
6.006 Introduction to Algorithms Recitation 9 March 7th, 2014

Contents
1 Amortized Analysis 1

1.1 Amortized analysis of INSERT in a hash-table . 1

2 Rolling Hashes and Rabin Karp 3
2.1 Rabin Karp pattern string search . 3
2.2 ROLLINGHASH as an Abstract Data Structure (ADT) 7

1 Amortized Analysis
There are a few ways we can reason about the complexity of a sequence of n operations:

1. We can bound the cost of the operation by costop = O(f(n)) and then say than n operations
will take cost n · costop = n · O(f(n)). We used a similar analysis for BUILD-MIN-HEAP

which consisted of n HEAPIFY operations, where each HEAPIFY operation took O(log n)
time. Thus, the cost of BUILD-MIN-HEAP was O(n log n).

2. We can bound the actual cost of the entire sequence of n operations. This is different than
bounding the cost of one operation and multiplying it by n to get the full cost. Now we are
looking at the individual cost of each operation, adding it up to the total cost. We do this
because some of the n operations might be cheap, while others might be more expensive.
It would be naive to consider all of them as having the same cost. In our initial analysis of
BUILD-MIN-HEAP, that naivity hurt us. More careful analysis showed the running time was
Θ(n).

1.1 Amortized analysis of INSERT in a hash-table
Remember that the SEARCH time in a chaining hash-table of size m filled with n items was
Θ(1 + α) = Θ(1 + n/m). As a result, if we INSERT too many elements so that n � m, our
load factor α will become bigger and increase the SEARCH time.

Thus, it’s important to adjust our table size so that m = O(n) which ensures α is small and
SEARCH is fast. A good way of increasing the size of our table is using doubling.

When n = m and an INSERT operation is trying to add a new element to our hash table, we
do the following:

1. Allocate a new hash table double in size.
2. Pick a new hash function h that will work with the new size.
3. Rehash everything into the new table, including the newly inserted item.
4. Delete the old hash table.

6.006 Introduction to Algorithms Recitation 9 March 7th, 2014

We start with a hash-table of size one so that by the 2nd INSERT we’ll have to double our size,
according to our above algorithm for table doubling. Let’s now try and analyze a sequence of n
INSERT operations. For simplicity (avoiding log ’s), we assume n = 2p, for some p.

We can define the cost of the ith INSERT as:

ci =

{
i, if i− 1 is a power of 2

1, otherwise

To see this, think about what happens as items are inserted into the hash table causing it to be
resized every now and then. Our table will double in size from 1 to 2, to 4, to 8, to 16, and so on.
We double the size after inserting the 2nd key, the 3rd key, the 5th key and the 9th key, because
those are all instances when our table is full and we’re trying to add another key to it. Note that
all these numbers are off by one from powers of two: 1, 2, 4 and 8. You should now see why the
cost of the 9th INSERT is 8 (rounded down a little): because we had to double the size and rehash
everything.

First, consider a small example, when n = 12:

Insert # 1 2 3 4 5 6 7 8 9 10 11 12
sizei 1 2 4 4 8 8 8 8 16 16 16 16
ci 1 2 3 1 5 1 1 1 9 1 1 1
Insert time 1 1 1 1 1 1 1 1 1 1 1 1
Reallocation time 0 1 2 0 4 0 0 0 8 0 0 0

Now, if we want to compute the full cost for our 12 inserts, we get:

cost =

(
12∑
i=1

1

)
+ (1 + 2 + 4 + 8)

= 12 · 1 + (1 + 2 + 4 + 8)

≤ 12 + 2 · 12

= 12 ·O(1)

6.006 Introduction to Algorithms Recitation 9 March 7th, 2014

We can generalize, for n = 2p:

cost =

(
n∑

i=1

1

)
+ (1 + 2 + 4 + 8 + ...+ 2p−1)

= n · 1 +

p−1∑
i=0

2i

≤ n+ 2 · n
= O(n)

Thus, if n inserts take O(n) time, then we say that the amortized cost of one INSERT is O(1).

Intuitively, you can also analyze this in the following way: Each time you double your hash table
size after inserting element 2i + 1 you pay a cost proportional to 2i because you have to allocate a
new table and rehash everything. But up until that point, you have already paid cost 2i to insert the
previous 2i items. This new reallocation cost is asymptotically equal to the insertion cost so far.
Thus, if we add both of them together, we can say that the cost for all 2i + 1 inserts is proportional
to 2i. Thus, the amortized cost for a single INSERT is O(1).

Exercise: Prove that in-order traversal in a BST using SUCCESSOR (a.k.a. NEXT-LARGEST) is
O(1) per node, amortized.

