
Will appear in the 2009 IEEE Symposium on Security and Privacy

Native Client: A Sandbox for Portable, Untrusted x86 Native Code

Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth,
Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar

Google Inc.

Abstract

This paper describes the design, implementation and eval-
uation of Native Client, a sandbox for untrusted x86 native
code. Native Client aims to give browser-based applications
the computational performance of native applications with-
out compromising safety. Native Client uses software fault
isolation and a secure runtime to direct system interaction
and side effects through interfaces managed by Native
Client. Native Client provides operating system portability
for binary code while supporting performance-oriented fea-
tures generally absent from web application programming
environments, such as thread support, instruction set ex-
tensions such as SSE, and use of compiler intrinsics and
hand-coded assembler. We combine these properties in an
open architecture that encourages community review and
3rd-party tools.

1. Introduction

As an application platform, the modern web browser
brings together a remarkable combination of resources,
including seamless access to Internet resources, high-
productivity programming languages such as JavaScript, and
the richness of the Document Object Model (DOM) [64]
for graphics presentation and user interaction. While these
strengths put the browser in the forefront as a target for
new application development, it remains handicapped in a
critical dimension: computational performance. Thanks to
Moore’s Law and the zeal with which it is observed by
the hardware community, many interesting applications get
adequate performance in a browser despite this handicap.
But there remains a set of computations that are generally
infeasible for browser-based applications due to performance
constraints, for example: simulation of Newtonian physics,
computational fluid-dynamics, and high-resolution scene
rendering. The current environment also tends to preclude
use of the large bodies of high-quality code developed in
languages other than JavaScript.

Modern web browsers provide extension mechanisms
such as ActiveX [15] and NPAPI [48] to allow native
code to be loaded and run as part of a web application.
Such architectures allow plugins to circumvent the secu-
rity mechanisms otherwise applied to web content, while
giving them access to full native performance, perhaps

as a secondary consideration. Given this organization, and
the absence of effective technical measures to constrain
these plugins, browser applications that wish to use native-
code must rely on non-technical measures for security; for
example, manual establishment of trust relationships through
pop-up dialog boxes, or manual installation of a console
application. Historically, these non-technical measures have
been inadequate to prevent execution of malicious native
code, leading to inconvenience and economic harm [10],
[54]. As a consequence we believe there is a prejudice
against native code extensions for browser-based applica-
tions among experts and distrust among the larger population
of computer users.

While acknowledging the insecurity of the current systems
for incorporating native-code into web applications, we also
observe that there is no fundamental reason why native
code should be unsafe. In Native Client, we separate the
problem of safe native execution from that of extending trust,
allowing each to be managed independently. Conceptually,
Native Client is organized in two parts: a constrained ex-
ecution environment for native code to prevent unintended
side effects, and a runtime for hosting these native code
extensions through which allowable side effects may occur
safely.

The main contributions of this work are:
• an infrastructure for OS and browser-portable sand-

boxed x86 binary modules,
• support for advanced performance capabilities such as

threads, SSE instructions [32], compiler intrinsics and
hand-coded assembler,

• an open system designed for easy retargeting of new
compilers and languages, and

• refinements to CISC software fault isolation, using
x86 segments for improved simplicity and reduced
overhead.

We combine these features in an infrastructure that supports
safe side effects and local communication. Overall, Native
Client provides sandboxed execution of native code and
portability across operating systems, delivering native code
performance for the browser.

The remainder of the paper is organized as follows. Sec-
tion 1.1 describes our threat model. Section 2 develops some
essential concepts for the NaCl1 system architecture and

1. We use ”NaCl” as an adjective reference to the Native Client system.

Figure 1: Hypothetical NaCl-based application for editing and
sharing photos. Untrusted modules have a grey background.

programming model. Section 3 gives additional implemen-
tation details, organized around major system components.
Section 4 provides a quantitative evaluation of the system us-
ing more realistic applications and application components.
In Section 5 we discuss some implications of this work.
Section 6 discusses relevant prior and contemporary systems.
Section 7 concludes.

1.1. Threat Model

Native Client should be able to handle untrusted modules
from any web site with comparable safety to accepted
systems such as JavaScript. When presented to the system,
an untrusted module may contain arbitrary code and data. A
consequence of this is that the NaCl runtime must be able
to confirm that the module conforms to our validity rules
(detailed below). Modules that don’t conform to these rules
are rejected by the system.

Once a conforming NaCl module is accepted for ex-
ecution, the NaCl runtime must constrain its activity to
prevent unintended side effects, such as might be achieved
via unmoderated access to the native operating system’s
system call interface. The NaCl module may arbitrarily
combine the entire variety of behaviors permitted by the
NaCl execution environment in attempting to compromise
the system. It may execute any reachable instruction block
in the validated text segment. It may exercise the NaCl
application binary interface to access runtime services in
any way: passing invalid arguments, etc. It may also send
arbitrary data via our intermodule communication interface,
with the communicating peer responsible for validating
input. The NaCl module may allocate memory and spawn
threads up to resource limits. It may attempt to exploit race
conditions in subverting the system.

We argue below that our architecture and code validity
rules constrain NaCl modules within our sandbox.

2. System Architecture

A NaCl application is composed of a collection of trusted
and untrusted components. Figure 1 shows the structure of a

Figure 2: The hypothetical photo application of Figure 1 with a
trusted storage service.

hypothetical NaCl-based application for managing and shar-
ing photos. It consists of two components: A user interface,
implemented in JavaScript and executing in the web browser,
and an image processing library (imglib.nexe), implemented
as a NaCl module. In this hypothetical scenario, the user
interface and image processing library are part of the ap-
plication and therefore untrusted. The browser component
is constrained by the browser execution environment and
the image library is constrained by the NaCl container.
Both components are portable across operating systems and
browsers, with native code portability enabled by Native
Client. Prior to running the photo application, the user has
installed Native Client as a browser plugin. Note that the
NaCl browser plugin itself is OS and browser specific. Also
note it is trusted, that is, it has full access to the OS system
call interface and the user trusts it to not be abusive.

When the user navigates to the web site that hosts the
photo application, the browser loads and executes the appli-
cation JavaScript components. The JavaScript in turn invokes
the NaCl browser plugin to load the image processing library
into a NaCl container. Observe that the native code module
is loaded silently—no pop-up window asks for permission.
Native Client is responsible for constraining the behavior of
the untrusted module.

Each component runs in its own private address space.
Inter-component communication is based on Native Client’s
reliable datagram service, the IMC (Inter-Module Commu-
nications). For communications between the browser and a
NaCl module, Native Client provides two options: a Simple
RPC facility (SRPC), and the Netscape Plugin Application
Programming Interface (NPAPI), both implemented on top
of the IMC. The IMC also provides shared memory seg-
ments and shared synchronization objects, intended to avoid
messaging overhead for high-volume or high-frequency
communications.

The NaCl module also has access to a “service runtime”
interface, providing for memory management operations,
thread creation, and other system services. This interface
is analogous to the system call interface of a conventional
operating system.

In this paper we use “NaCl module” to refer to untrusted
native code. Note however that applications can use multiple
NaCl modules, and that both trusted and untrusted compo-
nents may use the IMC. For example, the user of the photo

2

application might optionally be able to use a (hypothetical)
trusted NaCl service for local storage of images, illustrated
in Figure 2. Because it has access to local disk, the storage
service must be installed as a native browser plugin; it
can’t be implemented as a NaCl module. Suppose the photo
application has been designed to optionally use the stable
storage service; the user interface would check for the stable
storage plugin during initialization. If it detected the storage
service plugin, the user interface would establish an IMC
communications channel to it, and pass a descriptor for the
channel to the image library, enabling the image library and
the storage service to communicate directly via IMC-based
services (SRPC, shared memory, etc.). In this case the NaCl
module will typically be statically linked against a library
that provides a procedural interface for accessing the storage
service, hiding details of the IMC-level communications
such as whether it uses SRPC or whether it uses shared
memory. Note that the storage service must assume that the
image library is untrusted. The service is responsible for
insuring that it only services requests consistent with the
implied contract with the user. For example, it might enforce
a limit on total disk used by the photo application and
might further restrict operations to only reference a particular
directory.

