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Abstract. Paxos is a flexible and fault tolerant protocol for solving the con-
sensus problem, where participants in a distributed system need to agree on a
common value. However, Paxos is reputed for being difficult to understand. This
tutorial aims to address this difficulty by visualizing Paxos in a completely new
way. Starting from a naive solution and strong assumptions, Paxos is derived in
a step-wise fashion. In each step, minimal changes are made to the solution and
assumptions, aimed at understanding why the solution fails. In this manner, a
correct solution that corresponds to Paxos is eventually reached.

1 Introduction

Paxos is a flexible and fault tolerant consensus protocol that can be used in applications
that need to agree on a common value among distributed participants. Paxos was pro-
posed by Lamport in his seminal paper [1] and later gave a simplified description in [2].
Paxos can be used to solve the atomic commit problem in distributed transactions, or
to order client requests sent to a replicated state machine (RSM). An RSM provides
fault tolerance and high availability, by implementing a service as a deterministic state
machine and replicating it on different machines. Paxos is relevant because it is often
used in production systems such as Chubby and ZooKeeper [3, 4] among many others.
Understanding Paxos is important because it reveals the distinction between a strongly
consistent RSM and a primary-backup system.

Both before and after its publication in [1], Paxos attracted much attention for its
unorthodox exposition in the form of a fictional parliamentary system, supposedly used
by legislators at the Greek island of Paxos. But the scientific contribution was also
significant; it provided a new way to implement RSMs, and proved that the protocol
guarantees that participants make consistent decisions, irrespective of the number of
failures. Clearly Paxos cannot always make progress, e.g. during network partitions, as
was shown in [5]. But perhaps most important, Paxos was described in a flexible and
general way, ignoring many technical details. This made it an excellent foundation for
further research into RSM-based protocols [6–9], aimed at supporting different failure
models, wide-area networking, to improve latency, and so on. The fact that these pro-
tocols build on the Paxos foundation, which has been formally proven, makes it much
easier to reason about their correctness through step-wise modifications of Paxos.

With this powerful foundation that Paxos offered, came also a challenge: the flexible
description made it harder to understand. This remains true to this day, even as numer-
ous papers have been written aimed at explaining Paxos for system builders [10, 11]
and more generally [12, 13]. These and other papers are still challenging for students
and others to understand without significant efforts.
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The aim of this tutorial is to explain Paxos from the bare fundamentals by deriving
a Paxos-based RSM in a step-wise and pictorial manner. We start with a non-replicated
service that we want to harden with fault tolerance and high availability. That is, the
server must be replicated. Initially, we make unrealistic assumptions about the environ-
ment and propose the simplest protocol that we can imagine to coordinate the server
replicas to ensure that they remain mutually consistent, and explain why the protocol
is insufficient. Then in each step, minimal changes are introduced to the coordination
protocol aimed at understanding why each protocol fails. Continuing, we finally reach
a correct protocol that corresponds to a Paxos-based RSM.

Our objective is that you understand that many seemingly intuitive approaches do
not work and why. Having read this tutorial, we hope that you will gain appreciation for
Paxos’ contribution, and perhaps put you in a better position to read the Paxos literature.

2 A Stateful Service: Assumptions and Notation
We will explain Paxos starting from a simple stateful service that should be made fault-
tolerant and highly available. Initially the service is implemented by a single server
that receives requests from a set of clients, processes the requests, updates its state, and
replies back to the clients. This pattern is visualized as a message sequence diagram in
Fig. 1, where server S1 processes requests from clients, C1 and C2. Further notation is
explained below.
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C1

〈m2〉

m2

〈m1〉

m1

〈σ2
1〉

〈σ21
1 〉

Fig. 1. Solution SingleServer: A single server can order and process requests from several clients

Notation. A request message received by the server causes a state transition affecting
the current state of the server. The outcome of processing requests sent to the server
depends on its current state. A box on the timeline is meant to illustrate that a state
change has taken place, caused by the processing of some message mi.

A common assumption also adopted here, is that requests from different clients are
unrelated, and the order in which they are executed is irrelevant. Clearly, requests from
the same client should be executed in sending order. We use σkl

i to denote the local
state of server Si after having processed messages mkml, in that order. We ignore the
server index and write σkl, when the origin is irrelevant. In our examples, the reply sent
to clients is determined by the server’s state, denoted 〈σkl

i 〉. In practice, the reply is
usually not the server’s state, but rather some value computed from the server’s state.

