
1Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Impossibility of Distributed Consensus with one Faulty
Process

Landmark paper which proves that a distributed system with failures cannot
guarantee a 100% probability to reach a consensus
-> this has to be considered in real-world applications
-> explains the transaction commit problem in distributed database systems
-> every large application has its “window of vulnerability”

1. System setup

2. Definitions & vocabulary

3. Proof by contradiction
I an asynchronous system might reach an undecided state
II from there you might reach another undecided state
-> induction: the system might never reach a decided state

4. Summary

M.J. Fischer, N.A. Lynch and M.S. Paterson, Journal of the Association
for Computing Machinery, Vol. 32 No.2, April 1985, pp. 174-183.

2Uebungstunde: 18.11.99PDDBS - WS 1999/2000

System Overview

Task
- processes shall agree on a binary value [0,1] in finite time
- depending on some system state, this binary value has to change (non-triviality)
- any consensus protocol might be applied

Rules
- the processes are completely asynchronous, running on distributed nodes
--> no assumptions about the relative speeds of the processors or the communication
--> no synchronized clocks and therefore no timeout
--> no method to identify a failed process

--> we cannot distinguish between a very slow or missing message

p1 p2 p3

p6p5p4

consensus [0,1]00

0
0

0

0

11
1

1

3Uebungstunde: 18.11.99PDDBS - WS 1999/2000

System Setup

“Benign” Setup
- the processors are modeled as automata which communicate by messages
- all messages among the nodes arrive at their target in finite time
- they might be out of order
- they cannot be reversed (e.g. “oops, changed my mind”)

States & Decisions
- processes change state depending on arriving messages
- all system configurations can be reached from initial configurations
- the system decision is based on majority vote

System failures
- there might be only one faulty process at a time
- all non-faulty processes receive their messages eventually
--> not all processes have to participate in consensus

process

xp yp

program
counter

buffer

4Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Vocabulary

 p == process
 xp == one-bit input register of p [ø, 0, 1]
 yp == one-bit output register of p [ø, 0, 1]

 initial value == [0,1]
 internal state == values in xp + yp + program counter + internal storage
 initial state == (xp = ?) + (yp = ø) + program counter + internal storage

 decision state == ((yp = 0) | (yp = 1))
 transition function == xp -> yp // deterministic
 P == consensus protocol of system with N processes (N>=2)

 + transition functions of all proceses
 + internal states of all xp

 message == (p,m) // p=destination process, m=[0,1]
 message system == single message buffer of not delivered messages

 + operation send (p, m) // send message m to p
 + operation receive (p) // read m, then del m from buffer

5Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Vocabulary

 C == configuration == internal state of all processes
 + message buffer content

 initial configuration == initial state for all p
 + message buffer empty

 atomic step == takes one configuration to another // deterministic

phase 1: process attempts to receive a message (or null ø)

phase 2: local computation, if a message was received
(internal state + m + transition fkt -> new internal state)

phase 3: send finite set of m to any number of other processes
in one step (== atomic broadcast)

--> all non faulty processes will receive message at some point in time
--> messages might be out of order

6Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Vocabulary II

 e == event == (p, m) // (p,ø) always possible
 e (C) == e can be applied to C, yielding a new configuration

 s == schedule == (in)finite sequence of events starting with C
 run == sequence of steps in a schedule

 reachable == if s is finite
 + and s (C) is resulting configuration

 accessible == C reachable from initial configuration

7Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Vocabulary III

 v == decision value == process p is in decision state with yp = v

 partially correct == a consensus protocol P satisfies 2 conditions
 I. Every accessible C has exactly one v
 II. For each v [0,1] some accessible C has decision value v

 non-faulty == a process is in a run off any length, even infinite
 faulty == otherwise (e.g. blocking)
 admissible run == at most one process is faulty

 + message to all other non-faulty p are delivered
 deciding run == some, not all, processes reach a decision state in that run

 totally correct == a consensus protocol P is totally correct, if
 + P is partially correct
 + every admissible run is decided

8Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Vocabulary IV

 bivalent C == v element of |V| = 2 // no clear outcome
 univalent C == v element of |V| = 1 // clear outcome

0-valent (v = 0) == v always 0 // decided, no change in v
1-valent (v = 1) == v always 1 // decided, no change in v

 adjacent == 2 initial configurations differ only in one xp
 neighbours == 2 configurations differ only in one single step

9Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Lemma 1: Commutativity

Proof: s1 and s2 do not interact.

- schedules s1 and s2 are a (in-)finite sequence of events, that can be applied to C
- the associated sequence of steps is called a run
- s1 and s2 are fixed, independent if they are applied to C or C1/C2 - given a (p,m)
pair, the transition function is deterministic
- time delays are not considered in this system
- according to the system setup each set of processes executes its runs independent
--> after each system-part has executed its independent run, the resulting
configuration is the same

Suppose that from some configuration C, the schedules s1, s2 lead to
configurations C1, C2 respectively. If the sets of processes taking
steps in s1 and s2, respectively, are disjoint, then s2 can be applied
to C1 and s1 can be applied to C2, and both lead to the same
configuration C3.

10Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Lemma 1: flow graph

p1 p2 p3 p4

p1 p2 p3 p4

C

C1

s1

p1 p2 p3 p4

C3

p1 p2 p3 p4

C1

s2

s1s2

11Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Lemma 2: there exist undecided states

Proof: Assume not.
- P is by definition partially correct
-> therefore P must have both 0-valent and 1-valent initial configurations
-> any two adjacent configurations are joined by a chain of initial conf. (no steps)
-> there must exist a 0-valent initial configuration C0 adjacent to a 1-valent C1

Consider some admissible deciding runs from C, where
- p is the only difference between the adjacent configurations C0 and C1
- p takes no steps (blocks)
-> then s can be applied also to C0 and to C1, and reach the same decision value

--> if the decision value is 1, then C0 has to be bivalent :: contradiction.
--> if the decision value is 0, then C1 has to be bivalent :: contradiction.

--> as we cannot tell if a process has died or is just slow, we have to assume all
processes participate in the consensus
--> even one faulty process will delay the algorithm is delayed

P has a bivalent initial configuration

12Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Lemma 2: flow graph

p1 p2 p3 p

0-valent configuration

s1

p1 p2 p3 p

p1 p2 p3 p

s1

p1 p2 p3 p

1-valent configuration

1

10

0

13Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Lemma 3: any bivalent configuration might lead to another
bivalent configuration

Proof:
- since e is applicable to C, then by definition of CS and the fact that messages can
be delayed arbitrarily, e is applicable to every E elem CS.

Assume that DS contains no bivalent configurations
- Ei is an i-valent configuration reachable from C, i=[0,1]
- if Ei elem CS, then let Fi = e(Ei) elem DS
- otherwise, e was applied in reaching Ei, so that there exists Fi elem DS from which
Ei is reachable
--> in either case, Fi is i-valent (since Fi is elem DS, which shall contain no biv. C)
--> one of Ei and Fi is reachable from the other
--> since Fi elem DS, i =[0,1], DS contains both 0-valent and 1-valent configurations

Let C be a bivalent configuration of P, and let e =(p,m) be an event
that is applicable to C. Let CS be the set of configurations reachable
from C without applying e, and let
DS = e(CS) = {e(E)| E element of CS and e is applicable to E}.
Then, DS contains a bivalent configuration.

14Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Lemma 3: flow graph

continue:
-> there exist neighbours C0, C1 elem CS such that Di = e(Ci) is i-valent, i=[0,1]
-> C1 = e’ (C0), where e’ = (p’, m’) (e’ some other e) ; then

Case 1: (p’ != p), then D1 = e’ (D0) by Lemma 1 --> contradiction since D0 is 0-valent

C0 C0/1 element CS, i= [0,1]

C1
Ci element CS, i= [0,1]

e’ = (p’, m’)

D1 Di = e(Ci), i= [0,1], i-valent

D0

e = (p, m)

C0 element CS

e = (p, m)

e’ = (p’, m’)

15Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Lemma 3: flow graph II

continue: Case 2: if (p’ = p), then
let there be a deciding run from C0 in finite steps in which p blocks;
let s be the corresponding schedule and A = s (C0)
-> (Lemma 1) s is applicable to Di, and it leads to an i-valent configuration Ei=s(Di)
-> (Lemma 1) e (A) = E0 and e(e’ (A))
--> A is bivalent --> contradiction --> DS contains a bivalent configuration

C0

C1

E0

D0

D1

A

x

E1

s

s

e = (p,m)
e = (p,m)

e = (p,m)

e = (p,m)

e’ = (p’,m’)

e’ = (p’,m’)

16Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Main Result: asynchronous system are not fault-tolerant

Proof:
- any deciding run from a bivalent initial C must go to a univalent C
- it is always possible to avoid a decisive step

Setup:
- all processes check for their messages in sequence
- let C0 be a bivalent initial configuration (Lemma 2 ensures that it exists)
- let C be a later, bivalent configuration
- p is next process to check for a message, m is the message received
--> there is a configuration C’ reachable from C by a schedule with e being the last
event
--> we have reached again a bivalent configuration, without performing non-
permissible steps
--> no decision is ever reached

--> P is not totally correct

No consensus protocol is totally correct in spite of one fault

17Uebungstunde: 18.11.99PDDBS - WS 1999/2000

Summary

- even if we consider only fair runs (all processes receive their messages, etc.),
blocking processes could halt any asynchronous system

- fault tolerance in asynchronous systems requires making assumptions about the
system or about the kinds of faults which can be handled

- in real systems this is usually done by
1) assuming an upper bound in communication and processor speed,
2) considering a process faultly if it doesn’t respond within a certain time

Lemma 2: there exist initial states for which the final decision is
undecided

Lemma 3: starting at any undecided state can lead to another undecided
state

Main Theorem: it is possible to construct an asynchronous system, that,
starting out from an undecided state, will stay for ever undecided.
Even with only 1 faulty process, a consensus on a binary value cannot
be decided in finite time

