

Vocabulary		
р хр ур	== process == one-bit input register of == one-bit output register of	f p [ø, 0, 1] f p [ø, 0, 1]
initial value internal state initial state	== [0,1] == values in xp + yp + program counter + internal storage == (xp = ?) + (yp = Ø) + program counter + internal storage	
decision state transition functio P	== ((yp = 0) (yp = 1)) n == xp -> yp // detern == consensus protocol of sy + transition functions of a + internal states of all xp	ninistic ystem with N processes (N >=2) ll proceses
message message system	== (p , m) == single message buffer of + operation send (p , m) + operation receive (p)	<pre>// p=destination process, m=[0,1] f not delivered messages // send message m to p // read m, then del m from buffer</pre>
PDDBS - WS 1999/20	100	Uebungstunde: 18.11.99

	Vocabulary	
С	== configuration == internal state of all processes + message buffer content	
initial configuration	on == initial state for all p + message buffer empty	
atomic step	== takes one configuration to another // deterministic	
phase 1:	process attempts to receive a message (or null $\boldsymbol{ø}$)	
phase 2:	local computation, if a message was received (internal state + ${f m}$ + transition fkt -> new internal state)	
phase 3:	send finite set of m to any number of other processes in one step (== atomic broadcast)	
> all no > messa	n faulty processes will receive message at some point in time ages might be out of order	
PDDBS - WS 1999/200	0 Uebungstunde: 18.11.99	5

	Vocabulary II	
e e (C)	== event == (p , m) // (p ,ø) always possible == e can be applied to C , yielding a new configuration	
s run	== schedule == (in)finite sequence of events starting with C == sequence of steps in a schedule	
reachable	== if s is finite + and s (C) is resulting configuration	
accessible	== C reachable from initial configuration	
PDDBS - WS 1999/20	00 Uebungstunde: 18.11.99	6

	Vocabulary III	
v	== decision value == process \mathbf{p} is in decision state with $\mathbf{y}\mathbf{p} = \mathbf{v}$,
partially correct	== a consensus protocol P satisfies 2 conditions I. Every accessible C has exactly one v II. For each v [0,1] some accessible C has decision value v	
non-faulty faulty admissible run deciding run	 == a process is in a run off any length, even infinite == otherwise (e.g. blocking) == at most one process is faulty + message to all other non-faulty p are delivered == some, not all, processes reach a decision state in that run 	
totally correct	== a consensus protocol P is totally correct, if + P is partially correct + every admissible run is decided	
PDDBS - WS 1999/20	00 Uebungstunde: 18.11.99	7

	Vocabulary IV		
bivalent C univalent C	== \mathbf{v} element of $ \mathbf{V} = 2$ == \mathbf{v} element of $ \mathbf{V} = 1$	<pre>// no clear outcome // clear outcome</pre>	
0-valent (v = 0) 1-valent (v = 1)	== v always 0 == v always 1	// decided, no change in ${\bf v}$ // decided, no change in ${\bf v}$	
adjacent neighbours	 == 2 initial configurations differ only in one xp == 2 configurations differ only in one single step 		
PDDBS - WS 1999/2000 Uebungstunde: 18.11.99 8			8

P has a bivalent initial configuration	
Proof: Assume not.	
P is by definition partially correct	
> therefore P must have both 0-valent and 1	-valent initial configurations
> any two adjacent configurations are joined	I by a chain of initial conf. (no steps)
> there must exist a 0-valent initial conligu	ration Co adjacent to a 1-valent C1
Consider some admissible deciding runs from	n C, where
p is the only difference between the adjacer	t configurations C0 and C1
p takes no steps (blocks)	-
> then s can be applied also to C0 and to C1	, and reach the same decision value
\rightarrow if the decision value is 1, then C0 has to b	e hivalent contradiction
\rightarrow if the decision value is 0, then C1 has to t	e bivalent :: contradiction
-> as we cannot tell if a process has died or i	s just slow, we have to assume all
processes participate in the consensus	
-> even one faulty process will delay the alg	orithm is delayed

Summary		
Lemma 2: there exist initial states foundecided	or which the final decision is	
Lemma 3: starting at any undecided state	ate can lead to another undecided	
Main Theorem: it is possible to const starting out from an undecided state, Even with only 1 faulty process, a con be decided in finite time	ruct an asynchronous system, that, will stay for ever undecided. nsensus on a binary value cannot	
- even if we consider only fair runs (all pro blocking processes could halt any asynchro	cesses receive their messages, etc.), mous system	
- fault tolerance in asynchronous systems system or about the kinds of faults which o	requires making assumptions about the can be handled	
 - in real systems this is usually done by 1) assuming an upper bound in communica 2) considering a process faultly if it doesn't 	ation and processor speed, respond within a certain time	
PDDBS - WS 1999/2000	Uebungstunde: 18.11.99	