
Alin Tomescu, 6.840 Theory of Computation (Fall 2013), taught by Prof. Michael Sipser

1

Pumping lemmas
For regular languages
If 𝐴 is regular, then ∃𝑝 (the pumping length) such that ∀𝑠 ∈ 𝐴 where |𝑠| ≥ 𝑝, we can divide 𝑠 into three pieces 𝑠 = 𝑥𝑦𝑧,

satisfying the following conditions:

(1) 𝑥𝑦𝑖𝑧 ∈ 𝐴, ∀𝑖 ≥ 0

(2) |𝑥𝑦| ≤ 𝑝

(3) 𝑦 ≠ 𝜀

Example: 0𝑛1𝑛 is not regular

For context-free languages
If 𝐴 is context-free, then ∃𝑝 (the pumping length) such that ∀𝑠 ∈ 𝐴 where |𝑠| ≥ 𝑝, we can divide 𝑠 into five pieces 𝑠 =

𝑢𝑣𝑥𝑦𝑧, satisfying the following conditions:

(1) 𝑢𝑣𝑖𝑥𝑦𝑖𝑧 ∈ 𝐴, ∀𝑖 ≥ 0

(2) |𝑣𝑥𝑦| ≤ 𝑝
(3) 𝑣𝑦 ≠ 𝜀

Example: 𝑎𝑛𝑏𝑛𝑐𝑛 is not context-free. If it were, then let 𝑝 be the pumping length and consider 𝑤 = 𝑎𝑝𝑏𝑝𝑐𝑝. We can get

a contradiction on |𝑣𝑥𝑦| ≤ 𝑝 by noticing that wherever it “falls” within 𝑤, if we pump 𝑤 = 𝑢𝑣𝑥𝑦𝑧 up to 𝑢𝑣2𝑥𝑦2𝑧 the

resulting string is not in the language anymore due to imbalanced number of letters or out of order letters.

Notes on the pumping lemma
A language will have a minimum pumping length 𝑝. Also, all 𝑝′ > 𝑝 will be valid pumping lengths.

- For finite DFAs, the minimum pumping length that vacuously satisfies the lemma conditions is 𝑘 where 𝑘 is the

number of states.

- For infinite DFAs, the minimum pumping length is 𝑘, where 𝑘 is the number of states.

- For finite grammars, it seems like a working pumping length is 2𝑚, where 𝑚 is the # of variables in the CNF

grammar. This is because you can only generate strings up to 2𝑚−1 in size with 𝑚 CNF grammar variables.

How do I think about using the conditions? For any 𝑝, EVERY string longer than 𝑝 must have at least one way to divide it

so that the conditions hold. Thus, when you are finding a contradiction, you need to find ONE string (there may be more,

but you don't care about that) for which there is NO way to divide it up so that the conditions hold.

IMPORTANT: Once you’ve found the string, you only need to find one value of 𝑖 for which the string cannot be pumped!

Just one.

