
Alin Tomescu, 6.840 Theory of Computation (Fall 2013), taught by Prof. Michael Sipser

1

DFAs and CFGs
NFA/DFAs
Symmetric difference: 𝐴 Δ 𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴) = (𝐴 ∩ �̅�) ∪ (𝐵 ∩ �̅�)

← 𝐴 Δ 𝐵 is the red part (𝐴 is the left circle, 𝐵 is the right circle)

NFA to DFA conversion can result in exponential state blow up: 𝑘 NFA states → 2𝑘 DFA states

If a 𝒌-state NFA rejects any string, it will have to reject a string of length ≤ 2𝑘, because if you convert the NFA to a DFA

and take the complement, you get a DFA for the complement of the NFA’s language. But this is a 2𝑘 state DFA, which

will have to accept a string of length ≤ 2𝑘 if it ever accepts something (⇔ if the NFA ever rejects something).

If a 𝒌𝟏-state NFA and a 𝒌𝟐-state NFA both accept some string, then the shortest such string has length ≤ 𝑚1𝑚2

(because, “we can always remove a segment of the string where a repeated state occurs in both accepting

computations of the two NFAs and the number of pairs of states is 𝑚1𝑚2”, Prof. Sipser).

Converting DFAs to regular expressions can kind of blow up in size exponentially. See below:

← produces ⇒

CFGs

Closure properties
𝐶𝐹𝐺 ∩ 𝑅𝐸𝐺 (intersection with regular languages)

because you can build a PDA that keeps track of the DFA for the regular language and also continues to do the initial

PDA’s work.

𝐶𝐹𝐺1 ∪ 𝐶𝐹𝐺2 (union)

𝐶𝐹𝐺𝑅 (reversal)

𝐶𝐹𝐺1 ⋅ 𝐶𝐹𝐺2 (concatenation)

𝐶𝐹𝐺∗ (kleene star)

CFGs are NOT closed under intersection, difference, and complement.
For intersection, consider the following counter-example:

𝐴 = {0𝑚1𝑛2𝑛 | 𝑛 ≥ 0}, 𝐵 = {0𝑚1𝑚2𝑛}

Alin Tomescu, 6.840 Theory of Computation (Fall 2013), taught by Prof. Michael Sipser

2

Then 𝐴 ∩ 𝐵 = {0𝑛1𝑛2𝑛 | 𝑛 ≥ 0}, which can be proven to be non-context free using the pumping lemma.

Chomsky normal form
Chomsky normal form grammars only have productions of the form 𝐴 → 𝐵𝐶 | 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 and 𝑆 → 𝜀. Thus, any string 𝑤

in the grammar can be derived in at most 2|𝑤| − 1 steps.