2 Rolling Hashes and Rabin Karp

2.1 Rabin Karp pattern string search
Suppose we are given a large text t and we want to find a word (or any text pattern) s in t.

For example, consider looking for the pattern s = bbz in the text t = bbbbbcbbbz. The trivial
algorithm works by matching every character in s with characters 0, 1 and 2 in t. If there’s a
match, we’re done. If not, we try and match the characters 1, 2 and 3 in t. If there’s a match, we’re
done. If not, we try and match the characters 2, 3 and 4. You get the idea. Here’s a table that
illustrates how this algorithms runs on t and s.

6.006 Introduction to Algorithms Recitation 9 March 7th, 2014

Indices # 0 1 2 3 4 5 6 7 8 9
s b b b b b c b b b z
t b b z
s b b b b b c b b b z
t b b z
s b b b b b c b b b z
t b b z
s b b b b b c b b b z
t b b z
s b b b b b c b b b z
t b b z
s b b b b b c b b b z
t b b z
s b b b b b c b b b z
t b b z

We are done! We found s at the end of t

If |t| = n and |s| = k, then this naive algorithm runs in O(nk) time because for (almost) every
position in t we do exactly k comparisons to check for a match. For a big enough n and for a
k = Θ(n) this algorithm will run in O(n2), which is too slow.

Can we build an O(n) search algorithm?

1. Might we employ hashing somehow?
2. How do you hash a string of characters?
3. If we hash a piece of text from t that starts at index i and ends at index j, is it any easier to

compute the hash of the piece that starts at index i+ 1 and ends at index j + 1?
4. If we could roll our hashes in O(1) time as described above, what would that imply about

the runtime of our algorithm?

We can hash pieces of t and compare their hash with the hash of s. If there’s a hash match, we
check for a real match by verifying character by character. Why? We could have collisions, where
s and a piece of t that’s different from s hash to the same value. This is unlikely when using good
hash functions but it could happen!

How can we compute the hash of a string? For this problem, we consider only strings consisting of
lower-case letters. Map each letter to its index in the English dictionary a→ 0, b→ 1, . . . , z → 25.
Convert the string to a base 26 number modulo some big prime p.

Example: Let t = bciz, then h(t) = (263 · 1 + 262 · 2 + 261 · 8 + 260 · 25) mod p = 19161
mod p.

6.006 Introduction to Algorithms Recitation 9 March 7th, 2014

As you can see, for strings longer than say 32 characters, we could be dealing with big num-
bers: 2632 · ‘a‘ + Thus, we need to work modulo a prime p.

This is great, but it does not give us an O(n) algorithm. Every time we compare the hash of s
with the hash h of the next piece in t, we have to compute that hash h. This takes O(k) time, just
like comparing s with this next piece character by character did.

Let ti,k denote the substring in t that starts at index i and has length k. Next, we notice that if
we have h(ti,k), we can actually compute h(ti+1,k) in O(1) time, not in O(k) time.

bcde
h(‘bcd‘)−−−−→ h(“bcd”) = 262 · 1 + 261 · 2 + 3

bcde h(‘cde‘)−−−−→ h(“cde”) = 262 · 2 + 261 · 3 + 4

Note that to get h(“cde′′) from h(“bcd”), all we have to do is apply the following operations to
h(“bcd”):

1. Remove b⇒ obtain a hash for “cd”.
2. Multiply by 26⇒ obtain a hash for “cda”.
3. Add e⇒ obtain a hash for “cde”.

Mathematically, this translates to:

h(“cde”) = (h(“bcd”)− 262 · 1) · 26 + 4

= (262 · 1 + 261 · 2 + 3− 262 · 1) · 26 + 4

= (261 · 2 + 3) · 26 + 4

= 262 · 2 + 261 · 3 + 4

Note that all these operations are O(1): we performed one subtraction, one multiplication and one
addition. Also note that we ignored the mod p notation for convenience and that the calculations
still hold mod p.

This new algorithm is starting to gain shape now. We can compare hashes in O(1) and we can
compute the hash of the next piece in t in O(1) by using this rolling hash trick. We have an O(n)
time algorithm that works as follows:

6.006 Introduction to Algorithms Recitation 9 March 7th, 2014

RABIN-KARP-SEARCH(t, s)

1 n← |t|
2 k ← |s|
3 exp← 26k−1

4
5 ht ← hash(t0,k)
6 hs ← hash(s)
7
8 if ht == hs and VERIFYMATCH(0, k)
9 then

10 PRINT(“Found match at position 0!”)
11 return 0
12
13 for i = 1 to n− k
14 do
15 � Roll the hash: remove the first character
16 ht ← ht − exp · t[i− 1]
17 � Roll the hash: multiply by 26
18 ht ← ht · 26
19 � Roll the hash: add new character
20 ht ← ht + t[i− 1 + k]
21
22 � Check for a match on the new hash
23 if ht == hs and VERIFYMATCH(i, k)
24 then
25 PRINT(“Found match at position ”, i, “!”)
26 return i
27
28
29 PRINT(“Found no match!”)
30 return -1

The Rabin-Karp algorithm can verify if s occurs at a location i in t in O(1) time (we exclude the
extra character-by-character verification work which will not occur very often with good hashing).
Since there are O(n) such locations in t, the algorithm will run in O(n) time.

