(\pi_{in_1} \neq \bot \), parse \(\pi_{in_1} \) as \((\pi_{in_1}', d_{in_1}, t_{in_1})\), and do the following:
 a. Verify that \(d_{out} > d_{in_1} > 0 \).
 b. Define \(y_{in_1} \equiv (M_{\text{PCD}}(\pi_{in_1}', d_{in_1}, t_{in_1})) \).
 c. Verify that \(V_{\text{APHA}}(vk, y_{in_1}, \pi_{in_1}') = 1 \), otherwise reject.
3. Repeat steps 1 and 2 for \(z_{in_2} \) and \(\pi_{in_2} \).
4. Accept iff \(C((z_{in_1}, z_{in_2}), \text{prg}, (z_{out})) \) accepts.

The PCD prover and verifier are then constructed as follows.

Algorithm 7 (PCD). Fix \(\kappa \in \mathbb{N} \) and let \((O, vk) \in G_{\text{PCD}}(1^\kappa)\). Let \(C \) be a compliance predicate, \(z_{\text{out}} \) the (alleged) output of a program \(\text{prg} \) with inputs \(z_{in_1} \) and \(z_{in_2} \) (and corresponding proof strings \(\pi_{in_1} \) and \(\pi_{in_2} \)). The PCD prover \(P_{\text{PCD}}(vk, C, z_{\text{out}}, \text{prg}, (z_{out})) \) does the following:

1. If \(\pi_{in_1} = \bot \), run \(C(\bot, \bot, z_{in_1}) \) and let \(t_{in_1} \) be the time \(C \) takes to halt. Otherwise, parse \(\pi_{in_1} \) as \((\pi_{in_1}', d_{in_1}, t_{in_1})\).
2. If \(\pi_{in_2} = \bot \), run \(C(\bot, \bot, z_{in_2}) \) and let \(t_{in_2} \) be the time \(C \) takes to halt. Otherwise, parse \(\pi_{in_2} \) as \((\pi_{in_2}', d_{in_2}, t_{in_2})\).
3. Run \(C((z_{in_1}, z_{in_2}), u_, (z_{out})) \) and let \(t_C \) be the time \(C \) takes to halt.

4. Define \(t \equiv t_C + t_{in_1} + t_{in_2}, \)
 \(d_{out} \equiv \max\{d_{in_1}, d_{in_2}\} + 1, \)
 \(y \equiv (M_{\text{PCD}}(z_{in_1}, d_{out}, t)) \)
 and \(w \equiv (\text{prg}, z_{in_1}, \pi_{in_1}, z_{in_2}, \pi_{in_2}) \).

5. Compute \(\pi' \equiv P_{\text{APHA}}^O(vk, y, w) \).
6. Define \(\pi \equiv (\pi', d, t) \).
7. Output \(\pi \).

Algorithm 8 (PCD). Fix \(\kappa \in \mathbb{N} \) and let \((O, vk) \in G_{\text{PCD}}(1^\kappa)\). Let \(C \) be a compliance predicate, \(z \) an output string, and \(\pi \) a proof string. The PCD verifier \(V_{\text{PCD}}(vk, C, z, \pi) \) does the following:

1. If \(\pi = \bot \), output \(C(\bot, \bot, z) \).
2. If \(\pi = (\pi', d, t) \), define \(y \equiv (\text{M}_{\text{PCD}} C, (z, d, t)) \), and output \(\text{APHA}(vk, y, \pi') \).

4.4 Correctness of the PCD Construction

To complete the proof of Theorem 1 there remains to show that the above construction is indeed a PCD system. Efficient verifiability, as well as completeness via a relatively-efficient prover, follow easily from the construction.

In the following, we sketch the proof of the PCD proof-of-knowledge property. For further details see the full version of this paper [21].

The PCD knowledge extractor \(E_{\text{PCD}} \) for a (cheating) prover \(P \), on input \((vk, C, z)\) and with oracle access to \(O \), does the following:

1. Run \(\tilde{P}^O(vk, C, z) \) to get its output \((z, \pi)\) and to record its oracle queries and answers, \(\langle \tilde{P}(vk, C, z), O \rangle \).
2. Apply the APHA list extractor \(\text{LE} \) to the recorded interaction \(\langle \tilde{P}(vk), O \rangle \), to extract a list, extlist, of triples \((y_i, \pi_i, w_i)\).
3. Apply an offline reconstruction procedure which outputs a transcript of the “past” distributed computation by looking only at extlist and \((z, \pi)\) (see below).