Native Client is ideal for application components requir-
ing pure computation. It is not appropriate for modules
requiring process creation, direct file system access, or
unrestricted access to the network. Trusted facilities such
as storage should generally be implemented outside of
Native Client, encouraging simplicity and robustness of the
individual components and enforcing stricter isolation and
scrutiny of all components. This design choice echoes micro-
kernel operating system design [2], [12], [25].

With this example in mind we will now describe the
design of key NaCl system components in more detail.

2.1. The Inner Sandbox

Native Client is built around an x86-specific intra-process
“inner sandbox.” We believe that the inner sandbox is robust;
regardless, to provide defense in depth [13], [16] we have
also developed a second “outer sandbox” that mediates
system calls at the process boundary. The outer sandbox
is substantially similar to prior structures (systrace [50] and
Janus [24]) and we will not discuss it in detail in this paper.

The inner sandbox uses static analysis to detect security
defects in untrusted x86 code. Previously, such analysis
has been challenging for arbitrary x86 code due to such
practices as self-modifying code and overlapping instruc-
tions. In Native Client we disallow such practices through a
set of alignment and structural rules that, when observed,
insure that the native code module can be disassembled
reliably, such that all reachable instructions are identified
during disassembly. With reliable disassembly as a tool, our

validator can then insure that the executable includes only
the subset of legal instructions, disallowing unsafe machine
instructions.

The inner sandbox further uses x86 segmented memory
to constrain both data and instruction memory references.
Leveraging existing hardware to implement these range
checks greatly simplifies the runtime checks required to con-
strain memory references, in turn reducing the performance
impact of safety mechanisms.

This inner sandbox is used to create a security subdomain
within a native operating system process. With this organiza-
tion we can place a trusted service runtime subsystem within
the same process as the untrusted application module, with
a secure trampoline/springboard mechanism to allow safe
transfer of control from trusted to untrusted code and vice-
versa. Although in some cases a process boundary could
effectively contain memory and system-call side effects, we
believe the inner sandbox can provide better security. We
generally assume that the operating system is not defect
free, such that the process barrier might have defects, and
further that the operating system might deliberately map
resources such as shared libraries into the address space of
all processes, as occurs in Microsoft Windows. In effect our
inner sandbox not only isolates the system from the native
module, but also helps to isolate the native module from the
operating system.

2.2. Runtime Facilities

The sandboxes prevent unwanted side effects, but some
side effects are often necessary to make a native mod-
ule useful. For interprocess communications, Native Client
provides a reliable datagram abstraction, the “Inter-Module
Communications” service or IMC. The IMC allows trusted
and untrusted modules to send/receive datagrams consisting
of untyped byte arrays along with optional “NaCl Resource
Descriptors” to facilitate sharing of files, shared mem-
ory objects, communication channels, etc., across process
boundaries. The IMC can be used by trusted or untrusted
modules, and is the basis for two higher-level abstractions.
The first of these, the Simple Remote Procedure Call (SRPC)
facility, provides convenient syntax for defining and using
subroutines across NaCl module boundaries, including calls
to NaCl code from JavaScript in the browser. The second,
NPAPI, provides a familiar interface to interact with browser
state, including opening URLs and accessing the DOM, that
conforms to existing constraints for content safety. Either of
these mechanisms can be used for general interaction with
conventional browser content, including content modifica-
tions, handling mouse and keyboard activity, and fetching
additional site content; substantially all the resources com-
monly available to JavaScript.

As indicated above, the service runtime is responsible
for providing the container through which NaCl modules

3

interact with each other and the browser. The service runtime
provides a set of system services commonly associated
with an application programming environment. It provides
sysbrk() and mmap() system calls, primitives to support
malloc()/free() interface or other memory allocation abstrac-
tions. It provides a subset of the POSIX threads interface,
with some NaCl extensions, for thread creation and destruc-
tion, condition variables, mutexes, semaphores, and thread-
local storage. Our thread support is sufficiently complete
to allow a port of Intel’s Thread Building Blocks [51]
to Native Client. The service runtime also provides the
common POSIX file I/O interface, used for operations on
communications channels as well as web-based read-only
content. As the name space of the local file system is
not accessible to these interfaces, local side effects are not
possible.

To prevent unintended network access, network system
calls such as connect() and accept() are simply omitted.
NaCl modules can access the network via JavaScript in
the browser. This access is subject to the same constraints
that apply to other JavaScript access, with no net effect on
network security.

The NaCl development environment is largely based on
Linux open source systems and will be familiar to most
Linux and Unix developers. We have found that porting
existing Linux libraries is generally straightforward, with
large libraries often requiring no source changes.

2.3. Attack Surface

Overall, we recognize the following as the system com-
ponents that a would-be attacker might attempt to exploit:

• inner sandbox: binary validation
• outer sandbox: OS system-call interception
• service runtime binary module loader
• service runtime trampoline interfaces
• IMC communications interface
• NPAPI interface

In addition to the inner and outer sandbox, the system design
also incorporates CPU and NaCl module black-lists. These
mechanisms will allow us to incorporate layers of protection
based on our confidence in the robustness of the various
components and our understanding of how to achieve the
best balance between performance, flexibility and security.

In the next section we hope to demonstrate that secure
implementations of these facilities are possible and that the
specific choices made in our own implementation work are
sound.

3. Native Client Implementation

3.1. Inner Sandbox

In this section we explain how NaCl implements software
fault isolation. The design is limited to explicit control flow,

C1 Once loaded into the memory, the binary is not writable,
enforced by OS-level protection mechanisms during execu-
tion.

C2 The binary is statically linked at a start address of zero, with
the first byte of text at 64K.

C3 All indirect control transfers use a nacljmp pseudo-
instruction (defined below).

C4 The binary is padded up to the nearest page with at least
one hlt instruction (0xf4).

C5 The binary contains no instructions or pseudo-instructions
overlapping a 32-byte boundary.

C6 All valid instruction addresses are reachable by a fall-
through disassembly that starts at the load (base) address.

C7 All direct control transfers target valid instructions.

Table 1: Constraints for NaCl binaries.

expressed with calls and jumps in machine code. Other types
of control flow (e.g. exceptions) are managed in the NaCl
service runtime, external to the untrusted code, as described
with the NaCl runtime implementation below.

Our inner sandbox uses a set of rules for reliable dis-
assembly, a modified compilation tool chain that observes
these rules, and a static analyzer that confirms that the rules
have been followed. This design allows for a small trusted
code base (TCB) [61], with the compilation tools outside
the TCB, and a validator that is small enough to permit
thorough review and testing. Our validator implementation
requires less than 600 C statements (semicolons), including
an x86 decoder and cpuid decoding. This compiles into
about 6000 bytes of executable code (Linux optimized build)
of which about 900 bytes are the cpuid implementation,
1700 bytes the decoder, and 3400 bytes the validator logic.

To eliminate side effects the validator must address four
sub-problems:

• Data integrity: no loads or stores outside of data sand-
box

• Reliable disassembly
• No unsafe instructions
• Control flow integrity

To solve these problems, NaCl builds on previous work on
CISC fault isolation. Our system combines 80386 segmented
memory [14] with previous techniques for CISC software
fault isolation [40]. We use 80386 segments to constrain
data references to a contiguous subrange of the virtual 32-
bit address space. This allows us to effectively implement a
data sandbox without requiring sandboxing of load and store
instructions. VX32 [20], [21] implements its data sandbox
in a similar fashion. Note that NaCl modules are 32-bit x86
executables. The more recent 64-bit executable model is not
supported.