6.006 Introduction to Algorithms Recitation 9 March 7th, 2014

2.2 ROLLINGHASH as an Abstract Data Structure (ADT)
We can think of the rolling hash as an abstract data structure that maintains the hash of a list. In
Rabin Karp, the list was a sequence of characters (i.e. a piece of text), but we can generalize to any
list. Such a ROLLINGHASH ADT supports the following operations, all in O(1) time:

• hash()→ computes the hash of the list.

• append(val)→ adds val to the end of the list.

• skip(val)→ removes the front element from the list, assuming it is val.

– if the item in the front of the list is not val, then the behavior of the ADT from this
point on will be undefined.

Key idea: Treat a list of enumerable items as a multidigit number u in base a This is basically
concatenating the list items into a big number. What does enumerable mean? It means that every
item in the universe of items can be assigned to a unique number in [0, 1, 2, ...a− 1] (i.e. it can be
assigned a digit in in base a).

For strings, characters can be interpreted as integers, with their exact values depending on what
type of encoding is being used (e.g. ASCII, Unicode). In ASCII for instance, the codes for upper-
case ‘A’ and ‘B’ are 65 and 66 respectively. Also, in ASCII, any character is represented as an 8-bit
number so we can convert it to an integer from 0 to 255. As a result, our base would be a = 256
(i.e. the alphabet size for the ASCII code).

A character string s = cncn−1cn−2 . . . c2c1c0, where each characters ci maps to integer di (as
dictated by the ASCII code), would be converted to a number u in base 256 as follows:

u = dn · 256n + dn−1 · 256n−1 + · · ·+ d2 · 2562 + d1 · 256 + d0

Let’s try implementing the general HASH, APPEND and SKIP operations for our ROLLINGHASH

ADT:

6.006 Introduction to Algorithms Recitation 9 March 7th, 2014

APPEND(rh, item)

1 � Convert our item to a number in base a
2 val← GETNUMBER(rh, item)
3
4 � Fetch the rolling hash attributes like the current value,
5 � the base a, the prime p, the length of the list.
6 u← rh.u
7 a← rh.a
8 p← rh.p
9 l← rh.length

10
11 � Update our rolling hash u
12 u← (u · a mod p) + val
13 u← (u mod p)
14
15 � Store the result back in our rolling hash ADT
16 rh.u← u
17 rh.length← l + 1

SKIP(item)

1 � Convert our item to a number in base a
2 val← GETNUMBER(rh, item)
3
4 � Fetch the rolling hash attributes like the current value, the base and the prime
5 u← rh.u
6 a← rh.a
7 p← rh.p
8 l← rh.l
9

10 � Compute the part that we have to remove
11 r ← ((al−1 mod p) · val) mod p
12
13 � Subtract it from u and we’re done
14 u← (u− r) mod p
15
16 � Store the result back in our rolling hash ADT
17 rh.u← u
18 rh.length← l − 1

HASH(rh)

1 � Just return u, which is maintained modulo p
2 return u

6.006 Introduction to Algorithms Recitation 9 March 7th, 2014

Note the use of the GETNUMBER(rh, item) function call, which is used to convert an item in the
list to a number in base a. For letters, we would implement it as follows:

GETNUMBER(rh, item)

1 � Just return the offset of the letter in the alphabet
2 return alphabetOffset[item]

Also note that we have to be careful when implementing SKIP so as to achieve an O(1) running
time. We have to compute al−1 every time we SKIP and this could take O(l) time, where l is the
length of the list hashed by our ROLLINGHASH ADT. We note that this can be avoided by caching
this power of a and storing it in our ROLLINGHASH ADT as a variable exp. But we have to keep it
updated so that exp = al−1 across sequences of APPEND and SKIP operations. This means every
time we APPEND we let exp = (exp · a) mod p and every time we skip, we let exp = (exp · a−1)
mod p, where a−1 is the inverse modulo p of a. Initially, exp = a−1.

	Amortized Analysis
	Amortized analysis of Insert in a hash-table

	Rolling Hashes and Rabin Karp
	Rabin Karp pattern string search
	RollingHash as an Abstract Data Structure (ADT)

