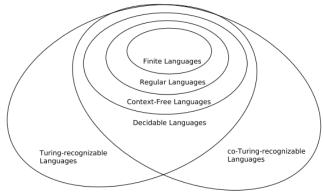
How to prove Turing decidability of languages

Language hierarchy



Recognizability

Reduce to A_{TM} : *R* is **T-recog** if it is reducible to A_{TM} ($R \leq_m A_{TM}$)

Reduce to recognizable language: If $R \leq_m R'$ and R' is T-recog, then R is **T-recog**

Give enumerator: *R* is **T-recog** $\Leftrightarrow \exists$ an enumerator *E* such that L(E) = R

Give recognizer: *R* is **T-recog** $\Leftrightarrow \exists$ a Turing machine *T* such that L(T) = R (by existence of TM recognizer)

- **WARNING:** Be careful when saying stuff like "I can recognize if this happens by simulating M on all inputs and checking if it accepts". If you do something like this for, let's say, $\overline{E_{TM}}$, then you have to make sure you use **dove-tailing** so as to not get stuck in an infinte loop on a particular input.

R is **T-recog** $\Leftrightarrow \exists$ a language *D*, such that $R = \{x \mid \exists y (\langle x, y \rangle \in D)\}$ (by projection of decidable language)

Decidability

Give lexicographic-order enumerator: A is **T-decidable** $\Leftrightarrow \exists$ an enumerator E such that E prints all of the strings in A in lexicographic order.

Show language and its complement are both recognizable: If A is T-recog and \overline{A} is T-recog then A is T-decidable.

- I can take both recognizers and run them in parellel, simulating a step on each one, eventually one will accept, allowing me to decide A. It is important that you run them step-by-step in parallel, as opposed to first running the \overline{A} recognizer and then running the \overline{A} recognizer. What if the first recognizer never halts?

Reduce to decidable language: If $D \leq_m D'$ and D' is decidable, then D is **T-decidable** (by mapping-reducibility to decidable language)

- Because I can map D to D', solve the D' instance, and I will have solved the D instance.

Undecidability

Reduce from A_{TM} : U is **undecidable** if A_{TM} is reducible to U (by reduction from A_{TM})

Reduce from undecidable problem: If $U' \leq_m U$ and U' is undecidable, then U is **undecidable** (by mapping-reducibility from undecidable language)

Alin Tomescu, *6.840 Theory of Computation (Fall 2013)*, taught by Prof. Michael Sipser Turing-unrecognizability

If $A \leq_m B$ and A is **not T-recognizable**, then B is **not Turing-recognizable** (by mapping-reducibility to unrecognizable language).

If A is not decidable, then A or \overline{A} is **not Turing-recognizable**.

If J is undecidable and $J \leq_m \overline{J}$, then both J and \overline{J} are **not Turing-recognizable.**

Examples

Decidable: A_{DFA} , E_{DFA} , EQ_{DFA} , A_{CFG} , E_{PDA} , A_{LBA}

Undecidable: A_{TM} , $HALT_{TM}$, ALL_{PDA} , EQ_{CFG} , E_{LBA} , PCP. Also ALL_{TM} .

Unrecognizable: $\overline{A_{TM}}$, E_{TM} , EQ_{TM} , $\overline{EQ_{TM}}$