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Space and time complexity theorems 
“Space is more powerful than time” 
“Because time cannot be reused, but space can.” 

If you have a 𝑠(𝑛) space TM, then its running time is bounded by 𝑐𝑠(𝑛), where 𝑐 is a TM-specific constant (governed by 

the number of states, size of the alphabet, etc.). This bound results from the maximum number of configurations a TM 

can be in, given that it only consumes up to 𝑠(𝑛) space and halts (for each tape cell you can place up to 𝑐 symbols on it 

⇒ 𝑐𝑠(𝑛) time). 

If you have a 𝑡(𝑛) time TM, then it cannot run in more than 𝑡(𝑛) space. How could it write more than 𝑠(𝑛) cells if it’s 

running in 𝑠(𝑛) of time? 

The Cook-Levin theorem (SAT is NP-complete) 
This theorem tells us that the satisfiability problem (SAT) is NP-complete. This means that given a SAT solver, you can 

reduce any problem 𝑄 in NP to an instance of SAT, solve that instance using your solver, then convert the SAT solution 

into a 𝑄 solution by reversing your reduction. Hence, you would have solved your initial 𝑄 problem. 

Theorem: SAT is NP-complete 

Proof idea: To oversimplify, since computers (and hence TMs) are pretty much just a big Boolean formula it’s not 

surprising that we can encode a TM as a Boolean formula. The idea is to take a TM 𝑀 for a language 𝐴 in NP and encode 

whether it accepts 𝑤 or not in a Boolean formula. We use tableaus to figure out what needs to be encoded in terms of 

transitions, accept and start states, etc. See page 306 of Sipser 3rd Ed. for more details. 

 

Figure 1: A tableau for a TM that runs in time 𝑛𝑘. 

Savitch’s theorem (𝑁𝑆𝑃𝐴𝐶𝐸(𝑠(𝑛)) ⊆ 𝑆𝑃𝐴𝐶𝐸(𝑠2(𝑛)), NPSPACE = PSPACE) 
This theorem tells us that (surprisingly) we can simulate non-deterministic space machines using deterministic space 

machines with just an order of magnitude overhead. 

Theorem: 𝑁𝑆𝑃𝐴𝐶𝐸(𝑠(𝑛)) ⊆ 𝑆𝑃𝐴𝐶𝐸(𝑠2(𝑛)), ∀𝑠(𝑛) ≥ log 𝑛 

Proof idea: Since we are not limited by time in 𝑁𝑆𝑃𝐴𝐶𝐸(𝑓(𝑛)) machines, the idea is to search over all the 

configurations of the 𝑁𝑆𝑃𝐴𝐶𝐸 machine using a binary search and see if there is a path from the start configuration to an 

accepting configuration. We can simply generate all intermediate configurations (exponential number of such things) 



Alin Tomescu, 6.840 Theory of Computation (Fall 2013), taught by Prof. Michael Sipser 

2 
 

and try and connect the start configuration with the accepting one via an intermediate configurations. We apply this 

search recursively. 

Imagine a configuration table of 𝑀 ∈ 𝑁𝑆𝑃𝐴𝐶𝐸(𝑠(𝑛)) on 𝑤, with rows representing the configuration (tape contents, 

previous and next state, head position) of 𝑀 at a particular point. 

- The first row is the start configuration. 

- The last row is the accept configuration. 

- Consecutive rows are adjacent configurations. 

- A row will be 𝑠(𝑛) long (because the tape cannot have more than 𝑠(𝑛) data on it, since 𝑀 ∈ 𝑁𝑆𝑃𝐴𝐶𝐸(𝑠𝑛)), and 

there are at most 𝑑𝑠(𝑛) such rows for an accepting computation branch (because 𝑆𝑃𝐴𝐶𝐸(𝑠(𝑛)) ⊆

𝑇𝐼𝑀𝐸(2𝑂(𝑠(𝑛))) ⊆ ⋃ 𝑇𝐼𝑀𝐸(𝑑𝑠(𝑛))𝑑 ). 

