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Time and space classes 
Little Oh (𝑜, <) and Big Oh (𝑂, ≤) 
Quick description: 

𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) ⇔ 𝑓(𝑥) ≤ 𝑐𝑔(𝑥), for some 𝑐 and for all big enough 𝑥 

𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)) ⇔ lim
𝑥→∞

𝑓(𝑥)

𝑔(𝑥)
= 0 

Also equivalent to saying that for all 𝑐 > 0, there exist big enough 𝑥 such that 𝑓(𝑛) < 𝑐𝑔(𝑛) 

What we know 
Theorem Details 

𝑃 ⊆ 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃 ∀𝐴 ∈ 𝑃, 𝐴 ∈ 𝑁𝑃 ∧ �̅� ∈ 𝑁𝑃 

NP-complete ⊂ NP-hard By definition of NP-hard, every NP-complete problem is also NP-hard.  

𝑁𝐿 ⊆ 𝑃  

𝑁𝐿 ≠ 𝑃𝑆𝑃𝐴𝐶𝐸 
≠ 𝐸𝑋𝑃𝑆𝑃𝐴𝐶𝐸 

Space hierarchy theorem. 

𝑃 ≠ 𝐸𝑋𝑃𝑇𝐼𝑀𝐸 Time hierarchy theorem. 

𝑈𝑁𝐼𝑄𝑈𝐸-𝑆𝐴𝑇 ∈ 𝑃𝑆𝐴𝑇  If we can find an 𝑥𝑖, 𝑖 ≤ 𝑛 such that 𝜙𝑖(𝑥1 = 𝑎, 𝑥2 = 𝑏, … , 𝑥𝑖 , 𝑥𝑖+1, … , 𝑥𝑛) is 
satisfiable for 𝑥𝑖 = 0 and 𝑥𝑖 = 1 then we reject. Otherwise, we recurse on the 𝑥𝑖 
assignment that made 𝜙 satisfiable. 

𝐼𝑃 = 𝑃𝑆𝑃𝐴𝐶𝐸  

𝑁𝑃 ⊆ 𝐼𝑃 Prover sends certificate, verifier runs the verification algorithm. 

𝐵𝑃𝑃 ⊆ 𝐼𝑃 Prover does nothing, verifier runs the BPP algorithm for the problem in poly-time. Or 
because 𝐵𝑃𝑃 ⊆ 𝑃𝑆𝑃𝐴𝐶𝐸 since we can simulate all possible coin flips in NPSPACE 
and thus simulate a prob. poly time TM. 

𝑤𝑒𝑎𝑘-𝐼𝑃 = 𝐵𝑃𝑃 Because, just like with 𝐼𝑃, we can solve any 𝐵𝑃𝑃 problem in 𝑤𝑒𝑎𝑘-𝐼𝑃 by just having 
the verifier run the 𝐵𝑃𝑃 algorithm. Thus, 𝐵𝑃𝑃 ⊆ 𝑤𝑒𝑎𝑘-𝐼𝑃. Also, any problem in 
𝑤𝑒𝑎𝑘-𝐼𝑃 can be solved in 𝐵𝑃𝑃 since both the prover and verifier are polynomial, 
which means their interaction will be polynomial, and can be simulated in 𝐵𝑃𝑃. 

Complexity classes 
- RED means the problem is known to be complete for its class 

- PURPLE means the problem is not known to be complete for its class (but could be, open for proving) 

- BLACK means I have not investigated  

Problems 
in P 

Reasons or explanation 

PATH Run a BFS/DFS on the graph. 

RELPRIME Run the Euclidean algorithm: Until 𝑦 = 0, 𝑥 ← 𝑥 mod 𝑦, exchange 𝑥 and 𝑦. Output 𝑥. 

PRIMES Use the recently discovered AKS algorithm. 

𝐴𝐶𝐹𝐺  Convert grammar to CNF. Use dynamic programming 𝑂(𝑛4) algo. to build 𝑛 × 𝑛 table for acceptance. 

