
Alin Tomescu | Week 1, Thursday, February 6th, 2014 | Lecture 2
6.006 Intro to Algorithms | Prof. Srinivas Devadas | Prof. Nancy Lynch | Prof. Vinod Vaikuntanathan

Lecture 2: Document distance
Lecture overview

- What is an algorithm?

- Random access machine

- Pointer machine

- Python model

- Document distance: problem & algorithms

What is an algorithm
The term “algorithm” is derived from the Latin translation of Al Khwarizmi’s name.

You can think of an algorithm as a mathematical abstraction of a computer program. You can think of it as a

computational procedure to solve a problem.

Program ↔

↔

↔

Algorithm

Programming
language

Pseudocode

Computer Model of
computation

What operations is an algorithm allowed? What is the cost of each of these operations (time, space)? Mostly we care

about time complexity.

The cost of an algorithm is defined as the sum of its operation’s costs.

Random access machine (RAM)
A random access machine assumes there is random access memory in it (a big array).

Register
address

Register
contents

0 𝑤𝑜𝑟𝑑1
1 𝑤𝑜𝑟𝑑2
2 …
3

2𝑘 − 1

In RAM memory you are able to:

- Access or load a word into a register in Θ(1) time, does not matter which register.

- Compute certain things on registers (+, −,/, etc.), and the operations all take Θ(1) time.

The word size 𝑤 ≥ log2(max. memory size) usually.

The pointer machine
Dynamically allocated objects. Object has Θ(1) fields

http://en.wikipedia.org/wiki/Mu%E1%B8%A5ammad_ibn_M%C5%ABs%C4%81_al-Khw%C4%81rizm%C4%AB

Alin Tomescu | Week 1, Thursday, February 6th, 2014 | Lecture 2
6.006 Intro to Algorithms | Prof. Srinivas Devadas | Prof. Nancy Lynch | Prof. Vinod Vaikuntanathan

Fields Values

𝑣𝑎𝑙 5
𝑝𝑟𝑒𝑣 𝑁𝑈𝐿𝐿
𝑛𝑒𝑥𝑡 0𝑥423𝑎𝑏𝑐𝑑𝑒

This model is weaker in the sense that it can be implemented in the RAM model.

Python model

List model
Lists in Python are actually arrays.

- 𝐿[𝑖] = 𝐿[𝑗] + 5 takes Θ(1) time

Pointer model
You have an object with a number of attributes or fields. Accessing a field takes Θ(1) time.

- 𝑥 = 𝑥. 𝑛𝑒𝑥𝑡 takes Θ(1) time

Python lists
(a) Appending an element to a list: 𝐿1. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑥) takes 𝚯(𝟏) time

(b) Adding lists together: 𝐿 = 𝐿1 + 𝐿2

a. An empty list 𝐿 is created

b. Every element in 𝐿1 is appended to 𝐿 – |𝐿1| ⋅ Θ(1) = Θ(|𝐿1|)

c. Every element in 𝐿2 is appended to 𝐿 - |𝐿2| ⋅ Θ(1) = Θ(|𝐿2|)

d. Whole thing takes 𝚯(|𝑳𝟏| + |𝑳𝟐|)

(c) 𝐿1. 𝑒𝑥𝑡𝑒𝑛𝑑(𝐿2) adds all elements of 𝐿2 to 𝐿1

a. Every element in 𝐿2 is appended to 𝐿 - |𝐿1| ⋅ Θ(1) = Θ(|𝐿2|)

b. Whole thing takes 𝚯(|𝑳𝟐|)

(d) Compute the length of a list: 𝑙𝑒𝑛(𝐿) takes 𝚯(𝟏) time (Python maintains a field with the list’s length)

(e) 𝐿. 𝑠𝑜𝑟𝑡() takes 𝚯(𝒏 𝐥𝐨𝐠 𝒏) time, where 𝑛 = |𝐿|

Python dictionaries or hash tables
(a) 𝐷[𝑘𝑒𝑦] = 𝑣𝑎𝑙 takes 𝚯(𝟏) time with high probability.

(b) 𝑘𝑒𝑦 𝑖𝑛 𝐷 takes 𝚯(𝟏) time with high probability.

Document distance
We have two documents 𝐷1 and 𝐷2 and we want to compute the distance 𝑑(𝐷1, 𝐷2) between them.

We will define distance in terms of shared words. Let’s look at two popular documents:

𝐷1: “the cat loves a cat”

𝐷2: “the dog loves another dog”

We define the distance as the angle between the vectors representing the word occurrences in the documents. These

vectors have as many dimensions as the number of unique words in the two documents.

𝑑(𝐷1, 𝐷2) = arccos (
𝐷1 ⋅ 𝐷2

|𝐷1||𝐷2|
)

Fields Values

𝑣𝑎𝑙 −1
𝑝𝑟𝑒𝑣

𝑛𝑒𝑥𝑡 𝑁𝑈𝐿𝐿

Alin Tomescu | Week 1, Thursday, February 6th, 2014 | Lecture 2
6.006 Intro to Algorithms | Prof. Srinivas Devadas | Prof. Nancy Lynch | Prof. Vinod Vaikuntanathan
For our two documents, the sequence of unique words is “the, cat, dog, loves, another, a.” In this case, if we were to

number the words from 0 to 5, the word vectors would be:

𝐷1 = [1,2,0,1,0,1]

𝐷2 = [1,0,2,1,1,0]

𝑑(𝐷1, 𝐷2) =
1 ⋅ 1 + 2 ⋅ 0 + 0 ⋅ 2 + 1 ⋅ 1 + 0 ⋅ 1 + 1 ⋅ 0

√1 ⋅ 1 + 2 ⋅ 2 + 0 ⋅ 0 + 1 ⋅ 1 + 0 ⋅ 0 + 1 ⋅ 1 ⋅ √1 ⋅ 1 + 0 ⋅ 0 + 2 ⋅ 2 + 1 ⋅ 1 + 1 ⋅ 1 + 0 ⋅ 0
= ⋯

Document distance algorithm in steps
- Split each document into words (parsing)

- Count the word frequencies

- Compute the distance as the dot product

Some notation:

- 𝑛 - # of words

- |𝑤𝑜𝑟𝑑| = # of characters in word

- |𝑑𝑜𝑐| = ∑|𝑤𝑜𝑟𝑑| = # of characters in the document

(1) Splitting algorithm:

a. For char in doc

i. If not alphanumeric

1. Add previous word (if any) to list and start new word

2. Start new word

Note: You have to be careful how you add your words to your list. If the list has 𝑛 words adding a new word using 𝐿1 +

[𝑤𝑜𝑟𝑑] will take Θ(𝑛) time instead of Θ(1).

- The complexity of the splitting code as result will take Θ(𝑛2), because the cost of adding word 1 through 𝑛 will

be 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
= Θ(𝑛2).

- If you use the 𝑒𝑥𝑡𝑒𝑛𝑑 operation, each word is added in Θ(1) time and the splitting code will take Θ(𝑛) time.