Single Server. In the single server case shown in Fig. 1, it is easy to see that the two
clients observe a consistent reflection of the server’s execution of the two requests. It
is easy for the server to determine an ordering for the client requests that it receives.
However, implementing the service with a single server is not fault-tolerant.
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3 Fault Tolerance with Two Servers
As a first attempt at improving the fault tolerance and availability of our service, we
can add one server to the system, under the assumption that if one of the servers fail,
the other can take over and service client requests. This architecture is frequently used,
and is called primary-backup. In our first naive solution we use two servers without
coordination between them; i.e. the clients simply send their requests directly to the
two servers, as shown in Fig. 2. However, as is apparent from this diagram, the two
requests can be processed in different orders at the two servers, e.g. because of message
delays: m1m2 at S1 and m2m1 at S2, resulting in deviating server states. We say that
the servers become inconsistent. This inconsistency is also exposed to the clients: C1

observes possibly inconsistent replies σ1 and σ21, while C2 observes replies: σ2σ12.
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Fig. 2. Problem: Two servers cannot order messages from several clients without coordination

Our first solution to coordinate among the servers is to let one server be leader, also
called the primary. The leader simply sends an accept message to the other server and
executes the request locally. The accept message 〈ACC,mi, j〉 is used to tell the other
server that mi should be executed as the jth request, where j is a sequence number. This
approach is illustrated in Fig. 3. It is easy to see that both servers remain consistent and
that replies to clients are also consistent, since σ2 is a prefix of σ21. Since the service
is implemented as deterministic state machine, processing a request results in a unique
state transition. Therefore σ2

1=σ2
2 and σ21

1 =σ21
2 .
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Fig. 3. Solution SendAccept: Leader (S1) sends an accept message to the other server telling it
the order in which the messages should be processed

This approach works fine as long as messages are not lost. However, if 〈ACC,m2, 1〉
in Fig. 3 is lost, then S2 gets stuck and cannot process the next message, m1.
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The solution to this problem is simply to add a lost message detection mechanism.
That is, let the leader retransmit its accept message until it is acknowledged by S2.
This solution is shown in Fig. 4, where a learn message 〈LRN,mi〉 corresponds to an
acknowledgement. This approach allows for the servers to eventually make progress as
long as messages are not lost infinitely often.
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Fig. 4. Solution RetransAccept: Retransmit the 〈ACC,m2, 1〉 message if it does not receive a
corresponding 〈LRN,m2〉 message

4 Server Crashes
We have seen that messages can be lost, and that our RetransAccept protocol can fix the
problem. However, if one server crashes, the other will wait indefinitely for an accept
or learn message. We therefore adopt the rule that once a server crashes, the remaining
server continues to serve clients following the SingleServer protocol (Fig. 1). With this
rule we can see from Fig. 5, that our RetransAccept protocol is insufficient. This is
because the initial leader (S1) replies to request m1 before learning that S2 has seen
its 〈ACC,m1, 1〉 message, and because S1 crashes before it can retransmit the accept.
Instead S2 takes over and decides to execute request m2 before m1, and thus the two
clients observe inconsistent replies; σ2 is seen by C2 while σ21 is expected.
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Fig. 5. Problem: The leader crashes after sending reply to client C1, without ensuring that S2 has
learned about the ordering message, 〈ACC, m1, 1〉

To solve this problem, we require that the leader wait for the 〈LRN,m1〉 message
before executing the request as shown in Fig. 6, and we also require a retransmission in
case of message loss. If S1 receives the learn message and replies to C1 before crashing,
the ordering information has already been propagated to S2. IfS1 crashes before sending
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Fig. 6. Solution WaitForLearn: The leader waits for 〈LRN,m1〉 before executing the request m1

its reply to the client, S2 may or may not have seen the accept message. If S2 has seen
the accept, S2 will obey it. If the accept didn’t reach S2, it can decide its own ordering.

5 Network Partitions

So far we have not specified how failures are actually detected. In practice a server is
assumed to have failed if it is unresponsive for a given period of time. This is typically
done using a timer mechanism, which upon a timeout triggers a failure detection. How-
ever, identifying a suitable timeout period is difficult in practice, and there is always a
chance of false detections due to the stochastic nature of networked systems.