𝐴𝐷𝐹𝐴 Simulate the DFA and see if 𝑤 is accepted. 
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𝐸𝐷𝐹𝐴 Run a BFS/DFS on the DFA’s graph to see if there is a path from start to accept state. 

𝐸𝑁𝐹𝐴 Similar to 𝐸𝐷𝐹𝐴. 

𝐴𝐿𝐿𝐷𝐹𝐴 Build the complement of the DFA, by flipping accept into non-accept states and vice-versa. 

𝐸𝑄𝐷𝐹𝐴 Take the symmetric difference, get an NFA, and use 𝐸𝑁𝐹𝐴 ∈ 𝑃 on it. 

 

Problems in NP Reasons or explanation 

HAMPATH The certificate 𝑐 is the Hamiltonian path. We can check it against the graph 𝐺. 

LPATH Reduction from 𝐻𝐴𝑀𝑃𝐴𝑇𝐻. 

COMPOSITES 𝑐 is the two numbers 𝑎, 𝑏 such that 𝑛 = 𝑎𝑏. 

CLIQUE 𝑐 is the 𝑘-clique itself. We can check it against the graph 𝐺. 

SUBSET-SUM {〈𝑆, 𝑡〉 | 𝑆 = {𝑥1, … , 𝑥𝑘}, and for some {𝑦1, … , 𝑦𝑘} ⊆ 𝑆, we have ∑𝑦𝑖 = 𝑡}, 𝑐 = {𝑦1, … , 𝑦𝑘}. 

SAT, 3SAT 𝑐 is the truth value assignments of the variables such that 𝜙 = 𝑡𝑟𝑢𝑒 

VERTEX-COVER Every edge in 𝐺 needs to touch the nodes in the VC. 𝑐 is the set of nodes of size 𝑘 in the VC. 

ISO Graph isomorphism 〈𝐺1, 𝐺2〉, because 𝑐 = permutation of nodes 

FACTORING In 𝑁𝑃 ∩ 𝑐𝑜𝑁𝑃. Not known to be NP-complete. If proven to be (surprisingly) then 𝑁𝑃 = 𝑐𝑜𝑁𝑃. 

𝐸𝑄𝐵𝑃
̅̅ ̅̅ ̅̅ ̅ Non-deterministically try all assignments, accept if the two BPs disagree on one. coNP-

complete. 

𝐸𝑄𝑅𝑂𝐵𝑃
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  Not known to be coNP-complete, but can be solved using reduction to EQ

BP
̅̅ ̅̅ ̅̅ . 

 

Remember: 𝐴 is NP-complete and 𝐴 ≤𝑝 �̅� ⇒ 𝑁𝑃 ⊆ 𝑐𝑜𝑁𝑃 

Problems in 
PSPACE 

Details 

TQBF Basically an instance of SAT, with “exists” (∃) quantifiers. To solve it in PSPACE, we have to take 
care of “for all” (∀) quantifiers by trying all truth values for such variables and making sure they all 
satisfy the expression. We can do this recursively, peeling off each quantifier and filling in truth 
values in the expression, until we can evaluate it (𝑂(𝑛 + log 𝑛) space). PSPACE-completeness 
proof is similar to Savitch’s theorem proof, but we rely on the quantifiers to assert the existence of 
an intermediary configuration of the PSPACE machine we are trying to simulate. 

𝐴𝐿𝐵𝐴 We can solve 𝑇𝑄𝐵𝐹 using an LBA and a recursive algorithm, filling in the values for each variable. 
(see HW6 for 𝑇𝑄𝐵𝐹 ≤𝑝 𝐴𝐿𝐵𝐴) 

FORMULA-
GAME 

∃𝑥1, ∀𝑥2, ∃𝑥3[(𝑥1 ∨ 𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (𝑥2 ∨ �̅�3)], each player takes turns picking a value for the 
variables. Can the first player win? Prove it’s PSPACE-complete using reduction from TQBF (insert 
dummy variables with appropriate quantifiers to convert any QBF to a formula game). 

