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Abstract

OKWS is a toolkit for building fast and secure Web ser-
vices. It provides Web developers with a small set of
tools that has proved powerful enough to build complex
systems with limited effort. Despite its emphasis on se-
curity, OKWS shows performance improvements com-
pared to popular systems: when servicing fully dynamic,
non-disk-bound database workloads, OKWS’s through-
put and responsiveness exceed that of Apache 2 [3],
Flash [23] and Haboob [44]. Experience with OKWS in a
commercial deployment suggests it can reduce hardware
and system management costs, while providing security
guarantees absent in current systems.

1 Introduction

Most dynamic Web sites today maintain large server-side
databases, to which their users have limited access via
HTTP interfaces. Keeping this data hidden and correct
is critical yet difficult. Indeed, headlines are replete with
stories of the damage and embarrassment remote attack-
ers can visit on large Web sites.

Most attacks against Web sites exploit weaknesses in
popular Web servers or bugs in custom application-level
logic. In practice, emphasis on rapid deployment and per-
formance often comes at the expense of security.

Consider the following example: Web servers typ-
ically provide Web programmers with powerful and
generic interfaces to underlying databases and rely on
coarse-grained database-level permission systems for ac-
cess control. Web servers also tend to package logically
separate programs into one address space. If a particular
Web site serves its search and newsletter-subscribe fea-
tures from the same machine, a bug in the former might
allow a malicious remote client to select all rows from
a table of subscribers’ email addresses. In general, any-
thing from a buffer overrun to an unexpected escape se-
quence can expose private data to an attacker. Moreover,
few practical isolation schemes exist aside from running
different services on different machines. As a result, a
flaw in one service can ripple through an entire system.

To plug the many security holes that plague existing

Web servers, and to limit the severity of unforeseen prob-
lems, we introduce OKWS, the OK Web Server. Unlike
typical Web servers, OKWS is specialized for dynamic
content and is not well-suited to serving files from disk.
It relies on existing Web servers, such as Flash [23] or
Apache [3], to serve images and other static content. We
argue (in Section 5.4) that this separation of static and
dynamic content is natural and, moreover, contributes to
security.

What OKWS does provide is a simple, powerful, and
secure toolkit for building dynamic content pages (also
known as Web services). OKWS enforces the natural
principle of least privilege [27] so that those aspects of
the system most vulnerable to attack are the least use-
ful to attackers. Further, OKWS separates privileges so
that the different components of the system distrust each
other. Finally, the system distrusts the Web service devel-
oper, presuming him a sloppy programmer whose errors
can cause significant damage. Though these principles
are not novel, Web servers have not generally incorpo-
rated them.

Using OKWS to build Web services, we show that
compromises among basic security principles, perfor-
mance, and usability are unnecessary. To this effect,
the next section surveys and categorizes attacks on Web
servers, and Section 3 presents simple design principles
that thwart them. Section 4 discusses OKWS’s imple-
mentation of these principles, and Section 5 argues that
the resulting system is practical for building large sys-
tems. Section 6 discusses the security achieved by the
implementation, and Section 7 analyzes its performance,
showing that OKWS’s specialization for dynamic content
helps it achieve better performance in simulated dynamic
workloads than general purpose servers.

2 Brief Survey of Web Server Bugs

To justify our approach to dynamic Web server design,
we briefly analyze the weaknesses of popular software
packages. Our goal is to represent the range of bugs that
have arisen in practice. Historically, attackers have ex-
ploited almost all aspects of conventional Web servers,
from core components and scripting language exten-



sions to the scripts themselves. The conclusion we draw
is that a better design—as opposed to a more correct
implementation—is required to get better security prop-
erties.

In our survey, we focus on the Apache [3] server due
to its popularity, but the types of problems discussed are
common to all similar Web servers, including IBM Web-
Sphere [14], Microsoft IIS [19] and Zeus [47].

2.1 Apache Core and Standard Modules

There have been hundreds of major bugs in Apache’s
core and in its standard modules. They fit into the fol-
lowing categories:

Unintended Data Disclosure. A class of bugs results
from Apache delivering files over HTTP that are sup-
posed to be private. For instance, a 2002 bug in Apache’s
mod dav reveals source code of user-written scripts [42].
A recent discovery of leaked file descriptors allows re-
mote users to access sensitive log information [7]. On
Mac OS X operating systems, a local find-by-content in-
dexing scheme creates a hidden yet world-readable file
called .FBCIndex in each directory indexed. Versions
of Apache released in 2002 expose this file to remote
clients [41]. In all cases, attackers can use knowledge
about local configuration and custom-written application
code to mount more damaging attacks.