Table 1 lists the constraints Native Client requires of
untrusted binaries. Together, constraints C1 and C6 make
disassembly reliable. With reliable disassembly as a tool,
detection of unsafe instructions is straightforward. A partial
list of opcodes disallowed by Native Client includes:

• syscall and int. Untrusted code cannot invoke the

4

operating system directly.
• all instructions that modify x86 segment state, including
lds, far calls, etc.

• ret. Returns are implemented with a sandboxing se-
quence that ends with an indirect jump.

Apart from facilitating control sandboxing, excluding ret
also prevents a vulnerability due to a race condition if
the return address were checked on the stack. A similar
argument requires that we disallow memory addressing
modes on indirect jmp and call instructions. Native Client
does allow the hlt instruction. It should never be executed
by a correct instruction stream and will cause the module
to be terminated immediately. As a matter of hygiene, we
disallow all other privileged/ring-0 instructions, as they are
never required in a correct user-mode instruction stream.
We also constrain x86 prefix usage to only allow known
useful instructions. Empirically we have found that this
eliminates certain denial-of-service vulnerabilities related to
CPU errata.

The fourth problem is control flow integrity, insuring
that all control transfers in the program text target an
instruction identified during disassembly. For each direct
branch, we statically compute the target and confirm it is
a valid instruction as per constraint C6. Our technique for
indirect branches combines 80386 segmented memory with
a simplified sandboxing sequence. As per constraint C2 and
C4, we use the CS segment to constrain executable text to
a zero-based address range, sized to a multiple of 4K bytes.
With the text range constrained by segmented memory, a
simple constant mask is adequate to ensure that the target
of an indirect branch is aligned mod 32, as per constraints
C3 and C5:

and %eax, 0xffffffe0
jmp *%eax

We will refer to this special two instruction sequence as a
nacljmp. Encoded as a three-byte and and a two-byte jmp
it compares favorably to previous implementations of CISC
sandboxing [40], [41], [56]. Without segmented memory or
zero-based text, sandboxed control flow typically requires
two six-byte instructions (an and and an or) for a total of
fourteen bytes.

Considering the pseudo-code in Figure 3, we next assert
and then prove the correctness of our design for control-
flow integrity. Assuming the text in question was validated
without errors, let S be the set of instructions addresses from
the list StartAddr.

Theorem: S contains all addresses that can be reached
from an instruction with address in S.

Proof: By contradiction. Suppose an address IP not in S
is reached during execution from a predecessor instruction
A with address in S. Because execution is constrained by
x86 segmentation, IP must trivially be in [0:TextLimit). So
IP can only be reached in one of three ways.

// TextLimit = the upper text address limit
// Block(IP) = 32-byte block containing IP
// StartAddr = list of inst start addresses
// JumpTargets = set of valid jump targets

// Part 1: Build StartAddr and JumpTargets
IP = 0; icount = 0; JumpTargets = { }
while IP <= TextLimit:
if inst_is_disallowed(IP):
error "Disallowed instruction seen"

StartAddr[icount++] = IP
if inst_overlaps_block_size(IP):
error "Block alignment failure"

if inst_is_indirect_jump_or_call(IP):
if !is_2_inst_nacl_jmp_idiom(IP) or
icount < 2 or
Block(StartAddr[icount-2]) != Block(IP):
error "Bad indirect control transfer"

else
// Note that indirect jmps are inside
// a pseudo-inst and bad jump targets
JumpTargets = JumpTargets + { IP }

// Proceed to the fall-through address
IP += InstLength(IP)

// Part 2: Detect invalid direct transfers
for I = 0 to length(StartAddr)-1:
IP = StartAddr[I]
if inst_is_direct_jump_or_call(IP):
T = direct_jump_target(IP)
if not(T in [0:TextLimit))

or not(T in JumpTargets):
error "call/jmp to invalid address"

Figure 3: Pseudo-code for the NaCl validator.

case 1: IP is reached by falling through from A. This
implies that IP is InstAddr(A) + InstLength(A). But
this address would have been in S from part 1 of the
construction. Contradiction.

case 2: IP is reached by a direct jump or call from an
instruction A in S. Then IP must be in JumpTargets,
a condition checked by part 2 of the construction.
Observe that JumpTargets is a subset of S, from part
1 of the construction. Therefore IP must be in S.
Contradiction.

case 3: IP is reached by an indirect transfer from an in-
struction at A in S. Since the instruction at A is
an indirect call or jump, any execution of A always
immediately follows the execution of an and. After
the and the computed address is aligned 0 mod 32.
Since no instruction can straddle a 0 mod 32 boundary,
every 0 mod 32 address in [0, TextLimit) must be in
S. Hence IP is in S. Contradiction.

Hence any instruction reached from an instruction in S is
also in S.

Note that this analysis covers explicit, synchronous con-
trol flow only. Exceptions are discussed in Section 3.2.

If the validator were excessively slow it might discourage
people from using the system. We find our validator can
check code at approximately 30MB/second (35.7 MB in 1.2

5

seconds, measured on a MacBook Pro with MacOS 10.5,
2.4GHz Core 2 Duo CPU, warm file-system cache). At
this speed, the compute time for validation will typically
be very small compared to download time, and so is not a
performance issue.

We believe this inner sandbox needs to be extremely
robust. We have tested it for decoding defects using random
instruction generation as well as exhaustive enumeration
of valid x86 instructions. We also have used “fuzzing”
tests to randomly modify test executables. Initially these
tests exposed critical implementation defects, although as
testing continues no defects have been found in the recent
past. We have also tested on various x86 microprocessor
implementations, concerned that processor errata might lead
to exploitable defects [31], [38]. We did find evidence of
CPU defects that lead to a system “hang” requiring a power-
cycle to revive the machine. This occurred with an earlier
version of the validator that allowed relatively unconstrained
use of x86 prefix bytes, and since constraining it to only
allow known useful prefixes, we have not been able to
reproduce such problems.

3.2. Exceptions

Hardware exceptions (segmentation faults, floating point
exceptions) and external interrupts are not allowed, due in
part to distinct and incompatible exception models in Linux,
MacOS and Windows. Both Linux and Windows rely on the
x86 stack via %esp for delivery of these events. Regrettably,
since NaCl modifies the %ss segment register, the stack
appears to be invalid to the operating system, such that it
cannot deliver the event and the corresponding process is
immediately terminated. The use of x86 segmentation for
data sandboxing effectively precludes recovery from these
types of exceptions. As a consequence, NaCl untrusted
modules apply a failsafe policy to exceptions. Each NaCl
module runs in its own OS process, for the purpose of
exception isolation. NaCl modules cannot use exception
handling to recover from hardware exceptions and must be
correct with respect to such error conditions or risk abrupt
termination. In a way this is convenient, as there are very
challenging security issues in delivering these events safely
to untrusted code.

Although we cannot currently support hardware excep-
tions, Native Client does support C++ exceptions [57]. As
these are synchronous and can be implemented entirely at
user level there are no implementation issues. Windows
Structured Exception Handling [44] requires non-portable
operating support and is therefore not supported.

3.3. Service Runtime

The service runtime is a native executable invoked by
an NPAPI plugin that also supports interaction between the

Platform “null” Service
Runtime call time

Linux, Ubuntu 6.06
IntelTM CoreTM 2 6600 156
2.4 GHz
Mac OSX 10.5
IntelTM XeonTM E5462 148
2.8 GHz
Windows XP
IntelTM CoreTM 2 Q6600 123
2.4 GHz

Table 2: Service runtime context switch overhead. The runtimes
are measured in nanoseconds. They are obtained by averaging the
measurements of 10 runs of a NaCl module which measured the
time required to perform 10,000,000 “null” service runtime calls.

service runtime and the browser. It supports a variety of web
browsers on Windows, MacOS and Linux. It implements the
dynamic enforcement that maintains the integrity of the inner
sandbox and provides resource abstractions to isolate the
NaCl application from host resources and operating system
interface. It contains trusted code and data that, while sharing
a process with the contained NaCl module, are accessible
only through a controlled interface. The service runtime
prevents untrusted code from inappropriate memory accesses
through a combination of x86 memory segment and page
protection.