𝐺𝐺 Given a directed graph 𝐺 and a start node 𝑠, players take turns picking the next node of a simple 
path (respecting graph transitions, no node repeats). The goal of player A is to get player B “stuck” 
in a node, such that he has no more edges to pick for his next path (all used up, or none outgoing). 
Prove it’s PSPACE-complete using reduction from TQBF or FORMULA-GAME. 

𝐸𝑄𝑁𝐹𝐴 We can try all strings of size 2max{|𝑄1|,|𝑄2|} (non-deterministically by picking next symbol and next 
transitions in NFAs to simulate) and see if the two NFAs disagree on any string. If they do, then 
they’re not equal. 

𝐸𝑄𝑅𝐸𝑋 Convert to NFAs and run 𝐸𝑄𝑁𝐹𝐴. 

𝐴𝐿𝐿𝑁𝐹𝐴 𝐴𝐿𝐿𝑁𝐹𝐴
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∈ 𝑁𝑃𝑆𝑃𝐴𝐶𝐸 because we can non-deterministically try all strings of length ≤ 2|𝑄| and see 
if the NFA rejects. From Savitch ⇒ 𝐴𝐿𝐿𝑁𝐹𝐴

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∈ 𝑃𝑆𝑃𝐴𝐶𝐸 and, since 𝑃𝑆𝑃𝐴𝐶𝐸 = 𝑐𝑜𝑃𝑆𝑃𝐴𝐶𝐸 ⇒
𝐴𝐿𝐿𝑁𝐹𝐴 ∈ 𝑃𝑆𝑃𝐴𝐶𝐸. 
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MIN-
FORMULA 

We don’t care about time, so we can generate all small formulas (a lot of them), one at a time, and 
check if the two formulas are equivalent (exponential time). Not known to be in 𝑐𝑜𝑁𝑃. 

 

Problems in 
EXPSPACE 

Reasons or explanation 

𝐸𝑄𝑅𝐸𝑋↑ Regular expressions with exponentiation. Reduction from 𝑀, 𝑤 is 𝑅1 = Δ∗, Δ = 𝑄 ∪ Γ ∪ {#} and 
𝑅2 = all strings over Δ that are not rejecting computation histories of 𝑀 on 𝑤. 𝑅1 ≡ 𝑅2 iff. 𝑀 
accepts 𝑤. 

 

Problems 
in L 

Details 

𝐴𝐷𝐹𝐴 Simulate DFA by keeping track of current node in 𝐷𝐹𝐴, a number from 1 to 𝑛, representable on log 𝑛 
bits. 

UPATH Complicated proof in a paper quoted in the textbook. 

 

Problems 
in (co)NL 

Reasons or explanation 

PATH In NL, because we can non-deterministically pick the next node and guess the path (repeat 𝑛 times). 
It’s complete because we can reduce any NL problem to PATH in log-space by creating a graph of all 
the configurations with transitions between possible adjacent configurations. Note that a 
configuration for an NL machine is log-sized, so our log-space transducer can work. 

𝑃𝐴𝑇𝐻̅̅ ̅̅ ̅̅ ̅̅  Fairly non-obvious algorithm in 𝑁𝐿. See resources online and in textbook. ⇒ 𝑁𝐿 = 𝑐𝑜𝑁𝐿. 

𝐸𝐷𝐹𝐴 Show 𝐸𝐷𝐹𝐴 is coNL-complete using reduction from  𝑃𝐴𝑇𝐻̅̅ ̅̅ ̅̅ ̅̅ . This will imply it’s also NL-complete. 

𝐸𝑁𝐹𝐴 Also by reduction from  𝑃𝐴𝑇𝐻̅̅ ̅̅ ̅̅ ̅̅ . 

