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A b s t r a c t  

This paper  studies the memory coherence problem in de- 
signing and implementing a shared virtual memory on loosely- 
coupled multiprocessors. Two classes of algorithms for solv- 
ing the problem are presented. A prototype shared virtual 
memory on an Apollo ring has been implemented based 
on these algorithms. Both theoretical and practical results 
show that  the memory coherence problem can indeed be 
solved efficiently on a loosely-coupled multiprocessor. 

1 I n t r o d u c t i o n  

The benefits of a virtual memory go without saying, and 
almost every high-performance sequential computer in ex- 
istence today incorporates one. Virtual memories are so 
useful that  it is hard to believe that  parallel architectures 
would not also benefit from them. Indeed, one can easily 
imagine how virtual memory would be incorporated into a 
shared-memory parallel machine, since the memory hierar- 
chy need not be much different from that  of a sequential 
machine. On the other hand, on a "loosely-coupled multi- 
processor" in which the physical memory is distributed, the 
implementation is not as obvious, and to our knowledge no 
such implementation exists. 

The shared virtual memory described in this paper pro- 
vides a virtual address space which is shared among all 
processors in a loosely-coupled multiprocessor system, as 
shown graphically in Figure 1. The shared memory itself 
exists only virtually. Application programs can use it in 
the same way as a tradit ional  virtual memory, except, of 
course, that  processes can run on different processors in 
parallel. 

The shared virtual memory that  we will describe not 
only "pages" da ta  between physical memories and disks, 
as in a conventional virtual memory system, but  it also 
"pages" da ta  between the physical memories of the individ- 
ual processors. Thus data  can naturally migrate between 
processors on demand. Furthermore, just  as a conventional 
v irtual memory also pages processes, so does the shared vir- 
tual memory. Thus our approach provides a very natural  
and efficient form of process migration between processors 
in a distributed system, normally a very difficult feature 
to implement well (and in effect subsuming the notion of 
remote procedure call). 

l CPU 1 

Memory 1 

I " 
\ x 

\ 
N 

" I 
\ 

\ 

\ 
\ 

CPU 2 

Memory 2 

I , \ / r 

\ / 

Shared t Virtual 
Memory / 

CPU N / 

Memory N 

/ / 

/ 
/ 

/ 
/ 

Figure 1: Shared virtual memory mapping. 

The main difficulty in building a shared virtual memory 
is solving the memory coherence problem. This problem is 
similar to that  which arises with conventional caches (see 
[14] for a survey), but  in part icular with multicache schemes 
for shared memory multiprocessors [16,1,7,18,6,19,13]. In 
this paper  we concentrate on the memory coherence prob- 
lem for a shared virtual  memory. A number of algorithms 
axe presented, analyzed, and compared. Several of the al- 
gorithms have been implemented on a local area network 
of Apollo workstations. We present experimental results on 
non-trivial parallel programs that  demonstrate the viabil- 
ity of shared virtual  memory even on very loosely-coupled 
systems such as the Apollo network. Our success suggests a 
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radically different viewpoint of such architectures, in which 
one can exploit the total processing power and memory ca- 
pabilities of such systems in a far more unified way than 
the traditional "message-passing" approach. 

2 D e s i g n  C h o i c e s  for M e m o r y  Co- 
h e r e n c e  

Our design goals require that the shared virtual memory 
be coherent. A memory is coherent if the value returned 
by a read operation is always the same as the value written 
by the most recent write operation to the same address. 
Coherence can be maintained if a shared virtual memory 
satisfies the following single constraint: 

• A processor is allowed to update a piece of data only 
while no other processor is updating or reading it. 

This allows many processors to read a piece of data as long 
as no other processor is updating it, and is a form of the 
well-known readers/writers problem. 

There are two design choices that greatly influence the 
implementation of a shared virtual memory: the granular- 
ity of the memory units, and the strategy for maintaining 
coherence. 

2.1 Granularity 

The size of the "memory units" that are to be coherently 
maintained is an important consideration in a shared vir- 
tual memory. We discuss in this section several criteria for 
choosing this granularity. 

In a typical loosely-coupled multiprocessor system, send- 
ing large packets of data (say one thousand bytes) is not 
much more expensive than sending small ones (say less than 
ten bytes) [15]. This is usually due to the typical software 
protocols and overhead of the virtual memory layer of the 
operating system. This fact makes relatively large memory 
units seem feasible. 

On the other hand, the larger the memory unit, the 
greater the chance for contention. Memory contention oc- 
curs when two processors attempt to write to the same 
location (as in a shared memory system) as well as when 
two processors attempt to write to different locations in 
the same memory unit. Although clever memory alloca- 
tion strategies might minimize contention by arranging con- 
current memory accesses to locations in different memory 
units, such a strategy would lead to the inefficient use of 
memory space and introduce an inconvenience to the pro- 
grammer. Thus the possibility of contention pushes one 
toward relatively small memory units. 