When a NaCl module is loaded, it is placed in a segment-
isolated 256MB region within the service runtime’s address
space. The first 64 KB of the NaCl module’s address space
(NaCl “user” address space) is reserved for initialization
by the service runtime. The first 4 KB is read and write
protected to detect NULL pointers. The remaining 60 KB
contains trusted code that implements our “trampoline” call
gate and “springboard” return gate. Untrusted NaCl module
text is loaded immediately after this 64 KB region. The %cs
segment is set to constrain control transfers from the zero
base to the end of the NaCl module text. The other segment
registers are set to constrain data accesses to the 256 MB
NaCl module address space.

Because it originates from and is installed by the trusted
service runtime, trampoline and springboard code is allowed
to contain instructions that are forbidden elsewhere in un-
trusted executable text. This code, patched at runtime as part
of the NaCl module loading process, uses segment register
manipulation instructions and the far call instruction to
enable control transfers between the untrusted user code and
the trusted service runtime code. Since every 0 mod 32
address in the first 64 KB of the NaCl user space is a
potential computed control flow target, these are our entry
points to a table of system-call trampolines. One of these
entry points is blocked with a hlt instruction, so that the
remaining space may be used for code that can only be
invoked from the service runtime. This provides space for
the springboard return gate.

6

Invocation of a trampoline transfers control from untrusted
code to trusted code. The trampoline sequence resets %ds
and then uses a far call to reset the %cs segment
register and transfer control to trusted service handlers,
reestablishing the conventional flat addressing model ex-
pected by the code in the service runtime. Once outside the
NaCl user address space, it resets other segment registers
such as %fs, %gs, and %ss to re-establish the native-code
threading environment, fully disabling the inner sandbox
for this thread, and loads the stack register %esp with the
location of a trusted stack for use by the service runtime.
Note that the per-thread trusted stack resides outside the
untrusted address space, to protect it from attack by other
threads in the untrusted NaCl module.

Just as trampolines permit crossing from untrusted to
trusted code, the springboard enables crossing in the other
direction. The springboard is used by the trusted runtime

• to transfer control to an arbitrary untrusted address,
• to start a new POSIX-style thread, and
• to start the main thread.

Alignment ensures that the springboard cannot be invoked
directly by untrusted code. The ability to jump to an arbitrary
untrusted address is used in returning from a service call.
The return from a trampoline call requires popping an
unused trampoline return addresses from the top of the
stack, restoring the segment registers, and finally aligning
and jumping to the return address in the NaCl module.

Table 2 shows the overhead of a “null” system call. The
Linux overhead of 156 ns is slightly higher than that of
the Linux 2.6 getpid syscall time, on the same hardware,
of 138 ns (implemented via the vsyscall table and using
the sysenter instruction). We note that the user/kernel
transfer has evolved continuously over the life of the x86
architecture. By comparison, the segment register operations
and far calls used by the NaCl trampoline are somewhat less
common, and may have received less consideration over the
history of the x86 architecture.

3.4. Communications

The IMC is the basis of communications into and out of
NaCl modules. The implementation is built around a NaCl
socket, providing a bi-directional, reliable, in-order datagram
service similar to Unix domain sockets [37]. An untrusted
NaCl module receives its first NaCl socket when it is created,
accessible from JavaScript via the Document-Object Model
object used to create it. The JavaScript uses the socket to
send messages to the NaCl module, and can also share it
with other NaCl modules. The JavaScript can also choose
to connect the module to other services available to it by
opening and sharing NaCl sockets as NaCl descriptors.
NaCl descriptors can also be used to create shared memory
segments.

Number of Linux OSX Windows
Descriptor

1 3.3 31.5 38
2 5.3 38.6 51
3 6.6 47.9 64
4 8.2 50.9 77
5 9.7 54.1 90
6 11.1 60.0 104
7 12.6 63.7 117
8 14.2 66.2 130

Table 3: NaCl resource descriptor transfer cost. The times are
in microseconds. In this test, messages carrying zero data bytes
and a varying number of I/O descriptors are transferred from
a client NaCl module to a server NaCl module. On OSX, a
request/ack mechanism is needed as a bug workaround in the OSX
implementation of sendmsg. On Windows, a DuplicateHandle()
system call is required per I/O object transferred.

Using NaCl messages, Native Client’s SRPC abstraction
is implemented entirely in untrusted code. SRPC provides
a convenient syntax for declaring procedural interfaces be-
tween JavaScript and NaCl modules, or between two NaCl
modules, supporting a few basic types (int, float, char)
as well as arrays in addition to NaCl descriptors. More
complex types and pointers are not supported. External
data representation strategies such as XDR [18] or Protocol
Buffers [26] can easily be layered on top of NaCl messages
or SRPC.

Our NPAPI implementation is also layered on top of the
IMC and supports a subset of the common NPAPI interface.
Specific requirements that shaped the current implementa-
tion are the ability read, modify and invoke properties and
methods on the script objects in the browser, support for
simple raster graphics, provide the createArray() method and
the ability to open and use a URL like a file descriptor. The
currently implemented NPAPI subset was chosen primarily
for expedience, although we will likely constrain and extend
it further as we improve our understanding of related security
considerations and application requirements.

3.5. Developer Tools

3.5.1. Building NaCl Modules. We have modified the stan-
dard GNU tool chain, using version 4.2.2 of the gcc collec-
tion of compilers [22], [29] and version 2.18 of binutils [23]
to generate NaCl-compliant binaries. We have built a ref-
erence binary from newlib2 using the resulting tool chain,
rehosted to use the NaCl trampolines to implement system
services (e.g., read(), brk(), gettimeofday(), imc sendmsg()).
Native Client supports an insecure “debug” mode that allows
additional file-system interaction not otherwise allowed for
secure code.

We modified gcc for Native Client by changing the
alignment of function entries (-falign-functions) to

2. See http://sourceware.org/newlib/

7

32 bytes and by changing the alignment of the targets
branches (-falign-jumps) to 32 bytes. We also changed
gcc to use nacljmp for indirect control transfers, including
indirect calls and all returns. We made more significant
changes to the assembler, to implement Native Client’s
block alignment requirements. To implement returns, the
assembler ensures that call instructions always appear in
the final bytes of a 32 byte block. We also modified the
assembler to implement indirect control transfer sequences
by expanding the nacljmp pseudo-instruction as a properly
aligned consecutive block of bytes. To facilitate testing we
added support to use a longer nacljmp sequence, align the
text base, and use an and and or that uses relocations as
masks. This permits testing applications by running them on
the command line, and has been used to run the entire gcc
C/C++ test suite. We also changed the linker to set the base
address of the image as required by the NaCl loader (64K
today).

Apart from their direct use the tool chain also serves to
document by example how to modify an existing tools chain
to generate NaCl modules. These changes were achieved
with less than 1000 lines total to be patched in gcc and
binutils, demonstrating the simplicity of porting a compiler
to Native Client.

3.5.2. Profiling and Debugging. Native Client’s open
source release includes a simple profiling framework
to capture a complete call trace with minimal per-
formance overhead. This support is based on gcc’s
-finstrument-functions code generation option
combined with the rdtsc timing instruction. This profiler
is portable, implemented entirely as untrusted code. In our
experience, optimized builds profiled in this framework
have performance somewhere between -O0 and -O2 builds.
Optionally, the application programmer can annotate the
profiler output with methods similar to printf, with output
appearing in the trace rather than stdout.

Native Client does not currently support interactive debug-
ging of NaCl binary modules. Commonly we debug NaCl
module source code by building with standard tools and a
library that exports all the interfaces to the NaCl service
runtime, allowing us to build debug and NaCl modules from
identical source. Over time we hope to improve our support
for interactive debugging of release NaCl binaries.

