Intro to Bilinear Maps

John Bethencourt

bethenco@cs.cmu.edu

Computer Sciences Department Carnegie Mellon University

```
Intro to Bilinear Maps

Introduction
```

Outline

Introduction

```
Definitions
   Commentary
   Real Instances
Problems and Assumptions
   Basics
   New Problems
History of Usage
   Early Usage
   Recent Usage
Using Bilinear Maps
   Intuition
   Examples of Pairing-Based Constructions
Conclusion
```

Motivation

Why bilinear maps?

- Bilinear maps are the tool of pairing-based crypto
 - ► Hot topic started with an identity based encryption scheme by Boneh and Franklin in 2001
 - Really useful in making new schemes, lots of low hanging fruit
 - Over 200 papers and counting as of March 2006
- What do they basically do?
 - Establish relationship between cryptographic groups
 - Make DDH easy in one of them in the process
 - Let you solve CDH "once"

Definition of a Bilinear Map

Let G_1 , G_2 , and G_t be cyclic groups of the same order.

Definition

A bilinear map from $G_1 \times G_2$ to G_t is a function $e: G_1 \times G_2 \to G_t$ such that for all $u \in G_1$, $v \in G_2$, $a, b \in \mathbb{Z}$,

$$e(u^a, v^b) = e(u, v)^{ab} .$$

Bilinear maps are called pairings because they associate pairs of elements from G_1 and G_2 with elements in G_t . Note that this definition admits degenerate maps which map everything to the identity of G_t .

Definition of an Admissible Bilinear Map

Let $e:G_1\times G_2\to G_t$ be a bilinear map. Let g_1 and g_2 be generators of G_1 and G_2 , respectively.

Definition

The map e is an admissible bilinear map if $e(g_1, g_2)$ generates G_t and e is efficiently computable.

These are the only bilinear maps we care about. Sometimes such a map is denoted \hat{e} ; we continue to use e. Also, from now on we implicitly mean admissible bilinear map when we say bilinear map.

Relationships Between G_1 , G_2 , and G_t

- ▶ G_1 , G_2 , and G_t are all isomorphic to one another since they have the same order and are cyclic
- ► They are different groups in the sense that we represent the elements and compute the operations differently
- Normally, however, $G_1 = G_2$ (in addition to being isomorphic)
 - From now on we assume this unless otherwise noted
 - ▶ Denote both by $G = G_1 = G_2$
- ightharpoonup G and G_t may have either composite or prime order
 - Makes a difference in how they work / are used
 - Most often prime order
- ▶ If $G = G_t$ called a self-bilinear map
 - Very powerful
 - ▶ No known examples, open problem to make one

The Other Notation

- Sometimes G is written additively
 - ▶ In this case P, Q normal names for elements of G
 - ▶ Bilinear property expressed as $\forall P, Q \in G, \ \forall a, b \in \mathbb{Z}$,

$$e(aP, bQ) = e(P, Q)^{ab}$$

- lacktriangle I prefer notation of both G and G_t written multiplicatively
- Will continue to use it

What Groups to Use?

- ▶ Typically *G* is an elliptic curve (or subgroup thereof)
 - ▶ The elliptic curve defined by $y^2 = x^3 + 1$ over the finite field F_p (simple example)
 - Supersingular curves
 - MNT curves
 - Choosing between supersingular curves and MNT curves has performance implications
- ▶ More generally, G is typically an abelian variety over some field
 - Elliptic curves are abelian varieties of dimension 1
 - Other abelian varieties have had some consideration
- $ightharpoonup G_t$ is normally a finite field

What Bilinear Maps to Use?

- (Modified) Weil pairing and Tate pairing are more or less only known examples
 - Very complicated math
 - Non-trivial to compute
 - No need to understand it to use them
- Weil and Tate pairings computed using Miller's algorithm
 - Computationally expensive
 - Common to be very explicit about how many pairings are needed for operations in some scheme
 - Tate pairing normally somewhat faster than Weil
 - Making these faster still is current research

Decisional Diffie-Hellman

First thing to know about bilinear maps is their effect on the Decisional Diffie-Hellman (DDH) problem. Review definition:

Definition

Let G be a group of order q with generator g. The advantage of an probabilistic algorithm $\mathcal A$ in solving the Decisional Diffie-Hellman problem in G is

$$\mathsf{Adv}^{\mathsf{DDH}}_{\mathcal{A},G} = \left| \mathsf{P}\left[\mathcal{A}(g,g^a,g^b,g^{ab}) = 1 \right] - \mathsf{P}\left[\mathcal{A}(g,g^a,g^b,g^z) = 1 \right] \right|$$

where a,b,z are drawn from the uniform distribution on \mathbb{Z}_q and the probability is taken over the choices of a,b,z and \mathcal{A} 's coin flips.

...is Easy with a Bilinear Map!