All our work thus far was aimed at making such offline reconstruction possible. The fact that the transcript can be reconstructed from a single invocation \(P \) is essential: had we used a recursive approach requiring multiple invocations, we would have experienced an exponential blowup as aggregated proofs are recursively extracted.

Offline reconstruction procedure. The procedure performs a depth-first traversal of the implicit history represented by extlist, starting from the root.
implied by \((z, \pi)\). It maintains the following data structures:

- An augmented distributed computation transcript ADC, initially containing just the output edge.
- An exploration stack, denoted expstack, containing the set of edges of \(G\) that we have discovered but not yet explored.

At a high level, the procedure operates iteratively as follows. At every iteration, we pop the next edge \(e\) to explore from expstack. Then, we check ADC to see what is the APHA instance and proof string pair \((y_e, \pi_e)\) on the edge \(e\), and look for a corresponding triple of the form \((y_e, \pi_e, w_i)\) in the extracted list extlist. (From the APHA list-extraction property, this succeeds, and moreover \(w_i\) is a valid witness with all but negligible probability.) If we have already seen the instance-witness pair \((y_e, w_i)\) on some edge edge \(e'\), we grow the graph of ADC by making the (hitherto unknown) source vertex of \(e\) the same as the source of \(e'\). Otherwise, we grow ADC by making the source of \(e\) a new vertex \(v\). If \(w_i\) is a witness that uses the base case of the PCD machine, then \(v\) is a source vertex and we are done for this iteration. Otherwise \(v\) is a new internal vertex, and we add the edges leading to its (yet unknown) parents to expstack. The labels on ADC are updated accordingly.

5 Applications and Design Patterns

Proof-carrying data is a flexible and powerful framework that can be applied to security goals in many problem domains. Below are some examples of domains where we envision applicability. We stress that this is intended as a glimpse of things to come; full realizations, and evaluation of concrete practicality, exceed the present scope.

Distributed theorem proving. Proof-carrying data can be interpreted as a new result in the theory of proofs: “distributed theorem proving” is feasible. It was previously known, via probabilistically-checkable proofs [5] and CS proofs [53], that one can be convinced of a theorem much quicker than by inspecting the theorem’s proof. However, consider a theorem whose proof is built on various (possibly nested) lemmas proved by different people. In order to quickly convince a verifier of the theorem’s truth, in previous techniques we would have to obtain and concatenate the original (long) proofs of all the lemmas, and only then then use (for example) CS proofs to compress them. Our results imply that compressed proofs for the lemmas can be directly used to obtain a compressed proof of the reliant theorem, and moreover the latter’s length is (essentially) independent of the length of the lemmas’ proofs.

Multilevel security. As mentioned in Section 1.1 PCD may be used for information flow control. For example, consider enforcing multilevel security [2] Chap. 8.6] in a room full of data-processing machines. We want to publish outputs labeled “non-secret”, but are concerned that they may have been tainted by “secret” information (e.g., due to bugs, via software side channel attacks [15] or perhaps via literal eavesdropping [49][4][67]).

Suppose every “non-secret” input entering the system is digitally signed as such, by some classifier, under a verification key \(vk_{sec}\). Suppose moreover (for simplicity) that the scheduling of which-program-to-apply-on-what-data is fully specified in advance. Then we can define the compliance predicate \(C\) as verifying that, in the distributed computation transcript, the output of every vertex is either properly signed under \(vk_{sec}\), or is the result of correctly executing some program \(prg\) on the vertex’s inputs and this is indeed the prescribed program according to the schedule. Then, every \(C\)-compliant distributed computation transcript consists of applying the scheduled programs to “non-secret” inputs. Thus, its final output is independent of secret inputs.

The PCD system augments every message in the system with a proof string that attests this \(C\)-compliance. Eventually a censor at the system perimeter inspects the final output by verifying its associated proof, and lets out only properly-verified messages (as in Figure 2). Because verification is concerned with properties of the output per se, security is unaffected by anomalies (faults and leakage) in the preceding computation.

Bug attacks and IT supply chain. Faults can be devastating to security [11]. However, hardware and software components are often produced in far-away lands from parts of uncertain origin. This IT supply chain issue forms risks to users and organizations [1][12][55][64]. Using PCD, one can achieve fault isolation and accountability at the level of system components, e.g., chips or software
modules, by having each component augment every output with a proof that its computation, including all history it relied on, were correct.