A suitable compromise in granularity is the typical page 
used in a conventional virtual memory implementation. The 
page sizes of today's computers vary, typically from 256 
bytes to 2k bytes. Choosing this size of a memory unit  has 
several advantages. First, experience has shown that such 
sizes are suitable with respect to contention, and by our 
previous argument they should not impose undue commu- 

nications overhead as long as a page can fit into a packet. 
In addition, such a choice allows us to use existing page- 
fault schemes (i.e., hardware mechanisms) that allow single 
instructions to trigger page-faults and trap to appropriate 
fault handlers. This can be done by setting the access rights 
to the pages in such a way that memory accesses that could 
violate memory coherence cause a page fault, and thus the 
memory coherence problem can be solved in a modular way 
in the page fault handlers. 

Part of the justification for using page size granularity, 
of course, is that memory references in sequential programs 
generally have a high degree of locality [3,4]. Although 
memory references in parallel programs may behave differ- 
ently from those in sequential ones, a single process remains 
a sequential program, and should exhibit a high degree of 
locality. Contention among parallel processes for the same 
piece of data depends on the algorithm, of course, but  a 
common goal in designing parallel algorithms is to mini- 
mize such contention for optimal performance. 

2.2 Memory Coherence Strategies 

It is helpful first to consider the spectrum of strategies 
one may choose from to solve the memory coherence prob- 
lem. These strategies may be classified by the way in which 
one deals with page synchronization and page ownership, as 
shown in Table 1. 

Page synchronization 

There are two basic approaches t o  page synchronization: 
invalidation and writeback. In the invalidation approach, 
if a processor has a write fault, the fault handler will copy 
the true page containing the memory location, invalidate all 
other copies of the page, change the access of the page to 
write, and return to the faulting instruction. After return- 
ing, the processor "owns" that page and can proceed with 
the write operation and other read or write operations until 
the page ownership is relinquished to some other processor. 

In the writeback approach, if a processor has a write 
fault, the fault handler will write to all copies of the page, 
and then return to the faulting instruction. In a sense this 
approach seems ideal in that it supports the broadest no- 
tion of sharing (indeed it simulates a centralized shared 
memory!), but  note that every write to a shared page will 
generate a fault on the writing processor and update all 
copies. Clearly doing these updates will be very expensive, 
and algorithms using writeback do not seem appropriate for 
loosely coupled multiproeessors. Thus we do not consider 
them further in this paper, as indicated in Table 1. 

Page ownership 

The ownership of a page can be handled .either statically or 
dynamically. In the static approach, a page is always owned 
by the same processor. This means that other processors 
are never given full write access to the page; rather they 
must negotiate with the owning processor, and must gener- 
ate a write fault every time they need to update the page. 
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Page 
synchronization 

method 

Page ownership strategy 

Dynamic 

Static Distributed manager Centralized 
manager 

Fixed Dynamic 

not okay good good Invalidation appropriate 

not not not not 
Writeback appropriate appropriate appropriate appropriate 

Table 1: Spectrum of solutions to the memory coherence problem. 

As with the writeback approach, this also is an expensive 
solution for existing loosely-coupled multiprocessors, and 
furthermore is rather constraining to desired modes of par- 
allel computation. Thus in this paper we only consider 
dynamic ownership strategies, as indicated in Table 1. 

The strategies for maintaining dynamic page ownership 
can be subdivided into two classes: centralized and dis- 
tributed. We refer to the process that controls page own- 
ership as the manager, and thus we can have centralized 
or distributed managers. Distributed managers can be fur- 
ther classified as either fixed or dynamic, referring to the 
distribution of ownership data (to be described later). 

The resulting combinations of strategies are shown in 
Table 1, where we have marked as inappropriate all combi- 
nations involving writeback synchronization or static page 
ownership. In this paper we only consider the remaining 
choices. 

As mentioned earlier, the page size granularity allows 
us to use hardware page protection mechanisms to cause a 
fault when an invalid memory reference occurs, and thus 
resolve memory coherence problems in page-fault handlers. 
Therefore, our algorithms for solving the memory coher- 
ence problem are manifested as fault handlers, their servers 
(i.e., the processes that handle remote requests from fault- 
ing processors), and the page tables on which they operate. 
In the next few sections we investigate several such algo- 
rithms. 

3 C e n t r a l i z e d  M a n a g e r  A l g o r i t h m s  

3.1 A Monitor-like Centralized Manager 
Algorithm 

Our centralized manager is similar to a monitor [8], consist- 
ing of a data structure and some procedures that provide 
mutually exclusive access to the data structure. The cen- 
tralized manager resides on a single processor, and main- 
tains a table called info which has one entry for each page, 
each entry having three fields: 

1. The owner field contains the single processor that 
owns that page; namely, the most recent processor 
to have write access to it. 

2. The copy_set field lists all processors that have copies 
of the page. This allows an invalidation operation to 
be performed without using broadcast. 

3. The lock field is used for synchronizing requests to the 
page, as will be described shortly. 

Each processor also has a page table called ptable which has 
two fields: access and lock. This table keeps information 
about the accessibility of pages on the local processor. 

In this algorithm, a page does not have a fixed owner, 
but there is only one manager that knows who the owner is. 
The owner of a page sends a copy to processors requesting 
a read copy. As long as a read copy exists, the page is not 
writable without an invalidation operation, which causes 
invalidation messages to be sent to all processors contain- 
ing read copies. Since this is a monitor-style algorithm, it 
is easy to see that the successful writer to a page always 
has the truth of the page. When a processor finishes a 
read or write request, a confirmation message is sent to the 
manager to indicate completion of the request. 