- lacktriangle Basic property of bilinear map is making DDH easy in G
 - ▶ With bilinear map $e: G \times G \to G_t$, a polynomial time \mathcal{A} may gain advantage one
 - ► Given g, g^a, g^b, g^c , determine whether $c \equiv ab \mod q$ by just checking whether $e(g^a, g^b) = e(g, g^c)$
- ▶ However if the map is from distinct groups G_1 and G_2 , DDH may still be hard in G_1 and / or G_2 (XDH assumption)
 - Believed to be the case with some MNT curves (and only those)
 - ▶ Only possible if there is no efficiently computable isomorphism between G_1 and G_2
 - ▶ A few schemes use this assumption

Computational Diffie-Hellman

- ▶ Note that Computational Diffie-Hellman (CDH) could still be hard in *G*
- That is, a bilinear map is not known to be useful for solving CDH
- lacktriangle A prime order group G is called a gap Diffie-Hellman (GDH) group if DDH is easy in G but CDH is hard
 - Definition is independent of presence of bilinear map
 - Bilinear maps may be viewed as an attempt to make GDH groups

Discrete Log

Next thing to know is the following fact about discrete logs with a bilinear map.

Theorem

If there exists a bilinear map $e: G \times G \to G_t$, then the discrete log problem in G is no harder than the discrete log problem in G_t .

Also straightforward. Given $g \in G$ and $g^a \in G$, we can compute $e(g,g) \in G_t$ and $e(g,g^a) = e(g,g)^a \in G_t$. Then we can use a discrete log solver for G_t to obtain a. This is called the MOV reduction.

Most Common New Problems

Some new problems have been defined and assumed hard in the new bilinear context.

Bilinear Diffie-Hellman Given g, g^a, g^b, g^c , compute $e(g, g)^{abc}$ (something like a "three-way" CDH but across the two groups)

Decisional Bilinear Diffie-Hellman Distinguish

$$(g, g^a, g^b, g^c, e(g, g)^{abc})$$
 from $(g, g^a, g^b, g^c, e(g, g)^a)$

k-Bilinear Diffie-Hellman Inversion Given $g,g^y,g^{y^2},\dots g^{y^k}$, compute $e(g,g)^{\frac{1}{y}}$

k-Decisional Bilinear Diffie-Hellman Inversion Distinguish

$$g, g^{y}, g^{y^{2}}, \dots g^{y^{k}}, e(g, g)^{\frac{1}{y}}$$
 from $g, g^{y}, g^{y^{2}}, \dots g^{y^{k}}, e(g, g)^{z}$

More New Problems

If we have a map from distinct groups G_1 and G_2 , then we can make the "Co" assumptions.

Computational Co-Diffie-Hellman Given $g_1, g_1^a \in G_1$ and $g_2, g_2^b \in G_2$, compute g_2^{ab}

Decisional Co-Diffie-Hellman Distinguish $g_1,g_1^a\in G_1$ and $g_2,g_2^b,g_2^{ab}\in G_2$ from $g_1,g_1^a\in G_1$ and $g_2,g_2^b,g_2^z\in G_2$

Co-Bilinear Diffie-Hellman Given $g_1, g_1^a, g_1^b \in G_1$ and $g_2 \in G_2$, compute $e(g_1, g_2)^{ab}$

Decisional Co-Bilinear Diffie-Hellman Distinguish $g_1,g_1^a,g_1^b,g_2,e(g_1,g_2)^{ab}$ from $g_1,g_1^a,g_1^b,g_2,e(g_1,g_2)^z$

Introduction of Pairings to Cryptography

- ▶ 1993: used to break crypto
 - Weil and Tate pairings first used in cryptographic context in efforts to break ECC
 - Idea was to reduce DLP in elliptic curves to DLP in finite fields (MOV reduction)
- ▶ 2000: first "good" use
 - Joux's protocol for one-round 3-party Diffie-Hellman
 - Previous multi-round schemes for 3-party Diffie-Hellman existed, but showed how bilinear maps could be useful
- ▶ 2001: Boneh and Franklin's identity-based encryption scheme
 - ▶ First practical IBE scheme
 - Showed bilinear maps allowed dramatic new constructions, very influential

2001 to Present (2006)

- Many schemes for new primitives and improved schemes for existing primitives based on bilinear maps
- IBE related stuff
 - Hierarchical identity based encryption (HIBE)
 - ▶ Dual-HIBE
 - ▶ IBE, HIBE without random oracles
 - IBE with threshold decryption
 - Identity based signatures (also ID-based blind signatures, ring signatures, hierarchical ID-based signatures)
 - Identity based chameleon hashes
 - Identity based "signcryption"

2001 to Present (2006)

- Signatures
 - Short signatures (also without random oracles)
 - Blind signatures
 - Multi-signatures
 - Aggregate signatures
 - Verifiable encrypted signatures
 - Ring signatures
 - Threshold signatures
 - Unique signatures without random oracles
 - Authentication-tree based signatures without random oracles

2001 to Present (2006)

- Other stuff
 - BGN cryptosystem, which is sort of doubly homomorphic
 - ► Threshold decryption
 - k-party key agreement
 - ▶ Identification scheme
- Much more

Intuition

- ▶ Informally, why are bilinear maps so useful?
- Lets you "cheat" and solve a computational Diffie-Hellman problem
- But only once!
- lacktriangle After that, you are stuck in the group G_t
- Seems to be just the right level of power
 - Enough to be useful in making a construction work
 - But not enough to make it insecure
- Now several examples of pairing-based constructions to hopefully illustrate this

Joux's 3-Party Diffie-Hellman

This is a simple protocol; you could almost come up with it yourself on the spot.