The deterministic TM 𝑁 will simulate the nondetermistic TM 𝑀 by searching the above tableau and trying to figure out 

whether it accepts or rejects 𝑤. 𝑁 will do a binary search, reusing space, to see if there is a path from the first 

configuration 𝐶𝑠𝑡𝑎𝑟𝑡 to the accepting configurations 𝐶𝑎𝑐𝑐 in in less than 𝑑𝑠(𝑛) steps. 𝑁 can verify that such a path exists 

by looking at the description of 𝑀 on its tape. Note that 𝑁 has no time limitation, only space. The algorithm is recursive, 

and the base case occurs when 𝑁 has to check two adjacent configurations 𝐶𝑖 →𝑡=1 𝐶𝑗. 

Space hierarchy theorem (NL ≠ PSPACE ≠ EXPSPACE) 
Theorem: For almost any* function 𝑓: ℕ → ℕ, a language 𝐴 exists that is decidable in 𝑂(𝑓(𝑛)) space but not in 𝑜(𝑓(𝑛)) 

space. 

* by any function we mean a space constructible function, which means ∃TM that, given input 1𝑛, always halts with the 

binary representation of 𝑓(𝑛) on its tape using 𝑂(𝑓(𝑛)) space. It seams 𝑓(𝑛) has to be at least 𝑂(log 𝑛). 

This implies that 𝑁𝐿 ≠ 𝑃𝑆𝑃𝐴𝐶𝐸, because Savitch’s theorem tells us 𝑁𝐿 = 𝑁𝑆𝑃𝐴𝐶𝐸(log 𝑛) ⊆ 𝑆𝑃𝐴𝐶𝐸((log 𝑛)2) and the 

space hierarchy theorem tells us that there exists an 𝐴 that runs in 𝑂(𝑝𝑜𝑙𝑦(𝑛)) space and not in anything less than that 

such as (log 𝑛)2 space. Thus, there’s a problem in 𝑃𝑆𝑃𝐴𝐶𝐸 that is not in 𝑁𝐿. 

Time-hierarchy theorem (P ≠ EXPTIME) 
Theorem: For almost any* function 𝑓: ℕ → ℕ, a language 𝐴 exists such that 𝐴 is decidable in time 𝑂(𝑓(𝑛)) but not 

decidable in time 𝑜(𝑓(𝑛)/ log 𝑓(𝑛)). 

* by any function we mean a time constructible function, which means ∃TM that, given input 1𝑛, always halts with the 

binary representation of 𝑓(𝑛) on its tape in time 𝑂(𝑓(𝑛)). It seems that 𝑓(𝑛) has to be at least 𝑂(𝑛 log 𝑛). 

“What this means is that for almost all 𝑓(𝑛), some languages can be decided in 𝑓(𝑛)-time but no faster. This helps prove 

some time classes are different.” 

The time-hierarchy theorem implies that 𝑃 ≠ 𝐸𝑋𝑃𝑇𝐼𝑀𝐸, if you let 𝑓(𝑛) = 2𝑛. 

P and NP closure properties 
𝑃 is closed under: 

- Complement, because I can take the TM 𝑀 for any language 𝐴 ∈ 𝑃 and just flip its answer to get a TM 𝑀′ for �̅�, 

which means �̅� ∈ 𝑃.’ 

- Union, because given two TMs 𝑁 and 𝑀 for 𝐴, 𝐵 ∈ 𝑃 I can build a third TM 𝐷 which first simulates 𝑁 and then 

simulates 𝑀. If either of them accept, 𝐷 accepts, otherwise it rejects. 𝐷 will thus decide if 𝑤 ∈ 𝐴 or 𝑤 ∈ 𝐵, and 

will run in poly-time (since simulation overhead is polynomial) thus 𝐴 ∪ 𝐵 ∈ 𝑃. 
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- Concatenation, because given two TMs 𝑁 and 𝑀 for 𝐴, 𝐵 ∈ 𝑃 I can build a third TM 𝐷 which tries all possible 

ways of splitting the input 𝑤 as 𝑤 = 𝑎𝑏 and tests if 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. Note that there are 𝑛 + 1 such splits and 

checking each one involves simulating 𝑁 and 𝑀 which run in 𝑝𝑜𝑙𝑦(𝑛). 