4. Experience

Unless otherwise noted, performance measurements in
this section are made without the NaCl outer sandbox.
Sandbox overhead depends on how much message-passing
and service runtime activity the application requires. At this
time we do not have realistic applications of Native Client
to stress this aspect of the system.

Figure 4: SPEC2000 performance. “Static” results are for statically
linked binaries; “align32” results are for binaries aligned in 32-byte
blocks, and “nacl32” results are for NaCl binaries.

static aligned NaCl increase
ammp 200 203 203 1.5%
art 46.3 48.7 47.2 1.9%
bzip2 103 104 104 1.9%
crafty 113 124 127 12%
eon 79.2 76.9 82.6 4.3%
equake 62.3 62.9 62.5 0.3%
gap 63.9 64.0 65.4 2.4%
gcc 52.3 54.7 57.0 9.0%
gzip 149 149 148 -0.7%
mcf 65.7 65.7 66.2 0.8%
mesa 87.4 89.8 92.5 5.8%
parser 126 128 128 1.6%
perlbmk 94.0 99.3 106 13%
twolf 154 163 165 7.1%
vortex 112 116 124 11%
vpr 90.7 88.4 89.6 -1.2%

Table 4: SPEC2000 performance. Execution time is in seconds. All
binaries are statically linked.

4.1. SPEC2000

A primary goal of Native Client is to deliver substantially
all of the performance of native code execution. NaCl
module performance is impacted by alignment constraints,
extra instructions for indirect control flow transfers, and the
incremental cost of NaCl communication abstractions.

We first consider the overhead of making native code side
effect free. To isolate the impact of the NaCl binary con-
straints (Table 1), we built the SPEC2000 CPU benchmarks
using the NaCl compiler, and linked to run as a standard
Linux binary. The worst case for NaCl overhead is CPU
bound applications, as they have the highest density of align-
ment and sandboxing overhead. Figure 4 and Table 4 show
the overhead of NaCl compilation for a set of benchmarks
from SPEC2000. The worst case performance overhead is
crafty at about 12%, with other benchmarks averaging about
5% overall. Hardware performance counter measurements
indicate that the largest slowdowns are due to instruction
cache misses. For crafty, the instruction fetch unit is stalled
during 83% of cycles for the NaCl build, compared to 49%
for the default build. Gcc and vortex are also significantly
impacted by instruction cache misses.

As our current alignment implementation is conservative,

8

static aligned NaCl increase
ammp 657 759 766 16.7%
art 469 485 485 3.3%
bzip2 492 525 526 7.0%
crafty 756 885 885 17.5%
eon 1820 2016 2017 10.8%
equake 465 475 475 2.3%
gap 1298 1836 1882 45.1%
gcc 2316 3644 3646 57.5%
gzip 492 537 537 9.2%
mcf 439 452 451 2.8%
mesa 1337 1758 1769 32.3%
parser 641 804 802 25.2%
perlbmk 1167 1752 1753 50.2%
twolf 773 937 936 21.2%
vortex 1019 1364 1351 32.6%
vpr 668 780 780 16.8%

Table 5: Code size for SPEC2000, in kilobytes.

aligning some instructions that are not indirect control flow
targets, we hope to make incremental code size improvement
as we refine our implementation. “NaCl” measurements are
for statically linked binaries, 32-byte block alignment, and
using the nacljmp instruction for indirect control flow
transfers. To isolate the impact of these three constraints,
Figure 4 also shows performance for static linking only,
and for static linking and alignment. These comparisons
make it clear that alignment is the main factor in cases
where overhead is significant. Impact from static linking and
sandboxing instruction overhead is small by comparison.

The impact of alignment is not consistent across the
benchmark suite. In some cases, alignment appears to im-
prove performance, and in others it seems to make things
worse. We hypothesize that alignment of branch targets
to 32-byte boundaries sometimes interacts favorably with
caches, instruction prefetch buffers, and other facets of
processor microarchitecture. These effects are curious but
not large enough to justify further investigation. In cases
where alignment makes performance worse, one possible
factor is code size, as mentioned above. Table 5 shows
that increases in NaCl code size due to alignment can
be significant, especially in benchmarks like gcc with a
large number of static call sites. Similarly, benchmarks
with a large amount of control flow branching (e.g., crafty,
vortex) have a higher code size growth due to branch target
alignment. The incremental code size increase of sandboxing
with nacljmp is consistently small.

Overall, the performance impact of Native Client on these
benchmarks is on average less than 5%. At this level,
overhead compares favorably to untrusted native execution.

4.2. Compute/Graphics Performance Tests

We implemented three simple compute+animation bench-
marks to test and evaluate our CPU performance for threaded

Sample Native Client Linux Executable
Voronoi 12.4 13.9
Earth 14.4 12.6
Life 21.9 19.4

Table 6: Compute/graphics performance tests. Times are user time
in seconds.

Executable 1 thread 2 threads 4 threads
Native Client 42.16 22.04 12.4
Linux Binary 46.29 24.53 13.9

Table 7: Voronoi thread performance. Times are user time in
seconds.

code.3 They are:
• Earth: a ray-tracing workload, projecting a flat image

of the earth onto a spinning globe
• Voronoi: a brute force Voronoi tessellation4

• Life: cellular automata simulation of Conway’s Game
of Life

These workloads have helped us refine and evaluate our
thread implementation, in addition to providing a benchmark
against standard native compilation.

We used the Linux time command to launch and time
standalone vs. NaCl release build executables. All measure-
ments are for a Ubuntu Dapper Drake Linux system with
a 2.4GHz Intel Q6600 quad core processor. VSYNC was
disabled.5 The normal executables were built using g++
version 4.0.3, the NaCl versions with nacl-g++ version 4.2.2.
All three samples were built with -O3 -mfpmath=sse
-msse -fomit-frame-pointer.

Voronoi used four worker threads and ran for 1000 frames.
Earth ran with four worker threads for 1000 frames. Life
ran as a single thread, for 5000 frames. Table 6 shows the
average for three consecutive runs.

Voronoi ran faster as a NaCl application than as a normal
executable. The other two tests, Earth and Life, ran faster
as normal executables than their Native Client counterparts.
Overall these preliminary measurements suggest that, for
these simple test cases, the NaCl thread implementation
behaves reasonably compared to Linux. Table 7 shows a
comparison of threaded performance between Native Client
and a normal Linux executable, using the Voronoi demo.
Comparing Native Client to Linux, performance scales com-
parably with increased thread count.

4.3. H.264 Decoder

We ported an internal implementation of H.264 video
decoding to evaluate the difficulty of the porting effort.

3. These benchmarks will be included in our open source distribution.
4. See http://en.wikipedia.org/wiki/Voronoi
5. It is important to disable VSYNC when benchmarking rendering

applications. If VSYNC is enabled, the application’s rendering thread may
be put to sleep until the next vertical sync occurs on the display.

9

The original application converted H.264 video into a raw
file format, implemented in about 11K lines of C for the
standard GCC environment on Linux. We modified it to play
video. The port required about twenty lines of additional C
code, more than half of which was error checking code.
Apart from rewriting the Makefile, no other modifications
were required. This experience is consistent with our general
experience with Native Client; legacy Linux libraries that
don’t inherently require network and disk generally port
with minimal effort. Performance of the original and NaCl
versions were comparable and limited by video frame-rate.

4.4. Bullet

Bullet [8] is an open source physics simulation system.
It has accuracy and modeling features that make it appro-
priate for real-time applications like computer games. As
a complex, performance sensitive legacy code base it is
representative of a type of system that we would like to
support with Native Client.