Buffer Overflows and Remote Code Execution.
Buffer overflows in Apache and its many modules are
common. Unchecked boundary conditions found re-
cently in mod alias and mod rewrite regular expres-
sion code allow local attack [39]. In 2002, a common
Apache deployment with OpenSSL had a critical bug
in client key negotiation, allowing remote attackers to
execute arbitrary code with the permissions of the Web
server. The attacking code downloads, compiles and exe-
cutes a program that seeks to infect other machines [36].

There have been less-sophisticated attacks that re-
sulted in arbitrary remote code execution. Some Win-
dows versions of Apache execute commands in URLs
that follow pipe characters (‘|’). A remote attacker can
therefore issue the command of his choosing from an
unmodified Web browser [40]. On MS-DOS-based sys-
tems, Apache failed to filter out special device names,
allowing carefully-crafted HTTP POST requests to exe-
cute arbitrary code [43]. Other problems have occurred
when site developers call Apache’s htdigest utility
from within CGI scripts to manage HTTP user authen-
tication [6].

Denial of Service Attacks. Aside from TCP/IP-based
DoS attacks, Apache has been vulnerable to a number of
application-specific attacks. Apache versions released in
2003 failed to handle error conditions on certain “rarely
used ports,” and would stop servicing incoming connec-
tions as a result [38]. Another 2003 release allowed lo-
cal configuration errors to result in infinite redirection
loops [8]. In some versions of Apache, attackers could
exhaust Apache’s heap simply by sending a large se-
quence of linefeed characters [37].

2.2 Scripting Extensions to Apache

Apache’s security worsens considerably when compiled
with popular modules that enable dynamically-generated
content such as PHP [25]. In the past two years alone,
at least 13 critical buffer overruns have been found in
the PHP core, some of which allowed attackers to re-
motely execute arbitrary code [9, 28]. In six other
cases, faults in PHP allowed attackers to circumvent its
application level chroot-like environment, called “Safe
Mode.” One vulnerability exposed /etc/passwd via
posix getpwnam [5]. Another allowed attackers to write
PHP scripts to the server and then remotely execute them;
this bug persisted across multiple releases of PHP in-
tended as fixes [35].

Even if a correct implementation of PHP were possi-
ble, it would still provide Web programmers with am-
ple opportunity to introduce their own vulnerabilities. A
canonical example is that beginning PHP programmers
fail to check for sequences such as “..” in user input
and therefore inadvertently allow remote access to sen-
sitive files higher up in the file system hierarchy (e.g.,
../../../etc/passwd). Similarly, PHP scripts that
embed unescaped user input inside SQL queries present
openings for “SQL Injection.” If a PHP programmer ne-
glects to escape user input properly, a malicious user can
turn a benign SELECT into a catastrophic DELETE.

The PHP manual does state that PHP scripts might be
separated and run as different users to allow for privilege
separation. In this case, however, PHP could not run as
an Apache module, and the system would require a new
PHP process forked for every incoming connection. This
isolation strategy is at odds with performance.

3 Design

If we assume that bugs like the ones discussed above are
inevitable when building a large system, the best remedy
is to limit the effectiveness of attacks when they occur.
This section presents four simple guidelines for protect-
ing sensitive site data in the worst-case scenario, in which



an adversary remotely gains control of a Web server and
can execute arbitrary commands with the Web server’s
privileges. We also present OKWS’s design, which fol-
lows the four security guidelines without sacrificing per-
formance.

Throughout, we assume a cluster of Web servers and
database machines connected by a fast, firewalled LAN.
Site data is cached at the Web servers and persistently
stored on the database machines. The primary security
goals are to prevent intrusion and to prevent unauthorized
access to site data.

3.1 Practical Security Guidelines

(1) Server processes should be chrooted. After compro-
mising a server process, most attackers will try to gain
control over the entire server machine, possibly by in-
stalling “back doors,” learning local passwords or private
keys, or probing local configuration files for errors. At
the very least, a compromised Web server should have
no access to sensitive files or directories. Moreover, an
OS-level jail ought to hide all setuid executables from
the Web server, since many privilege escalation attacks
require such files (examples include the ptrace and bind
attacks mentioned in [17]). Privilege escalation is pos-
sible without setuid executables but requires OS-level
bugs or race conditions that are typically rarer.

An adversary can still do damage without control of
the Web server machine. The configuration files, source
files, and binaries that correspond to the currently run-
ning Web server contain valuable hints about how to ac-
cess important data. For instance, PHP scripts often in-
clude the username and plaintext password used to gain
access to a MySQL database. OS-enforced policy ought
to hide these files from running Web servers.

(2) Server processes should run as unprivileged users.
A compromised process running as a privileged user can
do significant damage even from within a chrooted en-
vironment. It might bind to a well-known network port.
It might also interfere with other system processes, espe-
cially those associated with the Web server: it can trace
their system calls or send them signals.

