
Crypto math II

Alin Tomescu
alinush@mit.edu

May 27, 2015

Abstract

A quick overview on group theory from Ron Rivest’s 6.857 course in Spring 2015.

1 Overview

• Group theory review

• Diffie-Hellman (DH) key exchange

• Five crypto groups:

– Z˚p
– Qp

– Z˚n
– Qn

– elliptic curves

2 Group theory review

Here, we are talking about multiplicative groups (where the operation between group elements is
something resembling multiplication)

Definition: pG, ¨q is a finite abelian group of size t if:

• D identity 1 such that @a P G, a ¨ 1 “ 1 ¨ a “ a

• @a P G, Db P G such that a ¨ b “ 1

• @a, b, c P G, a ¨ pb ¨ cq “ pa ¨ bq ¨ c

• @a, b P G, a ¨ b “ b ¨ a

1

2.1 Order and generators

Definition: The order of a in G is denoted by orderpaq and is equal to the least u such that au “ 1

Lagrange’s Theorem: In a finite abelian group of size t, for all a P G, orderpaq � t

Theorem: In a finite abelian group of size t, @a P G, at “ 1

Example: app´1q “ 1,@a P Z˚p because |Z˚p | “ 1

Definition: xay “ tai : i ě 0u “ subgroup generated by a.

Definition: If xay “ G then G is cyclic and a is a generator of G.

Note: |xay| “ orderpaq

Exercise: In a finite abelian group G of order t, where t is prime, we have: @a P G, if a ‰ 1 ñ a is
a generator of G.

Solution: We know that the size of any subgroup of G must divide t. Since t is prime, any subgroup
can either have size 1 or t. Thus, only trivial subgroups can exist: the subgroup made up of the
identity element (t1u) and G itself. Since a ‰ 1, any subgroup generated by a cannot be equal
to t1u because it will have to contain a itself which is different than 1. Thus, if a generates any
subgroup, it has to generate G itself. How do we know that a generates any subgroup at all then?
We know a P G ñ au P G,@u and, informally, we know that there cannot be a u, 1 ă u ă t such
that au “ 1 because that would create a subgroup of G of size u, which would imply u � t, which
would be false since t is prime.

Theorem: Z˚p is always cyclic (i.e. there exists a generator within Z˚p)

2.2 Discrete logs

Theorem: If G is a cyclic group of order t and generator g then the relation xØ gx is one-to-one
between r0, 1, . . . , t´ 1s and G.

x ÞÑ gx : exponentiation, ”powering-up”

gx ÞÑ x : discrete logarithm (DL)

Computing discrete logarithms (the DL problem) is commonly assumed to be hard/infeasible for
well-chosen groups G (e.g. Z˚p for p a large randomly chosen prime).

In practice, we need to be able to translate bits of data or messages from a message space M to
group elements of G. We need an one-to-one (injective) function f : M Ñ G such that fpmq P G
can be chosen to represent message m PM .

TODO: Does f need to be onto (surjective) as well? Are there cases where we need to reverse f?

Example: If we have Z˚p with p ą 2k, then we can represent any k-bit message m as a number

x P r0, 2kq because if x P r0, 2kq, then x P Z˚p .

Note: For some groups, finding an easily-computable, space-efficient f may be a little hard.

2

2.3 API for a group

Typically, any library that implements a group should provide the following calls:

Operation API call Comments

creation GÐ createGroupp. . . q
identity G.identitypq

random element xÐ G.randompq
product x ¨ y or `
inverse x´1 or ´x
power xk, x P G, k P Z or k ¨ x
size G.orderpq |G|, not always implemented
list G.elementspq not always implemented

represent xÐ G.reppmq
unrepresent mÐ G.unreppxq
generator G.generatorpq

discrete log xÐ G.discreteLogpg, yq s.t gx “ y, not always efficiently possible

3 Diffie-Hellman key exchange (1976)

How can we establish a shared secret in the presence of a passive eavesdropper Eve?

Let G be a cyclic group with generator g. G and g are fixed and public.

Alice and Bob can agree on a shared secret key k as follows:

1. Alice chooses secret x randomly from r0, . . . , |G| ´ 1s. Note that x R G.

2. Alice computes gx as her public key. Note that gx P G and Alice is the only one who knows
x, the discrete log of gx.

3. Bob, similarly picks a y and computes gy.

4. Alice and Bob exchange gy and gx. Eve sees them.

5. Assuming discrete logs are hard to compute, Eve cannot learn neither x nor y because she
will have a hard time computing the discrete log of gx or gy.