The effort required to build Bullet for Native Client was
non-trivial but generally straightforward. We used Bullet
v2.66 for our experiments which is configurable via auto-
tools [5], allowing us specify use of the NaCl compiler. We
also had to build the Jam build system [35], as it is required
by the Bullet build. A few #defines also had to be adjusted
to eliminate unsupported profiling system calls and other OS
specific code. Overall it took a couple of hours of effort to
get the library to build for Native Client.

Our performance test used the HelloWorld demo program
from the Bullet source distribution, a simulation of a large
number of spheres falling and colliding on a flat surface. We
compared two builds using GCC v4.2.2 capable of generat-
ing NaCl compliant binaries. Measuring 100,000 iterations,
we observed 36.5 seconds for the baseline build (-static) vs.
32-byte aligned blocks (as required by Native Client) at 36.1
seconds, or about a 1% speedup for alignment. Incorporating
the additional opcode constraints required by Native Client
results in runtime of 37.3 seconds, or about a 2% slowdown
overall. These numbers were obtained using a two processor
dual-core Opteron 8214 with 8GB of memory.

4.5. Quake

We profiled sdlquake-1.0.9 (from www.libsdl.org) using
the built-in “timedemo demo1” command. Quake was run
at 640x480 resolution on a Ubuntu Dapper Drake Linux
box with a 2.4GHz Intel Q6600 quad core CPU. The video
system’s vertical sync (VSYNC) was disabled. The Linux
executable was built using gcc version 4.0.3, and the Native
Client version with nacl-gcc version 4.2.2, both with -O2
optimization.

With Quake, the differences between Native Client and
the normal executable are, for practical purposes, indistin-
guishable. See Table 8 for the comparison. We observed

Run # Native Client Linux Executable
1 143.2 142.9
2 143.6 143.4
3 144.2 143.5
Average 143.7 143.3

Table 8: Quake performance comparison. Numbers are in frames
per second.

very little non-determinism between runs. The test plays the
same sequence of events regardless of frame rate. Slight
variances in frame rate can still occur due to the OS thread
scheduler and pressure applied to the shared caches from
other processes. Although Quake uses software rendering,
the performance of the final bitmap transfer to the user’s
desktop may depend on how busy the video device is.

5. Discussion

As described above, Native Client has inner and outer
sandboxes, redundant barriers to protect native operating
system interfaces. Additional measures such as a CPU
blacklist and NaCl module blacklist will also be deployed,
and we may deploy whitelists if we determine they are
needed to secure the system. We have also considered more
elaborate measures, although as they are speculative and
unimplemented we don’t describe them here. We see public
discussion and open feedback as critical to hardening this
technology, and informing our decisions about what security
mechanisms to include in the system.

We expect Native Client to be well suited to simple,
computationally intensive extensions for web applications,
specifically in domains such as physical simulation, lan-
guage processing, and high-performance graphics rendering.
Over time, if we can provide convenient DOM access, we
hope to enable web-based applications that run primarily in
native code, with a thin JavaScript wrapper. There are also
applications of this technology outside of the browser; these
are beyond our current focus.

We have developed and tested Native Client on Ubuntu
Linux, MacOS and Microsoft Windows XP. Overall we
are satisfied with the interaction of Native Client with
these operating systems. That being said, there are a few
areas where operating system support might helpful. Popular
operating systems generally require all threads to use a flat
addressing model in order to deliver exceptions correctly.
Use of segmented memory prevents these systems from
interpreting the stack pointer and other essential thread state.
Better segment support in the operating system might allow
us to resolve this problem and allow for better hardware
exception support in untrusted code. If the OS recognized
a distinguished thread to receive all exceptions, that would
allow Native Client to receive exceptions in a trusted thread.

Native Client would also benefit from more consistent
enabling of LDT access across popular x86 operating sys-

10

tems. As an interesting alternative to maintaining system call
access as provided by most current systems, a system call
for mapping the LDT directly into user space would remove
a kernel system call from the path for NaCl thread creation,
relevant for modules with a large number of threads.

With respect to programming languages and language
implementations, we are encouraged by our initial experi-
ence with Native Client and the GNU tool chain, and are
looking at porting other compilers. We have also ported two
language interpreters, Lua and awk, and are aware of efforts
to port other popular interpreted languages. While it would
be challenging to support JITted languages such as Java,
we are hopeful that Native Client might someday allow
developers to use their language of choice in the browser
rather than being restricted to only JavaScript.

6. Related Work

Techniques for safely executing 3rd-party code generally
fall into three categories: system request moderation, fault
isolation (including virtualization), and trust with authenti-
cation.

6.1. System Request Moderation

Kernel-based mechanisms such as user-id based access
control, systrace [50] and ptrace [60] are familiar facilities
on Unix-like systems. Many previous projects have explored
use of these mechanisms for containing untrusted code [24],
[33], [34], [36], [52], most recently Android [9], [27] from
Google and Xax [17] from Microsoft Research. Android
uses a sandbox for running 3rd party applications. Each
Android application is run as a different Linux user, and
a containment system partitions system call activity into
permission groups such as “Network communication” and
“Your personal information”. User acknowledgment of re-
quired permissions is required prior to installing a 3rd party
application. User separation inherently denies potentially
useful intercommunication. To provide intercommunication,
Android formed a permissions model atop the Binder in-
terprocess communication mechanism, the Intent sytem and
ContentProvider data access model. [9]

Xax is perhaps the most similar work to Native Client
in terms of goals, although their implementation approach
is quite different, using system call interception based on
ptrace on Linux and a kernel device driver on Windows. We
considered such a kernel-based approach very early in our
work but rejected it as impractical due to concerns about
supportability. In particular we note that the Xax Windows
implementation requires a kernel-mode device driver that
must be updated for each supported Windows build, a
scheme we imagine onerous even if implemented by the
OS vendor themselves. There are known defects in ptrace

containment6 that Xax does not address. Although the Xax
authors do recognize one such issue in their paper, a simple
search at Mitre’s Common Vulnerabilities and Exposures
site7 documents forty-one different ptrace-related issues.
Because of its pure user-space inner sandbox, Native Client
is less vulnerable to these difficult kernel issues. Xax is
also vulnerable to denial-of-service attacks based on x86
errata that can cause a machine to hang or reboot [31], [38].
Because Native Client examines every instruction and rejects
modules with instructions it finds suspect, it significantly re-
duces the attack surface with respect to invalid instructions,
and further it includes relevant mechanism for defending
against new exploits should they be found.

Because the Xax sandbox functions at the process bound-
ary, it fails to isolate untrusted code when shared application
components such as DLLs are involuntarily injected by
the operating system, an issue both for security and for
portability of untrusted code. In contrast, the Native Client
inner sandbox creates a security sub-domain within a native
operating system process. Apart from these security differ-
ences we note that Xax does not support threading, which
we considered essential given the trend towards multicore
CPUs.

The Linux seccomp8 facility also constrains Linux pro-
cesses at the system call interface, allowing a process to
enter a mode where only exit(), read(), and write() system
calls are permitted.

6.2. Fault Isolation

Native Client applies concepts of software fault isolation
and proof-carrying code that have been extensively dis-
cussed in the research literature. Our data integrity scheme
is a straightforward application of segmented memory as
implemented in the Intel 80386 [14]. Our current control
flow integrity technique builds on the seminal work by
Wahbe, Lucco, Anderson and Graham [62]. Like Wahbe et
al., Native Client expresses sandboxing constraints directly
in native machine instructions rather than using a virtual
machine or other ISA-portable representation. Native Client
extends this previous work with specific mechanisms to
achieve safety for the x86 [4], [14], [32] ring-3 instruc-
tion set architecture (ISA), using several techniques first
described by McCamant and Morrisett [40]. Native Client
uses a static validator rather than a trusted compiler, similar
to validators described for other systems [19], [40], [41],
[49], applying the concept of proof-carrying code [46].