Let G be a group with prime order q, $e: G \times G \to G_t$ be a bilinear map, and g be a generator of G. Let $\hat{g} = e(g,g) \in G_t$.

Protocol

- 1. Alice picks $a \stackrel{R}{\leftarrow} \mathbb{Z}_q$, Bob picks $b \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and Carol picks $c \stackrel{R}{\leftarrow} \mathbb{Z}_q$.
- 2. Alice, Bob, and Carol broadcast g^a , g^b , and g^c respectively.
- 3. Alice computes $e(g^b, g^c)^a = \hat{g}^{abc}$, Bob computes $e(g^c, g^a)^b = \hat{g}^{abc}$, and Carol computes $e(g^a, g^b)^c = \hat{g}^{abc}$.

Intuition

- From Alice's perspective, map lets you "cheat" to get \hat{g}^{bc} from g^b and g^c
- \blacktriangleright Then regular exponentiation gets you the rest of the way to \hat{g}^{abc}
- Note that you can't use e to get \hat{g}^{abc} from g^a, g^b, g^c
 - $e(g^a, e(g^b, g^c)) = e(g^a, \hat{g}^{bc}) \neq \hat{g}^{abc} (\hat{g}^{bc} \text{ not in } G)$
 - Only one cheat allowed!

Let G be a group with prime order $q, e: G \times G \to G_t$ be a bilinear map, and g be a generator of G. Let $\hat{g} = e(g,g) \in G_t$. Let $h_1: \{0,1\}^* \to G$ and $h_2: G_t \to \{0,1\}^*$ be hash functions. These are all public parameters.

Setup

PKG picks $s \stackrel{R}{\leftarrow} \mathbb{Z}_q$. Then g^s is the public key of PKG.

Encryption

If Alice wants to send a message m to Bob, she picks $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$ then computes the following.

Encrypt
$$(g, g^s, \text{ "Bob"}, m) = (g^r, m \oplus h_2(e(h_1(\text{ "Bob"}), g^s)^r)$$

= $(g^r, m \oplus h_2(e(h_1(\text{ "Bob"}), g)^{rs})$

Making a Private Key

PKG may compute the private key of Bob as follows.

$$\mathsf{MakeKey}(s, \mathsf{"Bob"}) = h_1(\mathsf{"Bob"})^s$$

Decryption

Given an encrypted message $(u,v)=(g^r,m\oplus h_2(e(h_1(\text{"Bob"}),g)^{rs})$ and a private key $w=h_1(\text{"Bob"})^s$, Bob may decrypt as follows.

Decrypt
$$(u, v, w) = v \oplus h_2(e(w, u))$$

 $= m \oplus h_2(e(h_1(\text{"Bob"}), g)^{rs})$
 $\oplus h_2(e(h_1(\text{"Bob"})^s, g^r))$
 $= m \oplus h_2(e(h_1(\text{"Bob"}), g)^{rs})$
 $\oplus h_2(e(h_1(\text{"Bob"}), g)^{rs})$
 $= m$

- ▶ How to understand this?
- ▶ Let t be the discrete log of h_1 ("Bob") base g
- We don't know what it is, but it is well defined
- ▶ Now the situation is like 3-party Diffie-Hellman
 - Alice has public g^r , private r
 - ▶ PKG has public g^s , private s
 - ▶ Bob has public g^t , unknown (!) t
- ▶ $e(h_1(\text{"Bob"}), g)^{rs} = e(g^t, g)^{rs} = \hat{g}^{rst}$ is like session key for encryption

- ▶ Alice and PKG could compute \hat{g}^{rst} just like in Joux's scheme
- But what about Bob?
 - PKG helps him over previously authenticated, secure channel
 - ▶ PKG computes $(g^t)^s = g^{st}$ and sends it to Bob
 - ▶ Bob can now compute $e(g^{st}, g^r) = \hat{g}^{rst}$
- ▶ The point is that Bob gets g^{st} rather than \hat{g}^{st}
 - ightharpoonup With g^{st} , still one cheat left
 - If it was \hat{g}^{st} (which anyone can compute), couldn't apply e anymore

Questions?

- ▶ Best reference is a website called the *The Pairing-Based Crypto Lounge*
- Huge list of papers relating to bilinear maps
- ▶ To get the URL just Google for it