Recall that we adopted the rule to fall back to the SingleServer protocol when failure
is detected. This rule was intended to allow the service to make progress after a server
had failed. However, if we cannot reliably detect that the other server really failed, then
we have a problem, as is illustrated in Fig. 7. Here we see that both servers remain op-
erational, but are unable to communicate due to a network partition. After the failure
detection time, both servers fall back to the SingleServer protocol and continue to pro-
cess client requests, exposing the clients to different server states, σ1 and σ2. This state
divergence violates our desire to remain consistent, especially towards clients. This is
since reconciling the state divergence when communication is reestablished would in-
volve rollback on multiple clients, and would quickly become unmanageable.
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〈σ1
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〈σ2
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Fig. 7. Problem: Our SingleServer protocol can make progress in separate partitions, but it will
lead to inconsistencies
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A partition is indistinguishable from a crash, e.g. S2 cannot distinguish between the
situations shown in Fig. 5 and Fig. 7. Thus, waiting for a partition to end would also
require us to wait indefinitely for a failed server. The solution is to add another server
and use the WaitForLearn protocol, as shown in Fig. 8. WaitForLearn allows a partition
to make progress if it contains a majority of the servers. That way we can at least make
progress in one of two partitions. In this example we do not consider what needs to
happen when the two partitions merge and become one again. We defer this problem
until after we solve another problem.
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〈σ2
2〉〈σ2

3〉

Fig. 8. Solution: Add another server and use the WaitForLearn protocol

6 Leader Change

Our WaitForLearn protocol tolerates either a crash or a partition. However, a concurrent
partition and crash is not handled by our protocol. In cases of false detection, several
servers may send out accepts concurrently. In Fig. 9 both S1 and S2 send accepts for
different messages. If S3 crashes shortly after receiving these accepts it might have
executed one of the requests and sent a reply to the client. In this case it is impossible
for the remaining servers (S1,S2) to decide whether or not a message was executed
before the crash. Fig. 9(a) and 9(b) depict the two possible executions at S3. These are
unknown to the other servers since learn messages may be lost.

The above problem is rooted in the possibility of multiple leaders sending accepts. It
can be solved by introducing an explicit leadership takeover protocol. To take over lead-
ership, a server sends a prepare message to the other servers, who acknowledge with a
promise to ignore all messages sent by the old leader. Only after receiving promise mes-
sages from at least one other server, can the new leader start sending accept messages.
This is depicted in Fig. 10. To distinguish between messages from the old and the new
leader, we now add the leader’s id to accept, learn, prepare, and promise messages.

Furthermore, to ensure that potentially executed requests become known to the other
servers, we add those requests to the promise message. Fig. 10 shows an example where
no requests have been executed, indicated as (−) in the promise. If the promise contains
requests, the new leader resends the accept for these requests, as depicted in Fig. 11.
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〈ACC,m1, 1〉
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(a) S3 executing m1.

〈Lrn,m2〉 m2

〈σ2
3〉

(b) S3 executing m2.

Fig. 9. Problem: Both S1 and S2 sent an accept message to S3. Since S3 crashes afterwards, the
remaining servers cannot determine whether S3 executed m1 or m2.
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S1
Leader

C1

〈m1〉

〈m2〉

〈ACC,m1, 1, S1〉

Timeout

〈PREP, S2〉

〈PROM,−, S2〉 Ignore

〈ACC,m2, 1, S2〉

〈LRN,m2, S2〉 m2

〈σ2
3〉

Fig. 10. Solution LeaderChange: S2 announces its wish to become leader by sending a
〈PREP, S2〉. S3 replaces S1 by S2 as leader and confirms this with a 〈PROM,−, S2〉 message. S2

acts as leader after receiving this promise.

Merging Partitions. When two partitions merge, the leader resends accept messages to
servers that missed them. However, the merged partition may now have several lead-
ers. For example, when the partition in Fig. 11 ends, both S1 and S2 consider them-
selves leaders. To establish a single leader, we assume a predefined ranking. In Fig. 11,
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S2 assumes leadership and resends accepts to S1. That is because we assume S2 to have
a higher rank than S1.

Round Numbers. The above scheme allows S2 to take over leadership from S1 because
of its higher rank. However, after the server with the highest rank (S3) has taken over,
we will be unable to change the leader. Paxos therefore uses round numbers instead of
leader ids. Thus in Fig. 10, we can replace the server id S1 with round 1 and S2 with
round 2 and so on. With this scheme, S1 can become leader again by sending a prepare
with a higher round, e.g. 4. To avoid that servers send a prepare for the same round, we
can preassign rounds, e.g. S1 can use rounds 1, 4, 7, . . . and S2 can use 2, 5, 8, . . .