- Kleene star, because we proved it in the HW with a dynamic programming technique similar to the one used to 

decide 𝐴𝐶𝐹𝐺  in poly-time. 

𝑁𝑃 is closed under: 

- Union, just like P 

- Concatenation, just like P 

NP is not known to be closed under complement: no one knows if 𝑁𝑃 = 𝑐𝑜𝑁𝑃. Note that you can’t just flip the answer 

of an NTM for a language 𝐴 ∈ 𝑁𝑃 and get a decider for �̅�. This is a flaw in thinking, because you assume you would be 

flipping the final yes or no answer of the NTM, but in fact you are flipping the answer for a single branch in the NTM 

computation. This is because, very informally speaking, you do NOT have access to the final yes/no answer of the NTM, 

as you “modify your NTM to flip the answer”. You can only modify your NTM to flip a branch’s answer, and this will not 

help you, because you will end up flipping, say, the (𝑏𝑟𝑎𝑛𝑐ℎ1, 𝑎𝑐𝑐), (𝑏𝑟𝑎𝑛𝑐ℎ2, 𝑟𝑒𝑗), (𝑏𝑟𝑎𝑛𝑐ℎ3, 𝑎𝑐𝑐) accepting NTM 

computation into (𝑏𝑟𝑎𝑛𝑐ℎ1, 𝑟𝑒𝑗), (𝑏𝑟𝑎𝑛𝑐ℎ2, 𝑎𝑐𝑐), (𝑏𝑟𝑎𝑛𝑐ℎ3, 𝑟𝑒𝑗) which is still an accepting NTM computation (since 

you still have an accepting branch). 

Surprise, NL = coNL! 
𝑃𝐴𝑇𝐻 ∈ 𝑁𝐿, 𝑃𝐴𝑇𝐻 is NL-complete (note this implies  𝑃𝐴𝑇𝐻̅̅ ̅̅ ̅̅ ̅̅  is coNL complete, if you reverse the reduction). 

The difficult part is to show that 𝑈𝑁𝑅𝐸𝐴𝐶𝐻𝐴𝐵𝐼𝐿𝐼𝑇𝑌 = 𝑃𝐴𝑇𝐻̅̅ ̅̅ ̅̅ ̅̅ ∈ 𝑁𝐿. Once that’s done (see textbook), the following 

comes easy: 

𝑃𝐴𝑇𝐻̅̅ ̅̅ ̅̅ ̅̅ ∈ 𝑁𝐿 ⇒ 𝑃𝐴𝑇𝐻 ∈ 𝑐𝑜𝑁𝐿 ⇒ (since 𝑃𝐴𝑇𝐻 is NL − complete) ⇒ ∀𝐴 ∈ 𝑁𝐿, 𝐴 ∈ 𝑐𝑜𝑁𝐿 

𝑃𝐴𝑇𝐻 ∈ 𝑁𝐿 ⇒ 𝑃𝐴𝑇𝐻̅̅ ̅̅ ̅̅ ̅̅ ∈ 𝑐𝑜𝑁𝐿 ⇒ (we know that 𝑃𝐴𝑇𝐻̅̅ ̅̅ ̅̅ ̅̅  is coNL − complete) ⇒ ∀𝐴 ∈ 𝑐𝑜𝑁𝐿, 𝐴 ∈ 𝑁𝐿 

Thus, 𝑁𝐿 = 𝑐𝑜𝑁𝐿. 