Both info table and ptable have page-based locks. They 
are used to synchronize the local page faults (i.e., fault 
handler operations) and remote fault requests (i.e., server 
operations). When there is more than one process on a 
processor waiting for the same page, the locking mechanism 
prevents the processor from sending more than one request. 
Also, if a remote request for a page arrives and the processor 
is accessing the page table entry, the locking mechanism will 
queue the request until the entry is released. 

The algorithm is characterized by fault handlers and 
their servers: 

R e a d  faul t  handler:  

lock( ptable[ p ].lock ): 
IF I am manager THEN BEGIN 

lock( info[ p ].lock ); 
info[ p ].copy_set := info[ p ].copy_set U {manager_node}; 
receive page p from info[ p ].owner: 
unlock( info I p ].lock ): 
END: 

ELSE BEGIN 
ask manager for read access to p; 
send confirmation to manager; 
END: 
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ptable[ p ].access := read: 
unlock( ptable[ p ].lock ): 

R e a d  s e r v e r :  

lock( ptable[ p ].lock ); 
IF I am owner THEN BEGIN 

ptable[ p ].access := read; 
send copy of p: 
END: 

unlock( ptable[ p ].lock ): 

IF I am manager THEN BEGIN 
lock( info[ p ].lock ); 

info[ p ].copy_set := info[ p ].copy_set U {request_node}; 
ask info[ p ].owner to send copy of p to request_node: 
receive confirmation from request_node; 
unlock( info[ p ].lock ): 
END; 

W r i t e  f a u l t  h a n d l e r :  
lock{ ptable[ p ].lock ]; 
IF I am manager THEN BEGIN 

lock( info[ p ].lock }; 
invalidate( p, info[ p ].copy_set ); 
info[ p ].copy_set := { } ;  
unlock{ info] p ].lock ); 
END: 

ELSE BEGIN 
ask manager for write access to p; 
send confirmation to manager; 
END: 

ptable[ p ].access := write; 
unlock( ptable[ p ].lock ); 

Wri te  s e r v e r :  

lock( ptable[ p ].lock ): 
IF I am owner THEN BEGIN 

send copy of p; 
ptable[ p ].access := nil; 
END: 

unlock( ptable[ p ].lock ): 

IF I am manager THEN BEGIN 
lock( info[ p ].lock ): 
invalidate( p, info[ p ].copy.set ); 
info[ p ].copy_set := { } :  
ask info I p ].owner to send p to request_node: 
receive confirmation from request_node: 
unlock( info[ p ].lock ); 
END; 

The  confirmation message indicates the  complet ion of 
a request  to the  manager ,  so tha t  the manager  can give the 
page to someone else. Together  wi th  the locking mecha-  
nism in the  da ta  s t ructure ,  the manager  synchronizes the 

mul t ip le  requests f rom different processors. 

Since the  central ized manager  plays the  role of helping 
other  processors locate where a page is, we can consider the  
number  of messages for locating a page as one measure  of 
its complexity:  

T h e o r e m  3.1 The worst case number of messages to lo- 
cate a page in the centralized manager algorithm is two. 

Although this a lgor i thm uses only two messages in locat- 
ing a page, it requires a confirmation message whenever  a 

fault  appears  on a non-manager  processor. El iminat ing the 
confirmation operat ion is the mot ivat ion  for the following 
improvement  to this algorithm. 

3.2 An Improved Central ized Manager  Al- 
gor i thm 

The  pr imary  difference between the improved central ized 
manager  a lgor i thm and the previous one is tha t  the  syn- 
chronizat ion of page ownership has been moved to the indi- 
v idual  owners, thus el iminat ing the confirmation opera t ion  
to the manager .  The  locking mechanism on each processor 
now deals not  only with  mult iple  local requests,  bu t  also 
wi th  remote  requests. The  manager  still answers the  ques- 
t ion of where a page owner is, bu t  it no longer synchronizes 
requests.  

To accommodate  these changes, the  da ta  s t ruc ture  of 
the manager  must  change. Specifically, the manager  no 

longer mainta ins  the copy_set information,  and a page-based 
lock is no longer needed. The  information about  the owner- 
ship of each page is still kept in a table called owner, but  an 
entry in the ptable on each processor now has three fields: 
access, lock, and copy_set. The  copy_set field in an entry is 
valid if and only if the processor tha t  holds the page table  
is the owner of the page. 

The  fault  handlers  and servers for this a lgor i thm are as 
follows: 

R e a d  f a u l t  h a n d l e r :  
lock( ptable[ p ].lock ); 
IF I am manager THEN 

receive page p from owner~ p ]; 
ELSE 

ask manager for read access to p; 
ptable[ p ].access := read; 
unlock{ ptable[ p ].lock }; 

R e a d  server :  
lock( ptable] p l.lock ): 
IF I am owner THEN BEGIN 

ptable[ p ].copy_set := ptable[ p ].copy set U {request_node} ; 
ptable[ p ].access := read: 
send p: 
END 

ELSE IF I am manager THEN BEGIN 
lock( managerJock ); 
forward request to owner] p ]; 
unlock{ managerJock ); 
END: 

unlock( ptable[ p ].lock ): 