𝐴𝑁𝐹𝐴 We can non-deterministically simulate the NFA up to |𝑤| × |𝑄| transitions to see if it accepts 𝑤. We 
can reduce from 𝑃𝐴𝑇𝐻, by creating an NFA just like the original graph but with just 𝜀 transitions and 
𝑞0 = 𝑠, 𝑞𝑎𝑐𝑐 = 𝑡. We can check if the NFA accepts the empty string. 

𝐵𝑂𝑇𝐻𝑁𝐹𝐴 {〈𝑀1, 𝑀2〉 | NFAs where 𝐿(𝑀1) ∩ 𝐿(𝑀2) ≠ ∅} is in NL because you can try all strings of size ≤ 𝑘1𝑘2 (# 
of states in the NFAs) and see if they agree on any. It’s complete because we can reduce 𝐸𝐷𝐹𝐴

̅̅ ̅̅ ̅̅  to it by 
using 𝑀2 as the NFA for Σ∗. 

𝐸𝑄𝐷𝐹𝐴 Because we can decide  𝐸𝑄𝐷𝐹𝐴
̅̅ ̅̅ ̅̅ ̅̅ ̅ if we try all strings of length ≤ max{𝑘1, 𝑘2} (number of states) and see 

if they disagree on anything. 

CYCLE Can solve with PATH from 𝑠 to 𝑠. Can reduce from PATH by “unwinding” the graph: 1) ∀𝑣 ∈ 𝑉, add 
𝑣𝑘 ∈ 𝑉𝑘, 2) ∀𝑎 → 𝑏 ∈ 𝐸, add ∀𝑘, 𝑎𝑘−1 → 𝑏𝑘 in 𝐺′, 3) add 𝑡|𝑉| → 𝑠1 in 𝐺′. 

ODDCYCLE We can non-deterministically select a start vertex, an odd length 𝑙 ≤ |𝑉| and then keep guessing non-
deterministically for the next node. If there is an odd cycle, we will guess it. 

BIPARTITE Can use the 𝑂𝐷𝐷𝐶𝑌𝐶𝐿𝐸 algorithm to make sure there are no odd cycles in the graph. 

 

Remember: For 𝑁𝐿/𝑐𝑜𝑁𝐿, when proving something is in 𝑁𝐿 you can either: 

- Prove it’s in 𝑐𝑜𝑁𝐿, and 𝑁𝐿 = 𝑐𝑜𝑁𝐿 

- Logspace-reduce it to another problem in 𝑁𝐿/𝑐𝑜𝑁𝐿, like 𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇𝑅𝐸𝑋 ≤𝑙 𝐷𝐼𝑆𝐽𝑂𝐼𝑁𝑇𝑁𝐹𝐴 ∈ 𝑁𝐿 
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Unknown 
problems  

Reasons or explanation 

𝐻𝐴𝑀𝑃𝐴𝑇𝐻̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ We cannot come up with a certificate to prove it’s in NP. 

𝐸𝑄𝑁𝐹𝐴 Not known to be in 𝑃, according to prob. 7.11 in 3rd ed. 

Probabilistic complexity classes 
A probabilistic time TM 𝑀 decides language 𝐴 with error probability 𝜀 if for all 𝑤, we have: 

- 𝑤 ∈ 𝐴 ⇒ Pr[𝑀 accepts 𝑤] ≥ 1 − 𝜀 

- 𝑤 ∉ 𝐴 ⇒ Pr[𝑀 accepts 𝑤] ≤ 𝜀 

A prob. time TM is an NTM where each non-deterministic step is called a coin-flip step and has two legal moves. The 

probability of a branch 𝑏 is 2−𝑘, where 𝑘 is the # of coin flips that occurred on that branch. 

𝐵𝑃𝑃 = {𝐴 | ∃prob. time TM that decides 𝐴 with error probability ≤ 1/3} 

Amplification lemma: Says that A probabilistic poly-time TM with error probability 𝜀 <
1

2
 has another equivalent 

probabilistic poly time TM with error 𝜀′ as small as you want. 