C2

S3

S2
Leader

Partition

S1
Leader

C1

〈m1〉

〈m2〉

〈ACC,m1, 1, S1〉

〈LRN,m1, S1〉 m1

Timeout

〈PREP, S2〉

〈PROM,m1, S2〉

〈ACC,m1, 1, S2〉

〈LRN,m1, S2〉 noop

〈ACC,m1, 1, S2〉

〈LRN,m1, S2〉
m1

m1

Fig. 11. Solution LeaderChange: Previous leader (S1) sent accept for m1, but only S3 executed
it. During leader change, S3 must tell the new leader about this execution in its 〈PROM,m1, S2〉
message.

7 Five Servers

Thus far we have explored a protocol that can tolerate a single crash using three servers.
To achieve a higher degree of fault tolerance, we can clearly add more servers. However,
to ensure that only a majority partition makes progress, as explained in Sec. 5, we can
only tolerate that fewer than half of the servers fail. Thus, to tolerate f crashes, we need
at least 2f + 1 servers.

In a scenario with five servers, we can no longer execute a request after receiving the
accept. Fig. 12(a) shows that otherwise all servers that knows about this request can fail.
We therefore adjust our protocol to send learns to all servers, as depicted in Fig. 12(b),
and only execute after receiving three learns for one message. Note that the accept is an
implicit learn from the leader, and every server can also send a learn to itself. Therefore
a follower can, in practice, execute after receiving one accept and one learn, while the
leader can execute after receiving two learns.

Similarly, the new leader needs to collect two promises from the other servers to
begin its leader role. Also here the new leader makes an implicit promise to itself as the
third one. After multiple, successive leader changes it is possible to receive promises
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(a) With five servers we can no longer execute
immediately after receiving an accept message.
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(b) Execute after receiving one accept
and one learn, or two learn messages.

Fig. 12. Paxos with five servers requires additional messages

including different values, sent by different leaders. E.g. a leader receiving promises
〈PROM,m1, S3〉 and 〈PROM,m2, S3〉 has to choose wether to send an accept for m1 or
m2. We solve this by adding the identity used in the accept to the promise. Our promises
now look like 〈PROM, (S1,m1), S3〉 and 〈PROM, (S2,m2), S3〉. The new leader S3

sends 〈ACC,m2, S3〉, since S2 has a higher rank than S1. As in Sec. 6, we can also here
replace the server identity with round numbers.

8 Summary

We have presented Paxos, aiming to understand the fundamental mechanisms Our pre-
sentation differs significantly from previous attempts to explain Paxos, and in this sec-
tion we explain how it relates to the presentation in Paxos made Simple (PMS) [2].

The first distinction is that PMS introduces separate agent roles: proposers, accep-
tors, and learners. These roles are at the heart of Paxos’ flexibility, and allows one to
structure a Paxos system in different ways. While this is very useful for formal rea-
soning over a wide variety of structures, it can be challenging to comprehend at first.
Our servers each combine these three roles. Another difference is that PMS presents
the protocol for agreeing on a single client request, among several requests seen by the
servers. Thus, one instance of Paxos is used to agree on the next request to be executed.
PMS then explains how multiple Paxos instances can be combined to build a Paxos-
based RSM. These instances are numbered sequentially, and corresponds to our se-
quence numbers. In PMS, Lamport also explains that Paxos instances can be optimized
to run with only the accept and learn messages, when the leader is stable. Instead we
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delay this step, introducing the prepare and promise messages only to solve the leader
take over problem. We use the same message naming as in PMS for ease of recognition,
but we only gradually augment the content of each message as it is demanded by the
different mechanisms that we introduce. In particular, we deferred the introduction of
round numbers in messages, which is used in PMS to identify the leader, until the end
of Sec. 6. The purpose of the round numbers in PMS is a common source of confusion
for many students.

We have focused on scenarios illustrating the need for and function of each individual
mechanism in Paxos, sometimes omitting a complete and precise algorithmic descrip-
tion. PMS gives a short and precise description. For readers interested in a blueprint for
implementing Paxos, we recommend [13].
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