Wri te  fau l t  hand le r :  
lock( ptable[ p ].lock ); 
IF I am manager THEN 

receive page p from owner[ p ]: 
ELSE 

ask manager for write access to p; 
invalidate( p. ptable[ p ].cow_set ); 
ptable[ p ].access := write; 
ptable[ p ].copy_set := { } ;  
unlock( ptable ! p ].lock }; 
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Write server: 
lock{ ptable[ p ].lock ): 
IF I am owner THEN BEGIN 

send p and ptable[ p ].copy_set; 
ptable[ p ].access := nil: 
END 

ELSE IF I am manager THEN BEGIN 
lock( managerJock }; 
forward request to owner] p ]: 
owner] p ] :=  request_node; 
unlock( manager_lock ); 
END: 

unlock( ptable[ p ]. lock ); 

Although the synchronization responsibility of the orig- 
inal manager has moved to individual processors, the func- 
tionality of the synchronization remains the same. For ex- 
ample, consider a scenario in which two processors P1 and 

P2 are trying to write into the same page owned by a third 
processor P3. If the request from P1 arrives at the manager 
first, the request will be forwarded to P3. Before the paging 
is complete, suppose the manager receives a request from 
P2, then forwards it to P1. Since P1 has not received own- 
ership of the page yet, the request from P2 will be queued 
until P1 finishes paging. Therefore, both P1 and P2 will 
receive access to the page in turn. 

The overall performance of the shared virtual memory 
has been improved by decentralizing the synchronization, 
but for large N there still might be a bottleneck at the 
manager processor, since it must respond to every page 
fault. 

4 Distributed Manager Algorithms 

In the centralized manager algorithms described in the pre- 
vious section, there is only one manager for the whole shared 
virtual memory. Clearly such a centralized manager can be 
a potential bottleneck. In this section we consider distribut- 
ing the managerial task among the individual processors. 

4 . 1  A F i x e d  D i s t r i b u t e d  M a n a g e r  A l g o -  

r i t h m  

In a fixed distributed manager scheme, every processor is 
given a predetermined subset of the pages to manage. The 

primary difficulty in such a scheme is choosing an appropri- 
ate mapping from pages to processors. The most straight- 
forward approach is to distribute pages evenly in a fixed 
manner to all processors. For example, suppose there are M 
pages in the shared virtual memory, and that I = {1 , . . . ,  M} 
An appropriate mapping function H could then be defined 
by: 

H(p) = p rood N (1) 

where p E I and N is the number of processors. A more 
general definition is: 

H(p) = (P-) m o d  N (2) 

where s is the number of pages per segment. Thus defined, 
this function distributes manager work by segments. An- 
other approach would be to use a suitable hashing function. 2 

With this approach there is one manager per proces- 
sor, each responsible for the pages specified by the static 
mapping function H. When a fault occurs on page p, the 
faulting processor asks processor H(p) where the true page 
owner is, and then proceeds as in the centralized manager 
algorithm. 

Our experiments have shown that the fixed distributed 
manager algorithm is substantially superior to the central- 
ized manager algorithms when a parallel program exhibits 

a high rate of page faults. However, it is difficult to find 
a good static distribution function that fits all applications 
well. Indeed, for any given function it is always possible 
to find a pathological case that produces performance no 
better than the centralized scheme. So we would like to 
investigate the possibility of distributing the work of man- 
agers dynamically. 

4 . 2  A B r o a d c a s t  D i s t r i b u t e d  M a n a g e r  A l -  

g o r i t h m  

An obvious way of eliminating the centralized manager is 
by using a broadcast mechanism. With this strategy, each 
processor manages precisely those pages that it owns, and 
faulting processors send broadcasts into the network to find 
the true owner of a page. Thus the owner table is eliminated 
completely, and the information of ownership is stored in 
each processor's ptable, which in addition to access, copy_set 
and lock fields, also has an owner field. 

More precisely, when a read fault occurs, the faulting 
processor P sends a broadcast read request, and the true 
owner of the page responds by adding P to the page's 
copy_set field and sending a copy of the page to P. Sim- 
ilarly, when a write fault occurs, the faulting processor 
sends a broadcast write request, and the true owner of the 
page gives up ownership and sends back the page and its 
copy_set. When the requesting processor receives the page 
and the copy_set, it will invalidate all copies. 

Although the work on all processors is fairly balanced 
in this algorithm, when a processor broadcasts a message 
all other processors must respond to the request (if only by 
ignoring it). This makes the communications subsystem a 
potential bottleneck. 

4 . 3  A D y n a m i c  D i s t r i b u t e d  M a n a g e r  A l -  

g o r i t h m  

The  heart of  a dynamic  distributed manager algorithm is 
to a t tempt  to keep track of the ownership of  all pages in 
each processor's local ptable. To do this,  the owner field is 
replaced wi th  another field, prob_owner, whose value can 

2It is also conceivable to provide a default mapping function that 
clients may override by supplying their own mapping. In this way, the 
map could be tailored to the data structure in the application and the 
expected behavior of concurrent memory references. 
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be ei ther nil or the "probable" owner of the page. The  
information tha t  it contains is not  necessarily correct at all 
t imes, bu t  if incorrect it will at  least provide the beginning 
of a sequence of processors through which the t rue owner 
can be found. Initially, the prob_owner field of every entry 
on all processors is set to some default processor tha t  can 
be considered as the initial owner of all pages. It is the job  
of the page fault  handlers  and their  servers to main ta in  this 
field as the p rogram runs. 