6. Alice computes k “ pgyqx “ gxy

7. Bob computes (the same) k “ pgxqy “ gxy

8. Alice and Bob have agreed on a shared key k

9. Can Eve compute gxy from gx and gy? We assume she can’t and refer to this assumption as
the Computational Diffie-Hellman (CDH) assumption.

Theorem: CDH is hard ñ Diffie-Hellman key exchange is secure (i.e. Eve does not learn k)

Note: Can use k to encrypt and/or MAC messages.

3

Note: If not using an authenticated encryption mode like EAX, derive separate keys for encryption
and authentication kenc “ PRF pk, encq and kmac “ PRF pk,macq.

Note: gx and gy are assumed to be the right public keys for Alice and Bob. What if Eve is active
and changes them on their way to Alice and Bob?

If Eve is active, she can perform a man-in-the-middle attack :

1. Alice sends gx to Bob, but Eve replaces it with ge, for which she knows e. Eve records gx.

2. Bob sends gy to Bob, but Eve replaces it with gv, for which she knows v. Eve records gy.

3. Alice got gv from Eve, so she will compute shared key k1 “ gxv

4. Bob got ge from Eve, so she will compute shared key k2 “ gye

5. Alice and Bob think they are talking to each other, but they agreed to different keys.

6. Eve can compute k1 “ gxv herself: she knows v

7. Eve can compute k2 “ gye herself: she knows e

8. When Alice sends a message to Bob, encrypted and/or MACd with k1, Eve can decrypt and
tamper with the message and then reencrypt and MAC it under k2 for Bob.

9. Eve can do the same for Bob’s messages to Alice.

To fix this problem, we need to prevent Eve from swapping Alice and Bob’s public keys on the
wire. One solution is to have a certification authority (CA) digitally sign gx and gy so that Eve
cannot replace them.

Note: Still not perfect. What if Eve colludes with the CA?

Note: What if Eve has friends with public keys signed by the CA. Those friends can maybe give Eve
their private keys and Eve could still pull the attackñ the digital signature has to cryptographically
bind the user’s identity (Alice) to her public keys gx. This way, if Eve replaces Alice’s public key
with her friend’s Diana public key, Bob will detect this when he verifies the signature on the public
key: the signature will not verify against Alice’s name.

4 The five groups

4.1 Z˚p

Definition: Z˚p “ ta : 1 ď a ă pu, where p is prime

Z˚p is always cyclic (i.e. has a generator). There are non-constructive proofs for this.

If p “ 2q ` 1 and q is prime, then p is a safe prime and half of Z˚p elements are generators and the
other half are squares Qp.

TODO: Proof?

4

4.2 Qp, quadratic residues (squares) mod prime p

Definition: Qp “ ta
2 : 1 ď a ă pu Ĺ Z˚p

TODO: Is a ă p or a2 ă p?

Theorem: |Qp| “
1
2

ˇ

ˇZ˚p
ˇ

ˇ “
pp´1q

2

Theorem: Qp is cyclic: If xgy “ Z˚p , then xg2y “ Qp

Thus, Qp “ tg
2i : 0 ď i ă p´1

2 u, if xgy “ Z˚p

If p “ 2q ` 1, then |Qp| “
pp´1q

2 “ q and any element of Qp (other than 1) generates Qp. To find a
generator, take the square of any element a P Z˚p ´ t1, p´ 1u

TODO: Proof for why Z˚p is split that way? Is p ´ 1 the only generator that would generate a
subgroup of size 2? The identity (i.e. 1) would generate the subgroup of size 1, and apparently all
squares generate Qp of size q, which means the rest either generate Z˚p or the subgroup of size 2.

4.3 Z˚n

Definition: Z˚n “ ta : gcdpa, nq “ 1,where 1 ď a ă nu

Definition: |Z˚n| “ φpnq, the totient function.

If n “ pq where p, q are distinct odd primes, then Z˚n is not cyclic.

...but the Chinese Remainder Theorem says there exists an isomorphism from Z˚n to Z˚p ˆ Z˚q .

4.4 Qn, quadratic residues (squares) mod (non-prime) n

Definition: Qn “ ta
2 : 1 ď a ă n,where gcdpa, nq “ 1u

TODO: Is a ă p or a2 ă p?

TODO: Is gcdpa, nq “ 1 or gcdpa2, nq “ 1?

Theorem: If n “ pq where p “ 2r ` 1 and q “ 2s` 1, then |Qn| “ rs and Qn is cyclic.

4.5 TODO: Elliptic curves

5