(3) Server processes should have the minimal set of
database access privileges necessary to perform their
task. Separate processes should not have access to each
other’s databases. Moreover, if a Web server process re-
quires only row-wise access to a table, an adversary who
compromises it should not have the authority to perform
operations over the entire table.

(4) A server architecture should separate indepen-

dent functionality into independent processes. An adver-
sary who compromises a Web server can examine its in-
memory data structures, which might contain soft state
used for user session management, or possibly secret to-
kens that the Web server uses to authenticate itself to its
database. With control of a Web server process, an ad-
versary might hijack an existing database connection or
establish a new one with the authentication tokens it ac-
quired. Though more unlikely, an attacker might also
monitor and alter network traffic entering and exiting a
compromised server.

The important security principle here is to limit the
types of data that a single process can access. Site de-
signers should partition their global set of site data into
small, self-contained subsets, and their Web server ought
to align its process boundaries with this partition.

If a Web server implements principles (1) through (4),
and if there are no critical kernel bugs, an attacker cannot
move from vulnerable to secure parts of the system. By
incorporating these principles, a Web server design as-
sumes that processes will be compromised and therefore
prevents uncompromised processes from performing un-
safe operations, even when extended by careless Web de-
velopers. For example, if a server architecture denies a
successful attacker access to /etc/passwd, then a pro-
grammer cannot inadvertently expose this file to remote
clients. Similarly, if a successful attacker cannot arbitrar-
ily access underlying databases, then even a broken Web
script cannot enable SQL injection attacks.

3.2 OKWS Design

We designed OKWS with these four principles in mind.
OKWS provides Web developers with a set of libraries
and helper processes so they can build Web services as
independent, stand-alone processes, isolated almost en-
tirely from the file system. The core libraries provide
basic functionality for receiving HTTP requests, access-
ing data sources, composing an HTML-formatted re-
sponse, responding to HTTP requests, and logging the
results to disk. A process called OK launcher daemon,
or okld, launches custom-built services and relaunches
them should they crash. A process called OK dispatcher,
or okd, routes incoming requests to appropriate Web ser-
vices. A helper process called pubd provides Web ser-
vices with limited read access to configuration files and
HTML template files stored on the local disk. Finally, a
dedicated logger daemon called oklogd writes log entries
to disk. Figure 1 summarizes these relationships.

This architecture allows custom-built Web services to
meet our stated design goals:



Figure 1: Block diagram of an OKWS site setup with three Web
services (svc1, svc2, svc3) and two data sources (data1, data2),
one of which (data2) is an OKWS database proxy.

(1) OKWS chroots all services to a remote jail di-
rectory. Within the jail, each process has just
enough access privileges to read shared libraries
upon startup and to dump core upon abnormal ter-
mination. The services otherwise never access the
file system and lack the privileges to do so.

(2) Each service runs as a unique non-privileged user.

(3) OKWS interposes a structured RPC interface be-
tween the Web service and the database and uses a
simple authentication mechanism to align the parti-
tion among database access methods with the parti-
tion among processes.

(4) Each Web service runs as a separate process. The
next section justifies this choice.

3.3 Process Isolation

Unlike the other three principles, the fourth, of pro-
cess isolation, implies a security and performance trade-
off since the most secure option—one Unix process per
external user—would be problematic for performance.
OKWS’s approach to this tradeoff is to assign one Unix
process per service; we now justify this selection.

Our approach is to view Web server architecture as
a dependency graph, in which the nodes represent pro-
cesses, services, users, and user state. An edge (a, b) de-
notes b’s dependence on a, meaning an attacker’s ability
to compromise a implies an ability to compromise b. The
crucial design decision is thus how to establish dependen-
cies between the more abstract notions of services, users
and user states, and the more concrete notion of a pro-
cess.

Let the set S represent a Web server’s constituent ser-
vices, and assume each service accesses a private pool
of data. (Two application-level services that share data
would thus be modelled by a single “service”.) A set of
users U interacts with these services, and the interaction
between user uj and service si involves a piece of state ti,j.
If an attacker can compromise a service si, he can com-
promise state ti,j for all j; thus (si, ti,j) is a dependency for
all j. Compromising state also compromises the corre-
sponding user, so (ti,j, uj) is also a dependency.

Let P = {p1, . . . , pk} be a Web server’s pool of pro-
cesses. The design decision of how to allocate processes
reduces to where the nodes in P belong on the depen-
dency graph. In the Apache architecture [3], each pro-
cess pi in the process pool can perform the role of any
service sj. Thus, dependencies (pi, sj) exist for all j. For
Flash [3], each process in P is associated with a particular
service: for each pi, there exists sj such that (pi, sj) is a
dependency. The size of the process pool P is determined
by the number of concurrent active HTTP sessions; each
process pi serves only one of these connections. Java-
based systems like the Haboob Server [44] employ only
one process; thus P = {p1}, and dependencies (p1, sj)
exist for all j.