In this a lgor i thm a page does not  have a fixed owner 
or manager .  When  a processor has a page fault,  it sends a 
request  to the processor indicated by the prob_owner field 
for tha t  page. If tha t  processor is the  t rue owner, it will 
proceed as in the centralized manager  algori thm. If it is 
not,  it will forward the request  to the processor indicated 

by its prob_owner field. As with  the  centralized algori thm, a 
read fault  results in making a copy of the page, and a wri te  
fault  results in making a copy, invalidating other  copies, 
and changing the ownership of the page. The  prob_owner 
field is upda ted  whenever:  

• a processor receives an invalidation request,  

• a processor relinquishes ownership of the page, or 

• a processor forwards a page fault  request.  

In the  first two cases, the prob_owner field is changed to 
the new owner of the  page. In the last case, the prob_owner 
is changed to the original requesting processor,  which will 
become the t rue  owner in the  near  future.  

The  a lgor i thm is as follows: 

R e a d  f a u l t  h a n d l e r :  
lock( ptable] p ].lock ): 
ask ptable[ p l.prob_owner for read access to p: 
ptable] p ]&rob_owner := reply_node; 
ptable[ p l.access := read: 
unlock( ptable[ p l.lock ); 

R e a d  s e r v e r :  
IF I am owner THEN BEGIN 

lock( ptable[ p ].lock ); 
ptable[ p l.copy_set := ptable[ p ].copy_set U {request_node); 

ptable] p l.access := read: 
send p and ptable[ p ].copy_set; 
ptable[ p ].copy_set := {}:  
ptable[ p ].prob_owner := request_node; 
unlock( ptable] p ].lock }: 
END 

ELSE BEGIN 
forward request to ptable[ p ]&rob_owner; 
ptable I p ].prob_owner := request_node; 
END: 

W r i t e  f a u l t  h a n d l e r :  
lock( ptable] p ].lock ): 
ask ptable] p ].prob_owner for write access to page p: 
invalidate( p. ptable] p t.copy_set }; 
ptable[ P l.prob_Owner :_~ self; 
ptable[ p [.access :~  write: 
ptable[ p, ~copy_set :_-- { } ;  
unlock( ptabl~e~ I~ ~.l=ck );, 

W r i t e  s e r v e r :  
IF I am owner THEN BEGIN 

lock( ptable[ p ].lock }: 
ptable[ p ].access := nil: 
send p and ptable[ p ].copy.set: 
ptable[ p }&rob_owner := request_node: 
unlock( ptable[ p ].lock ): 
END 

ELSE BEGIN 
forward request to ptable[ p ].prob_owner: 
ptable[ p ].prob_owner := requesting_node; 
END: 

Inva l ida te  s e r v e r :  
ptable[ p ].access := nil: 
ptable[ p ].prob_owner := request_node: 

The  two critical questions about  the prob_owners are 
whether  forwarding requests eventual ly arrive at the  t rue  
owner and how many forwarding requests are needed. In or- 
der to answer these questions it is convenient  to view all the 
prob_owners of a page p as a directed graph Gp = (V, Ep) 
where V is the  set of processor numbers  1 . . . . .  N ,  IEpl = N ,  
and an edge ( i , j )  E Ep if and only if the  prob_owner for 
page p on processor i is j .  By induct ion on the  number  of 
page faults, we can prove the following lemma: 

L e m m a  4.1 Except for a distinguished node that points to 
itself, every prob_owner graph is acyclie. 

The  uniqueness of page ownership is expressed by: 

L e m m a  4.2 There is exactly one node i such that (i, i) E 
Ep. 

Proof: (Outline) Initially each page p only has one owner. 
The  only possible place where an edge (i, i) can be gen- 
era ted  is on line 4 in the wri te  fault  handler.  In order to 
execute tha t  line, the  request  on line 3 must  have been com- 
pleted. When  replying to a request,  the  wri te  server 's  prob- 
able owner is changed to the request ing processor. This  is 
done using a lock. Finally, since the receiving queue auto- 
matical ly serializes the arr iving messages, an owner cannot  
reply to more than  one request ing node. [] 

T h e o r e m  4.1  A page fault on any processor eventually 
reaches the true owner of the page. 

Proof,." (Ot~tline) By lemmas 4.1 and 4.2, the prob_owner 
graph, of a page is acyclic except  for the edge f rom the owner 
i to itself. Fur thermore ,  if processor j forwards a page fault  
request  to processor k, then  processor j has more recent 
knowledge about  the ownership than  processor k. Thus,  
for any node j E V, there is a pa th  to i. [] 

Theorem 4.1 guarantees the  correctness of a prob_owner 
graph whenever  no fault  is in progress. Since the fault  han- 
dlers and their  servers use locking mechanisms to guarantee 
atom]city in their  operat ions,  it is easy to see the  correct-  
ness of the algori thm. 

The worst  case number  of forwarding messages is given 
by the following theorem: 
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T h e o r e m  4.2 If there are N processors in a shared virtual 
memory, then it will take at most N -  1 messages to locate 
a page. 

