AlinTomescu | Week 1, Tuesday, February 4™, 2014 | Lecture 1
6.006 Introto Algorithms | Prof. Srinivas Devadas | Prof. Nancy Lynch | Prof.Vinod Vaikuntanathan

Lecture 1: Peak finding

Course overview

- Efficient procedures forsolving problems onlarge inputs.
- Asymptoticcomplexity
- Scalability (algorithm A is fasterthan algorithm B for an input size of 1 million, but notfor1 billion)
- Classicdata structures
o Binarybalancedsearchtrees
- Python programminglanguage
- Flexible collaboration policy

Content

8 modules, each of them has a problem setassociated with it

Algorithmicthinking (document distance)

Sorting, binary search trees (computing baseball statistics)
Hashing

Numerics

Graphs

Shortest paths

Dynamicprogramming

Advanced topics, complexity theory

©® N WD

Peak finding

Table 1: 1D peak finding illustration

213145167189
alb|lc|d|e|f|g]|h]i

Example of peaks:
- Position2isapeakiffb = aandb = c.
- Position9isapeakiffi = h.
- Positionlisapeakiffa > b.

Will a peak always exist? Yes. But, if we use > instead of =, no (consideran array of all one’s).

Straightforward algorithm
Just go through the array one by one and check that element a[i] is a peak by comparingwith a[i — 1] anda[i + 1].

0 (n) complexity for “scan” algorithm regardless of whereyou start (left orright).

Divide and conquer algorithm
How doyou decide whentogoleftor right whenyou are inthe middle of the array?
- Ifa [2] <a [2 - 1] thenonlylook at the left half.
2 2
- Elseifa B] <a E + 1] onlylookat the right half.

- Elseg positionisa peak, because a E — 1] <a E] >a E + 1].

AlinTomescu | Week 1, Tuesday, February 4™, 2014 | Lecture 1

6.006 Introto Algorithms | Prof. Srinivas Devadas | Prof. Nancy Lynch | Prof.Vinod Vaikuntanathan

We always “climb the hill” when tryingto find a peak, because we are guaranteed to find one. If we go downhill, we
might not find a peak (there could be alake at the bottom of the hill).

Algorithm correctness:
- Termination (algorithm won’tgo into aninfinite loop)
- Safety (algorithmreturnsthe correct result)

Algorithm complexity:

The recurrence for the amount oftime T'(n) it takes to find a peakinan array of n elementsis:
n
T(n) = T(E) +0(1)

Solve recurrence using your favorite technique:

n n n n

T(n) =T (5) + @(1)n= T (Z) +o()+0(1) =T (§) +0(1) +0(1) +0(1) = T(2—4) +4-0(1) =
= T(?) +i-0(1)

Note that T(1) = O(1) because fora one-element array the peak is exactly that one element (trivial case).

We can see thatfor i = log, n, T(%) becomes T(n/ZlOan) = T(Z) =T(1) = 0(1).So ifwe replace i inthe above
recurrence, we get:

n
20

n
210g2 n

T(n) = T()+ i-0(1) = T()+ log,n-0(1) = T(1) + 0(og,n) = (1) + 0(log,n) = O(log, n)

T(n) = 0(log,n)

Two-dimensional peak finding
Table 2: 2D peak finding illustration

b

a
d

Definition:a isa 2D peakiff.a>=bAa=cAa=dANa =e.

Greedy ascent

Informal description: Pick a direction (<, T,!,—) andif you see something greater, youfollowit. If all values around are
less, thenyoufoundthe peak.

What isthe complexity? ©(nm)

Table 3: An example of an n by m worst case scenario

112 |3 |4
0 |0 [0 |5
131140 |6
1210 |0 |7
11109 |8

AlinTomescu | Week 1, Tuesday, February 4™, 2014 | Lecture 1
6.006 Introto Algorithms | Prof. Srinivas Devadas | Prof. Nancy Lynch | Prof.Vinod Vaikuntanathan

Divide and conquer approach

Case 1: Extend 1D to 2D (no recursion)
Algorithm:
_m

- Pickmiddle columnj = . andfinda 1D peakat position (i, j).

- Use (i,j) as a startonrow i to finda 1D peak on row i.

It’s not going to work. Informally, thisis because, afterfinding a peak at (i, j) on column j, when we look for a peak on
row i, we will not compareitto the elementsabove it (the onesonrowi — 1 andi + 1). Wejust blindly declareita
peak. But this peak onrow i could not be peak.

To convince yourself, in the example below, we find 3as the column peakand 4 as the row peak. But 4 is nota peak at
all inthe matrix (ithas 7 above it).

J
1
2
3
1

O | O] ©O
ool K| N| O
ol N| O] ©

Case 2: Split on 1D peak (recursion)
Algorithm:
- Pickmiddle columnj =%
- Find 1D peakoncolumnj at position (i,)
- Compare (i,j) with the two neighbours on the adjacent columns and decide which half to look into.
o If(i,j —1) > (i,j) recurseintothe leftside
o If(i,j +1) > (i,j) recurseintothe rightside
o Else, (i,j)isa peak.

It's not going to work eitherbecause splittingon acolumn peakis a badidea. You cannot guarantee that there willbe a
peak on the side yourecurse on.

Table 4: Counter example to splitting on 1D peaks

20(16(10|0 |O
22|21 0 |0
23124|110(0 (O
24125|140(30(0

26|27 |28 | 50 | 40

Here we find 20 as the peak onthe middle column then we find 26 as the peak on the next column. But 26 is nota peak
inthe matrix because it’s surrounded by 24 and 27.

Case 3: Split on 1D maximum (recursion)
Thisis the same algorithmasin Case 2 above, excepton column j you find the maximum, not the peak. This will work.