After the notion of software fault isolation was popu-
larized by Wahbe et al., researchers described complemen-
tary and alternative systems. A few [1], [19], [40], [41],

6. http://www.linuxhq.com/kernel/v2.4/36-rc1/Documentation/ptrace.txt
7. For example, see http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=

ptrace
8. See linux/kernel/seccomp.c

11

[49], [56] work directly with x86 machine code. Others
are based on intermediate program representations, such as
type-safe languages [28], [45], [47], [59], abstract virtual
machines [3], [20], [21], [39], or compiler intermediate
representations [53]. They use a portable representation,
allowing ISA portability but creating a performance obstacle
that we avoid by working directly with machine code.
A further advantage of expressing sandboxing directly in
machine code is that it does not require a trusted compiler.
This greatly reduces the size of the trusted computing
base [61], and obviates the need for cryptographic signatures
from the compiler. Apart from simplifying the security
implementation, this has the further benefit in Native Client
of opening the system to 3rd-party tool chains.

Compared to Native Client, CFI [1] provides finer-grained
control flow integrity. Whereas our system only guarantees
indirect control flow will target an aligned address in the text
segment, CFI can restrict a specific control transfer to a fairly
arbitrary subset of known targets. While this more precise
control is possibly useful in some scenarios, such as insuring
integrity of translation from a high-level language, it is not
useful for Native Client, since we intend to permit quite
arbitrary control flow, even hand-coded assembler, as long
as execution remains in known text and targets are aligned.
At the same time, CFI overhead is a factor of three higher
on average (15% vs. 5% on SPEC2000), not surprising
since its instrumentation sequences are much longer than
Native Client’s, both in terms of size and instruction count.
XFI [19] adds data sandboxing to CFI control flow checks,
with additional overhead. By contrast Native Client gets data
integrity for free from x86 segments.

Other recent systems have explored mechanisms for en-
abling safe side effects with measured trust. NaCl resource
descriptors are analogous to capabilities in systems such as
EROS [55]. Singularity channels [30] serve an analogous
role. DTrace [11], Systemtap [49] and XFI [19] have related
mechanisms.

A number of projects have explored isolating untrusted
kernel extensions. SPIN and VINO take different approaches
to implementing safety. SPIN chose a type-safe language,
Modula-3 [47], together with a trusted compiler tool chain,
for implementing extensions. VINO, like Native Client and
the original work by Wahbe et al., used software fault
isolation based on sandboxing of machine instructions. Like
Native Client, VINO used a modified compilation toolchain
to add sandboxing instructions to x86 machine code, using
C++ for implementing extensions. Unlike Native Client,
VINO had no binary validator, relying on a trusted compiler.
We note that a validator for VINO would be more difficult
than that of Native Client, as its validator would have had
to enforce data reference integrity, achieved in Native Client
with 80386 segments.

The Nooks system [58] enhances operating system kernel
reliability by isolating trusted kernel code from untrusted

device driver modules using a transparent OS layer called
the Nooks Isolation Manager (NIM). Like Native Client,
NIM uses memory protection to isolate untrusted modules.
As the NIM operates in the kernel, x86 segments are not
available. The NIM instead uses a private page table for
each extension module. To change protection domains, the
NIM updates the x86 page table base address, an operation
that has the side effect of flushing the x86 Translation
Lookaside Buffer (TLB). In this way, NIM’s use of page
tables suggests an alternative to segment protection as used
by Native Client. While a performance analysis of these
two approaches would likely expose interesting differences,
the comparison is moot on the x86 as one mechanism is
available only within the kernel and the other only outside
the kernel. A critical distinction between Nooks and Native
Client is that Nooks is designed only to protect against
unintentional bugs, not abuse. In contrast, Native Client must
be resistant to attempted deliberate abuse, mandating our
mechanisms for reliable x86 disassembly and control flow
integrity. These mechanisms have no analog in Nooks.

There are many environments based on a virtual-machine
architecture that provide safe execution and some fraction of
native performance [3], [6], [7], [20], [28], [39], [53], [63].
While recognizing the excellent fault-isolation provided by
these systems, we made a deliberate choice against virtu-
alization in Native Client, as it is generally inconsistent
with, or irrelevant to, our goals of OS neutrality, browser
neutrality, and peak native performance.

More recently, kernel extensions have been used for
operating system monitoring. DTrace [11] incorporated a
VM interpreter into the Solaris kernel for safe execution, and
provided a set of kernel instrumentation points and output
facilities analogous to Native Client’s safe side effects.
Systemtap [49] provides similar capabilities to DTrace, but
uses x86 native code for extensions rather than an interpreted
language in a VM.

6.3. Trust with Authentication

Perhaps the most prevalent example of using native code
in web content is Microsoft’s ActiveX [15]. ActiveX controls
rely on a trust model to provide security, with controls
cryptographically signed using Microsoft’s proprietary Au-
thenticode system [43], and only permitted to run once a
user has indicated they trust the publisher. This dependency
on the user making prudent trust decisions is commonly
exploited. ActiveX provides no guarantee that a trusted
control is safe, and even when the control itself is not
inherently malicious, defects in the control can be exploited,
often permitting execution of arbitrary code. To mitigate this
issue, Microsoft maintains a blacklist of controls deemed
unsafe [42]. In contrast, Native Client is designed to prevent
such exploitation, even for flawed NaCl modules.

12

7. Conclusions

This paper has described Native Client, a system for
incorporating untrusted x86 native code into an application
that runs in a web browser. In addition to creating a barrier
against undesirable side effects, NaCl modules are portable
both across operating systems and across web browsers, and
supports performance-oriented features such as threading
and vectorization instructions. We believe the NaCl inner
sandbox is extremely robust; regardless we provide addi-
tional redundant mechanisms to provide defense-in-depth.

In our experience we have found porting existing
Linux/gcc code to Native Client is straightforward, and
that the performance penalty for the sandbox is small,
particularly in the compute-bound scenarios for which the
system is designed.

By describing Native Client here and making it available
as open source, we hope to encourage community scrutiny
and contributions. We believe this feedback together with
our continued diligence will enable us to create a system
that achieves a superior level of safety than previous native
code web technologies.

Acknowledgments

Many people have contributed to the direction and the
development of Native Client; we acknowledge a few of
them here. The project was conceived based on an idea from
Matt Papakipos. Jeremy Lau, Brad Nelson, John Grabowski,
Kathy Walrath and Geoff Pike have made valuable contri-
butions to the implementation and evaluation of the system.
Thanks also to Danny Berlin, Chris DiBona, and Rebecca
Ward. We thank Sundar Pichai and Henry Bridge for their
role in shaping the project direction. We’d also like to thank
Dick Sites for his thoughtful feedback on an earlier version
of this paper.

References

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-
flow integrity: Principles, implementations, and applications.
In Proceedings of the 12th ACM Conference on Computer
and Communications Security, November 2005.

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid,
A. Tevanian, and M. Young. Mach: A new kernel foundation
for UNIX development. pages 93–112, 1986.

[3] A. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe. Ef-
ficient and language-independent mobile programs. SIGPLAN
Not., 31(5):127–136, 1996.

[4] Advanced Micro Devices. AMD64 Architecture Program-
mer’s Manual, Volume 1: Application Programming. Ad-
vanced Micro Devices, September 2007. Publication number:
24592.

[5] Autoconf. http://www.gnu.org/software/autoconf/.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtu-
alization. In 19th ACM Symposium on Operating Systems
Principles, pages 164–177, 2003.

[7] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco:
Running commodity operating systems on scalable multipro-
cessors. ACM Transactions on Computer Systems, 15(4):412–
447, November 1997.

[8] Bullet physics SDK. http://www.bulletphysics.com.

[9] J. Burns. Developing secure mobile applications for an-
droid. http://isecpartners.com/files/iSEC Securing Android
Apps.pdf, 2008.

[10] K. Campbell, L. Gordon, M. Loeb, and L. Zhou. The
economic cost of publicly announced information security
breaches: empirical evidence from the stock market. Journal
of Computer Security, 11(3):431–448, 2003.