Proof: By lemmas 4.1 and 4.2, the worst case occurs when 
the prob_owner graph is a linear chain: 

Ep = {(Vl, v2) , (v2, v3) , . . .  , (VN_i , VN), (VN, VN)} 

in which case a fault  on processor vl will generate N - 1 
forwarding messages in finding the t rue owner VN. [] 

Note tha t  once this worse-case s i tuat ion occurs, all pro- 
cessors know the t rue owner. Also note tha t  if there is 
another  fault  on vl at the same time, then t h e  forwarding 
message from Vl will be blocked due to the locking of the 
fault  handler  on vl, soon after which vi receives ownership. 
In this case it take only i - 1 messages to locate the page. 

At the other  extreme,  we can state the following best- 
case performance (which is be t ter  than  any of the previous 
alorithms): 

T h e o r e m  4.3  There exists a prob_owner graph and page 
fault sequence such that the total number of messages for 
locating N different owners of the same page is N. 

Proof: Such a s i tuat ion exists when the a prob_owner 
graph is the same chain tha t  caused the worst-case per- 
formance in Theorem 4.2. [] 

It is interesting tha t  the worst-case single-fault s i tuat ion 
is coincident wi th  the best-case N-fault .s i tuat ion,  since in 
parallel  systems the performance when contention is ,high is: 
very important .  The  immedia te  question tha t  now arises is 
what  is the worst-case performance for K faults' to the same 
page. To answer this, note tha t  the general problem is eas- 
ily reduced to the set union-find problem. An upper  bound 
on N unions and M finds for this problem has been shown 
to be O(N + M l o g N )  for M < N and O(MIOgl+M/N N) 
for M > N.  [11,17,5]. Since both read page faults and 
write page faults compress their  traversing paths,  it is easy 
to see tha t  the abstract ion of the a lgor i thm can be reduced 
to the set union problem with find operat ions alone. The  
following theorem restates the upper  bound with  respect to 
our problem: 

T h e o r e m  4.4  For an N-processor shared virtual memory, 
using the dynamic distributed manager algorithm, the worst- 
ease number of messages for locating K owners of a single 

page is O(N + K l o g N )  for K < N and O(KlOgl+K/NN ) 
f o r K >  N.  

C o r o l l a r y  4.1 Using the dynamic distributed manager al- 
gorithm, if p processors are using a page, an upper bound on 
the total number of messages for locating K owners of the 
page is O(p + K l o g p )  for K < p and O(Klogl+g/pp ) for 
K _> p, if all contending processors are in the p processor 
set. 

This is an impor tant  corollary, since it says tha t  the algo- 
r i t hm does not  degrade as more processors are added to the 
system, but  ra ther  degrades (logarithmically) only as more 
processors contend for the same page. 

4.4 A D y n a m i c  Dis tr ibuted  Manager  With  
F e w e r  Broadcasts  

In the previous algori thm, at init ialization or after a broad- 
cast, all processors know the t rue owner of a page. The  
following theorem gives an upper  bound for this case: 

T h e o r e m  4.5 After a broadcast request or a broadcast in- 
validation, an upper bound on the total number of messages 
for locating the owner of a page for K page faults on differ- 
ent processors is 2K - 1. 

Proof: This can be shown by the t ransi t ion of a prob_owner 
graph after a broadcast .  The  first fault  uses 1 message to 
locate a page and after tha t  every fault  uses 2 messages. 
[] 

This theorem suggests the possibility of further  improv- 
ing the a lgor i thm by enforcing a broadcast  message (an- 
nouncing the t rue owner of a page) after every K page 
faults to a page. In this case, a counter is needed in each 
entry of the page table, and is maintained by its owner. 
(Interestingly, when K = 0 this a lgor i thm is functionally 
equivalent  to the broadcast  dis tr ibuted manager  algori thm, 
and when K = N - 1 it is equivalent to the unmodified dy- 
namic dis tr ibuted manager  algorithm.) The  a lgor i thm is as 
follows: 

R e a d  fault  handler:  
lock( ptable[ p ].lock ): 
ask ptable[ p ].prob_owner for read access to p: 
ptable[ p ]&rob_owner := reply_node; 
ptable[ p ].access := read; 
unlock( ptable[ p ].lock ); 

R e a d  server:  
IF I am owner THEN BEGIN 

lock( ptable[ p ].lock ); 
ptable[ p ].copy_set := ptable[ p ].copy_set U {request_node}: 

ptable[ p ].access := read; 
ptable[ p ].counter := ptable[ p ].counter + 1; 
send p and ptable[ p ].copy_set; 
ptable[ p ].copy_set := (}; 
ptable[ p ].prob_owner := request_node; 
unlock( ptable[ p ]Jock ); 
END 

ELSE BEGIN 
forward request to ptable[ p ].prob_owner; 
otable[ p ].prob_owner := request_node: 
END; 

W r i t e  f au l t  hand le r :  
lock( ptable[ p ].lock ); 
ask ptable[ p ].prob_owner for write access to p; 
invalidate( p ): 
ptable[ P ].prob_Owner := self; 
ptable[ p ].access :---- write; 
ptable[ p ].copy_set := {};  
unlock( ptable[ p ].lock ); 