Simulations and MMO. Consider a simulation such as massively multiplayer online (MMO) worlds. These typically entail certain invariants (“laws of physics”), together with inputs chosen at human users’ discretion. A common security goal is to ensure that a particular player does not cheat (e.g., by modifying the game code). Today, this is typically enforced by a centralized server, which is unscalable. Attempts at secure peer-to-peer architectures have seen very limited success [61][33]. PCD offers a potential solution approach when the underlying information flow has sufficient locality (as is the case for most simulations): start with a naive (insecure) peer-to-peer system, and enforce the invariants by augmenting every message with a proof of the requisite properties.

Financial systems. As a special case of the above, one can think of financial systems as a “game” where parties perform local transactions subject to certain rules. For example, in any transaction, the total amount of money held by the parties must not increase unless the government is involved. We conjecture that interesting financial settings can be thus captured and allowed to proceed in a secure distributed fashion. Potentially, this may capture financial processes that are much richer than the consumer-vendor relations of traditional e-cash.

Distributed dynamic program analysis. Consider, for example, taint propagation — a popular dynamic program analysis technique which tracks propagation of information inside programs. Current systems (e.g., [59]) cannot securely span mutually untrusting platforms. Since tainting rules are easily expressed by a compliance predicate that observes the computation of the program, PCD can maintain tainting across a distributed computation.

Distributed type safety. Language-based type-safety mechanisms have tremendous expressive power, but are targeted at the case where the underlying execution platform can be trusted to enforce type rules. Thus, they typically cannot be applied across distributed systems consisting of multiple mutually-untrusting execution platforms. This barrier can be surmounted by using PCD to augment typed values passing between systems with proofs for the correctness of the type.

Generalizing: design patterns. The PCD approach allows a system designer to “program in” the security requirement into a compliance predicate, and have it “magically” enforced by the PCD system. As gleaned from the above examples, this programming can be nontrivial and requires various tricks. This is somewhat similar to the world of software engineering, and indeed we can borrow some meta-techniques from that world. In particular, design patterns [32] are a very useful method for capturing common problems and solution techniques in a loosely-structured way. A number of such design patterns are already evident in the above examples (e.g., using signatures to designate parties or properties). We envision, and are exploring, a library of such patterns to aid system designers.

6 Conclusions and Open Problems

We envision proof-carrying data as a framework for achieving security properties in a nonconventional way, which circumvents many difficulties with current approaches. In PCD, faults and leakage are acknowledged as an expected occurrence, and rendered inconsequential by reasoning about properties of data which are independent of the preceding computation. The system designer prescribes the desired properties of the computation’s output; proofs of these properties are attached to the data flowing through the system, and are mutually verified by the system’s components.

This work shows explicit constructions of proof-carrying data, under standard assumptions, in the model where parties have black-box access to some functionality (e.g., a simple hardware token). The problem of weakening this requirement, or formally proving that it is (in some sense) necessary, remains open. A PCD system with the additional property of zero-knowledge [37][34 Chap. 4] would be useful in many applications. Of particular interest is surmounting the current inefficiency of the underlying argument systems and obtaining a fully practical realization.

In this work we briefly touched upon potential applications; this leaves many opportunities for fleshing out the details, devising design patterns and implementing real systems.
Acknowledgments

We are indebted to Ron Rivest for his insight and support during this investigation. Scott Aaronson, Andrew Drucker and Paul Valiant provided valuable pointers about the PCP vs. oracle difficulty. Boaz Barak, Arnab Bhattacharyya and Or Meir helped in the evaluation of argument systems and the underlying PCPs. Stephen Chong, Greg Morrisett and Jeff Vaughan shared their perspective on applications of PCD in type safety. We thank Shafi Goldwasser, Frans Kaashoek, Nancy Lynch, Silvio Micali, Nickolai Zeldovich and the anonymous reviewers for valuable feedback.

This work was supported by NSF grant NSF-CNS-0808907 and AFRL grant FA8750-08-1-0088. Views and conclusions contained here are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either express or implied, of AFRL, NSF, the U.S. Government or any of its agencies.

References

[16] Ran Canetti and Marc Fischlin. Universally com-

[58] George C. Necula and Peter Lee. Safe, un-