Problems in 
BPP 

Details 

PRIMES and 
COMPOSITES 

Use Fermat’s little theorem: 𝑝 is prime and 𝑎 < 𝑝 ⇒ ∀𝑎, 𝑎𝑝−1 ≡ 1 (mod 𝑝). If we can find an 𝑎 such 
that the prime test is failed, then 𝑝 is not prime. The good news is that most 𝑎 will fail the test! BPP 
algorithm just picks two such 𝑎′𝑠 and accepts its input as composite if both 𝑎’s fail the test. 

Pr[𝐶𝑂𝑀𝑃𝑂𝑆𝐼𝑇𝐸𝑆 accepts prime 𝑤] = 0 and . Pr[𝐶𝑂𝑀𝑃𝑂𝑆𝐼𝑇𝐸𝑆 accepts composite 𝑤] =
3

4
 (see 

Carmichael numbers) 

𝐸𝑄𝑅𝑂𝐵𝑃 It’s easy to build two ROBPs that agree on all but one or two inputs, so we have to use the 
arithmetization trick to turn two ROBPs that disagree rarely, into two ROBPs that disagree very 
often, while still keeping them equal if they were equal. 

 

Definition: 𝑅𝑃: always reject 𝑤 when 𝑤 ∉ 𝐴 

- 𝑤 ∈ 𝐴 ⇒ Pr[𝑀 accepts 𝑤] ≥
1

2
 

- 𝑤 ∉ 𝐴 ⇒ Pr[𝑀 accepts 𝑤] = 0 ⇔ Pr[𝑀 rejects 𝑤] = 1 

Definition: 𝑐𝑜𝑅𝑃: always accept 𝑤 when 𝑤 ∈ 𝐴 

- 𝑤 ∈ 𝐴 ⇒ Pr[𝑀 accepts 𝑤] = 1 ⇔ Pr[𝑀 rejects 𝑤] = 0 

- 𝑤 ∉ 𝐴 ⇒ Pr[𝑀 accepts 𝑤] ≤
1

2
 

Problems in 
RP 

Details 

COMPOSITES Pr[𝐶𝑂𝑀𝑃𝑂𝑆𝐼𝑇𝐸𝑆 accepts prime 𝑤] = 0 and Pr[𝐶𝑂𝑀𝑃𝑂𝑆𝐼𝑇𝐸𝑆 accepts composite 𝑤] ≥
3

4
 

 

Problems in 
coRP 

Details 

PRIMES Pr[𝑃𝑅𝐼𝑀𝐸𝑆 accepts prime 𝑤] = 1 and Pr[𝑃𝑅𝐼𝑀𝐸𝑆 accepts composite 𝑤] ≤
1

4
 

𝐸𝑄𝑅𝑂𝐵𝑃  

http://en.wikipedia.org/wiki/Carmichael_number
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Open problems 
- GREEN means the statement is believed to be true, like 𝑃 ≠ 𝑁𝑃 is believed to be true. 

- BLACK means I have not investigated  

Open problems  Reason, implications 

𝑃 ≠ 𝑁𝑃 If 𝑃 = 𝑁𝑃, that would imply 𝑁𝑃 = 𝑐𝑜𝑁𝑃, because 𝑃 = 𝑐𝑜𝑃 and 𝑐𝑜𝑃 = 𝑐𝑜𝑁𝑃. 

𝑃 ≠ 𝑃𝑆𝑃𝐴𝐶𝐸  

𝑁𝑃 ≠ 𝑐𝑜𝑁𝑃  

𝑇𝑄𝐵𝐹 ∈ 𝑁𝑃 It would imply 𝑁𝑃 = 𝑃𝑆𝑃𝐴𝐶𝐸. 

𝐿 ≠ 𝑁𝐿 Savitch’s theorem does not help here because 𝑓(𝑛) = log 𝑛 and the square of log 𝑛 is not log 𝑛. 

𝐿 ≠ 𝑃  

𝑁𝑃 ≠ 𝑃𝑆𝑃𝐴𝐶𝐸  

𝑁𝑃 ⊆ 𝐵𝑃𝑃  

 