Write  server:  
IF I am owner THEN BEGIN 

lock( ptable[ p ].lock ); 
ptable[ p ].access := nil: 
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send p, ptable[ p ].copy_set. and ptable] p ].counter; 
ptable[ p ]&rob_owner := request_node; 
unlock( ptable[ p ].lock }: 
END 

ELSE BEGIN 
forward request to ptable[ p ].prob_owner; 
ptable[ p ].prob_owner :_~ request_node; 
END: 

Invalidate( p ): 
IF ( ptable[ p ].counter > L ) 

OR ( size( ptable[ p ].copy_set > L ) THEN 
broadcast invalidation; 

ELSE 
invalidate according to ptable[ p ].copy_set; 

Invalidate s e r v e r :  

ptable[ p ].access := nil: 
ptable[ p ]&rob_owner := request_node; 

Note the counter L used in the invalidation procedure; 
whether a broadcast invalidation message is sent depends 
on whether the number of copies of a page reaches L. The 
value L can be adjusted experimentally to improve system 
performance. 

On the average, without considering the cost of the 
broadcast message, this algorithm takes a little less than 
2 messages to locate a page after a broadcast request or 
broadcast invalidation. 

4.5 A Refinement :  Dis t r ibut ion  of copy_sets 

Note that in the previous algorithm, the copy_set of a page 
is used only for the invalidation operation induced by a 
write fault. The location of the set is unimportant  as long 
as the algorithm can invalidate the read copies of a page 
correctly. Further note that the copy_set field of processor 
i contains j if processor j copied the page from processor 
i, and thus the copy_set fields for a page are subsets of the 
original copy_set. 

These facts suggest a refinement to the previous algo- 
rithms in which the copy_set data associated with a page 
is stored as a tree of processors rooted at the owner. In 
fact, the tree is bidirectional, with the edges directed from 
the root formed by the copy_set fields, and the edges di- 
rected from the leaves formed by prob_owner fields. The 

tree is used during faults as follows: A read fault collapses 
the path up the tree through the prob_owner fields to the 
owner. A write fault invalidates all copies in the tree by 
inducing a wave of invalidation operations starting at the 
owner, propagating to the processors in its copy_set, which 
in turn  send invalidation requests to the processors in their 
copy_seas, and so on. 

The following algorithm is a modified version of the orig- 
inal dynamic distributed manager algorithm: 

R e a d  f a u l t  h a n d l e r :  
lock( ptable[ p ].lock ); 
ask ptable[ p J.prob_owner for read access to p: 
ptable[ p ].prob_owner := reply.node: 

ptable[ p ].access := read; 
unlock( ptable[ p ].lock ): 

Read server: 
IF ptable[ p ].access ~ nil THEN BEGIN 

lock( ptable[ p ].lock ); 
ptable] p ].copy_set := ptable[ p ].copy_set U {request_node}; 

ptable[ p ].access := read; 
send p: 
unlock( ptable[ p ].lock ); 
END 

ELSE BEGIN 
forward request to ptable[ p l.prob.owner: 
ptable[ p ].prob_owner := request_node; 
END: 

Write fault handler: 
lock( ptable] p ].lock ); 
ask ptable[ p ]&rob_owner for write access to p; 
invalidate( p. ptable[ p ].copy_set ); 
ptable I P ].prob_Owner := self: 
ptable I p ].access := write; 
ptable[ p ].copy_set := {} ;  
unlock( ptable[ p ].lock }; 

Write s e r v e r :  

IF I am owner THEN BEGIN 
lock( ptable[ p ].lock ); 
ptable[ p ].access := nil; 
send p and ptable I p ].copy_set: 
ptabte[ p ]&rob_owner := request_node; 
unlock( ptable I p ].lock ): 
END 

ELSE BEGIN 
forward request to ptable I p ].prob_owner; 
ptableI p l.prob-owner := request_node; 
END; 

Invalidate s e r v e r :  

IF ptable[ p ].access ~ nil THEN BEGIN 
invalidate( p. ptable[ p ].copy.set ); 
ptable[ p I.access := nil; 
ptable[ p ].prob_owner := requesLnode: 
ptable] p ].copy_set := {};  
END: 

By distributing copy_sets in this manner, we improve 
system performance in two important ways. First of Ml, 
the propagation of invalidation messages is usually faster 

because of its "divide and ~,nquer" effect. If the copy_set 
tree is perfectly balanced, the invalidation process will take 
time proportional to log i for i read copies. This faster 
invalidation response shortens the time for a write fault. 

Secondly, and perhaps more importantly, a read fault 
now only needs to find a single processor (not necessarily 
the owner) that holds a copy of the page. To make this 
work, recall that a lock at the owner of each page synchro- 
nizes concurrent write faults to the page. A similar lock is 
now needed on processors having read copies of the page, 
to synchronize sending copies of the page in the presence 
of other read or write faults. The details may be found in 
the algorithm. 
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Overall this refinement can be applied to any of the fore- 
going distributed manager algorithms, but it is particularly 
useful on a multiprocessor lacking a broadcast facility. 