[11] B. Cantrill, M. Shapiro, and A. Leventhal. Dynamic instru-
mentation of production systems. In 2004 USENIX Annual
Technical Conference, June 2004.

[12] D. R. Cheriton. The V distributed system. Communications
of the ACM, 31:314–333, 1988.

[13] F. B. Cohen. Defense-in-depth against computer viruses.
Computers and Security, 11(6):565–584, 1993.

[14] J. Crawford and P. Gelsinger. Programming 80386. Sybex
Inc., 1991.

[15] A. Denning. ActiveX Controls Inside Out. Microsoft Press,
May 1997.

[16] Directorate for Command, Control, Communications and
Computer Systems, U.S. Department of Defense Joint Staff.
Information assurance through defense-in-depth. Technical
report, Directorate for Command, Control, Communications
and Computer Systems, U.S. Department of Defense Joint
Staff, February 2000.

[17] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leverag-
ing legacy code to deploy desktop applications on the web.
In Proceedings of the 2008 Symposium on Operating System
Design and Implementation, December 2008.

[18] M. Eisler (editor). XDR: External data representation. Internet
RFC 4506, 2006.

[19] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. Nec-
ula. XFI: Software guards for system address spaces. In
OSDI ’06: 7th Symposium on Operating Systems Design And
Implementation, pages 75–88, November 2006.

[20] B. Ford. VXA: A virtual architecture for durable compressed
archives. In USENIX File and Storage Technologies, Decem-
ber 2005.

[21] B. Ford and R. Cox. Vx32: Lightweight user-level sandboxing
on the x86. In 2008 USENIX Annual Technical Conference,
June 2008.

13

[22] The GNU compiler collection. http://gcc.gnu.org.

[23] GNU binutils. http://www.gnu.org/software/binutils/.

[24] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer.
A secure enviroment for untrusted helper applications. In
Proceedings of the 6th USENIX Security Symposium, 1996.

[25] D. Golub, A. Dean, R. Forin, and R. Rashid. UNIX as an
application program. In Proceedings of the Summer 1990
USENIX Conference, pages 87–95, 1990.

[26] Google Inc. Protocol buffers. http://code.google.com/p/
protobuf/.

[27] Google Inc. Android—an open handset alliance project. http:
//code.google.com/android, 2007.

[28] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Addison-Wesley, 2000.

[29] B. Gough and R. Stallman. An Introduction to GCC. Network
Theory, Ltd., 2004.

[30] G. Hunt, J. Larus, M. Abadi, M. Aiken, P. Barham, M. Fah-
ndrich, C. Hawblitzel, O. Hodson, S. Levi, N. Murphy,
B. Steensgaard, D. Tarditi, T. Wobber, and B. Zill. An
overview of the Singularity project. Technical Report MSR-
TR-2005-135, Microsoft Research, October 2005.

[31] Intel Corporation. Intel Pentium processor invalid instruction
errata overview. http://support.intel.com/support/processor/
pentium/ppiie/index.html.

[32] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developers Manual, Volume 1: Basic Architecture. Intel
Corporation, August 2007. Order Number: 253655-024US.

[33] S. Ioannidis and S. M. Bellovin. Building a secure web
browser. In USENIX Annual Technical Conference, FREENIX
Track, pages 127–134, 2001.

[34] S. Ioannidis, S. M. Bellovin, and J. M. Smith. Sub-operating
systems: A new approach to application security. In Proceed-
ings of the 10th ACM SIGOPS European Workshop, 2002.

[35] Jam 2.1 user’s guide. http://javagen.com/jam/.

[36] C. Jensen and D. Hagimont. Protection wrappers: a simple
and portable sandbox for untrusted applications. In Proceed-
ings of the 8th ACM SIGOPS European Systems Conference,
pages 104–110, 1998.

[37] W. Joy, E. Cooper, R. Fabry, S. Leffler, K. McKusick, and
D. Mosher. 4.2 BSD system manual. Technical report,
Computer Systems Research Group, University of California,
Berkeley, 1983.

[38] K. Kaspersky and A. Chang. Remote code execution through
Intel CPU bugs. In Hack In The Box (HITB) 2008 Malaysia
Conference.

[39] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Prentice Hall, 1999.

[40] S. McCamant and G. Morrisett. Efficient, verifiable binary
sandboxing for a CISC architecture. Technical Report MIT-
CSAIL-TR-2005-030, 2005.

[41] S. McCamant and G. Morrisett. Evaluating SFI for a CISC
architecture. In 15th USENIX Security Symposium, August
2006.

[42] Microsoft Corporation. The kill-bit faq - part 1 of 3. Microsoft
Security Vulnerability Research and Defense (Blog).

[43] Microsoft Corporation. Signing and checking code
with Authenticode. http://msdn.microsoft.com/en-us/library/
ms537364(VS.85).aspx.

[44] Microsoft Corporation. Structured exception handling. http:
//msdn.microsoft.com/en-us/library/ms680657(VS.85).aspx,
2008.

[45] G. Morrisett, K. Crary, N. Glew, and D. Walker. Stack-
based typed assembly language. Journal of Functional
Programming, 12(1):43–88, 2002.

[46] G. Necula. Proof carrying code. In Principles of Program-
ming Languages, 1997.

[47] G. Nelson (editor). System Programming in Modula-3.
Prentice-Hall, 1991.

[48] Netscape Corporation. Gecko plugin API reference.
http://developer.mozilla.org/en/docs/Gecko Plugin API
Reference.

[49] V. Prasad, W. Cohen, F. Eigler, M. Hunt, J. Keniston, and
J. Chen. Locating system problems using dynamic instru-
mentation. In 2005 Ottawa Linux Symposium, pages 49–64,
July 2005.

[50] N. Provos. Improving host security with system call policies.
In USENIX Security Symposium, August 2003.

[51] J. Reinders. Intel Thread Building Blocks. O’Reilly &
Associates, 2007.

[52] J. G. Richard West. User-level sandboxing: a safe and efficient
mechanism for extensibility. Technical Report TR-2003-014,
Boston University, Computer Science Department, Boston,
MA, 2003.

[53] J. Richter. CLR via C#, Second Edition. Microsoft Press,
2006.

[54] M. Savage. Cost of computer viruses top $10 billion already
this year. ChannelWeb, August 2001.

[55] J. Shapiro, J. Smith, and D. Farber. EROS: a fast capability
system. In Symposium on Operating System Principles, pages
170–185, 1999.

[56] C. Small. MiSFIT: A tool for constructing safe extensible
C++ systems. In Proceedings of the Third USENIX Confer-
ence on Object-Oriented Technologies, June 1997.

[57] B. Stroustrup. The C++ Programming Language: Second
Edition. Addison-Wesley, 1997.

14

[58] M. Swift, M. Annamalai, B. Bershad, and H. Levy. Recover-
ing device drivers. In 6th USENIX Symposium on Operating
Systems Design and Implementation, December 2004.

[59] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and
P. Lee. TIL: a type-directed optimizing compiler for ML. In
PLDI ’96: Proceedings of the ACM SIGPLAN 1996 confer-
ence on Programming language design and implementation,
pages 181–192, New York, NY, USA, 1996. ACM.

[60] W. Tarreau. ptrace documentation. http://www.linuxhq.com/
kernel/v2.4/36-rc1/Documentation/ptrace.txt, 2007.

[61] U. S. Department of Defense, Computer Security Center.

Trusted computer system evaluation criteria, December 1985.

[62] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Effi-
cient software-based fault isolation. ACM SIGOPS Operating
Systems Review, 27(5):203–216, December 1993.

[63] C. Waldspurger. Memory resource management in VMware
ESX Server. In 5th Symposium on Operating Systems Design
and Implementation, December 2002.

[64] Document Object Model (DOM) Level 1 Specification. Num-
ber REC-DOM-Level-1-19981001. World Wide Web Consor-
tium, October 1998.

15