5 Experimental Results 

We have implemented a prototype shared virtual memory 
by modifying the AEGIS operating system on a ring net- 
work of Apollo workstations [12,10]. The system can be 
used to run parallel programs on any number of processors. 
The improved centralized manager algorithm, the dynamic 
distributed manager algorithm, and the fixed distributed 
manager algorithm have been implemented for experimen- 
tal purposes. In this section we present the results of run- 
ning three parallel programs. 

The first program implements a parallel Jacobi algo- 
rithm for solving three dimensional PDE's. More specifi- 
cally, we solve the equation A x  = b where A is a n 3 by n 3 
sparse matrix (in our experiments n = 50 and n = 40). A 
number of processes are created to partition the problem 
by the number of rows of the matrix. Since A is sparse, it is 
not represented explicitly as a matrix, but rather implicitly 
as index/value pairs. The vectors x and b are stored in the 
shared virtual memory, and the processes access them freely 
without regard to their location. Such a program is much 
simpler than what results from the usual message-passing 
style, because the programmer does not have to perform 
data movements explicitly at each iteration. 

The second program is parallel sorting; more specifi- 
cally, a block odd-even based merge-split algorithm [2]. The 
data blocks are stored in a large array in the shared virtual 
memory, and the recursively spawned processes access it 
freely. Again because the data movement is implicit, the 
program is very straightforward. 

The third program is parallel matrix multiplication, C = 
A B .  All of the matrices are stored in the shared virtual 
memory. A number of processes are created to partition 
the problem by the number of columns of matrix B. Ini- 
tially, matrices A and B are stored on one processor, and 
are paged to other processors "by demand" as the processes 
on those processors reference them. 

Figures 2 and 3 show the number of forwarding requests 
for locating true pages during one iteration of the PDE 

program using the dynamic distributed manager and the 
improved centralized manager. The dynamic distributed 
manager obviously outperforms the centralized one. This 
is because the prob_owner fields usually give correct hints, 
and within a short period of time the number of processors 
sharing a page is small; whereas in the centralized manager 
case, every page fault on a non-manager processor needs a 
forwarding request to locate the owner of the page. 

Figure 4 shows the speedup curve for the 3-D PDE pro- 
gram. Note that the program experiences better than linear 
speedup! This is because the data structure for the problem 
is greater than the size of physical memory on a single pro- 
cessor, so when the program is run on one processor there 
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is a large amount of paging between the physical memory 
and disk. The shared virtual memory, on the other hand, 
distributes the data structure into individual physical mem- 
ories, whose cumulative size is large enough to inhibit disk 
paging. It is clear from this example alone that the shared 

virtual memory can indeed exploit the combined physical 
memories of a multiprocessor system. 

Figure 5 shows ,another speedup curve for the 3-D PDE 
program, but now n = 40, in which case the data structure 
of the problem is not larger than the physical memory on 
a processor. The curve is very similar to that  generated 
by similar experiments on CM*, an architecture that could 
be viewed as a hardware implementation of shared virtual 
memory [9]. Indeed, it is as good as the best curve in 
the published experiments on CM* for the same program, 
while the efforts and costs of the two approaches are not 
comparable at all. 

Parallel sorting on a loosely-coupled multiprocessor is 
generally very difficult, and is included here so as not to 
paint too bright a picture. The speedup curve of the paral- 
lel merge-split sort of 200k elements shown in Figure 6 is not 
very good. In theory, even with no communication costs, 
this algorithm does not yield linear speedup. To make mat- 
ters worse, our curve is obtained by trying to use the best 
strategy for any given number of processors. For example, 
there is no merge-split sorting at all when running the pro- 
gram on one processor, there are 4 blocks when running the 
program on two processors, etc. 

Figure 7 shows the speedup curve of the matrix multi- 
plication program for C = AB where both A and B are 
128 by 128 square matrices. The speedup curve is close to 
linear since the program exhibits a high degree of localized 
computation. 

In general, we feel that  our results indicate that  a shared 
virtual memory is indeed practical, even on a very loosely- 
coupled architecture such as the Apollo ring. More details 
on both the algorithmic and experimental aspects of shared 
virtual memory may be found in [10]. 
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6 C o n c l u s i o n s  

We have discussed two classes of algorithms for solving the 
memory coherence problem--centralized manager and dis- 
tributed manager- -and both of them have many variations. 

The centralized algorithm is straightforward and easy to 
implement, but may have a communications bottleneck at 
the central manager when there are many read and write 
page faults. The fixed distributed manager algorithm al- 
leviates the bottleneck, and on average a processor needs 
about two messages to locate an owner. 

The dynamic distributed manager algorithm and its 
variations seem to have the most desirable overall features. 
Theorem 4.5 states that  by using fewer broadcasts, we can 
reduce the worst case number of messages for locating a 
page to a little less than two, which is the same as the 
worst cast for a centralized manager. A further refinement 
can be made by distributing copy_sets. Generally speaking, 
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dynamic distributed manager algorithms will outperform 
other methods when the number of processors sharing the 
same page for a short period of time is small, which is the 
normMly the case. The good performance of the dynamic 
distributed manager algorithms in both theory and prac- 
tice seems to make them feasible for implementation on 
a large-scale multiprocessor. In general, our experiments 
with an unoptimized prototype indicate that implementing 
a shared virtual memory is indeed useful and practical. 
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