Figures 2(a)-(c) depict graphs of Apache, Flash and
Haboob hosting two services for two remote users. As-
suming that the “dependence” relationship is transitive,
and that an adversary can compromise p1, the shaded
nodes in the graph show all other vulnerable entities.

This picture assumes that the process of p1 is equally
vulnerable in the different architectures and that all archi-
tectures succeed equally in isolating different processes
from each other. Neither of these assumptions is entirely
true, and we will return to these issues in Section 6.2.
What is clear from these graphs is that in the case of
Flash, a compromise of p1 does not affect states t2,1 and
t2,2. For example, an attacker who gained access to ui’s
search history (t1,i) cannot access the contents of his in-
box (t2,i).

A more strict isolation strategy is shown in Figure 2(d).
The architecture assigns a process pi to each user ui. If
the attacker is a user ui, he should only be able to compro-
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Figure 2: Dependency graphs for various Web server architectures.

mise his own process pi, and will not have access to state
belonging to other users uj. The problem with this ap-
proach is that it does not scale well. A Web server would
either need to fork a new process pi for each incoming
HTTP request or would have a large pool of mostly idle
processes, one for each currently active user (of which
there might be tens of thousands).

OKWS does not implement the strict isolation strategy
but instead associates a single process with each individ-
ual service, shown in Figure 2(e). As a result OKWS
achieves the same isolation properties as Flash but with a
process pool whose size is independent of the number of
concurrent HTTP connections.

4 Implementation

OKWS is a portable, event-based system, written in C++
with the SFS toolkit [18]. It has been successfully tested
on Linux and FreeBSD. In OKWS, the different helper
processes and site-specific services shown in Figure 1
communicate among themselves with SFS’s implemen-
tation of Sun RPC [32]; they communicate with exter-
nal Web clients via HTTP. Unlike other event-based
servers [23, 44, 47], OKWS exposes the event architec-
ture to Web developers.

To use OKWS, an administrator installs the helper bi-
naries (okld, okd, pubd and oklogd) to a standard direc-
tory such as /usr/local/sbin, and installs the site-
specific services to a runtime jail directory, such as
/var/okws/run. The administrator should allocate two
new UID/GID pairs for okd and oklogd and should also
reserve a contiguous user and group ID space for “anony-
mous” services. Finally, administrators can tweak the
master configuration file, /etc/okws config. Table 1
summarizes the runtime configuration of OKWS.

4.1 okld

The root process in the OKWS system is okld—the
launcher daemon. This process normally runs as supe-
ruser but can be run as a non-privileged user for testing
or in other cases when the Web server need not bind to
a privileged TCP port. When okld starts up, it reads the
configuration file /etc/okws config to determine the
locations of the OKWS helper processes, the anonymous
user ID range, which directories to use as jail directo-
ries, and which services to launch. Next, okld launches
the logging daemon (oklogd) and the demultiplexing dae-
mon (okd), and chroots into its runtime jail directory. It
then launches all site-specific Web services. The steps
for launching a single service are:

1. okld requests a new Unix socket connection from
oklogd.

2. okld opens 2 socket pairs; one for HTTP connection
forwarding, and one for RPC control messages.

3. okld calls fork.

4. In the child address space, okld picks a fresh
UID/GID pair (x.x), sets the new process’s group list
to {x} and its UID to x. It then changes directories
into /cores/x.

5. Still in the child address space, okld calls execve,
launching the Web service. The new Web service
process inherits three file descriptors: one for re-
ceiving forwarded HTTP connections, one for re-
ceiving RPC control messages, and one for RPC-
based request logging. Some configuration parame-
ters in /etc/okws config are relevant to child ser-
vices, and okld passes these to new children via the
command line.



process chroot jail run directory uid gid

okld /var/okws/run / root wheel

pubd /var/okws/htdocs / www www

oklogd /var/okws/log / oklogd oklogd

okd /var/okws/run / okd okd

svc1 /var/okws/run /cores/51001 51001 51001

svc2 /var/okws/run /cores/51002 51002 51002

svc3 /var/okws/run /cores/51003 51003 51003

Table 1: An example configuration of OKWS. The entries in
the “run directory” column are relative to “chroot jails”.

6. In the parent address space, okld sends the server
side of the sockets opened in Step 2 to okd.

Upon a service’s first launch, okld assigns it a group and
user ID chosen arbitrarily from the given range (e.g.,
51001-51080). The service gets those same user and
group IDs in subsequent launches. It is important that no
two services share a UID or GID, and okld ensures this
invariant. The service executables themselves are owned
by root, belong to the group with the anonymous GID x
chosen in Step 4 and are set to mode 0410.

These settings allow okld to call execve after setuid
but disallow a service process from changing the mode
of its corresponding binary. okld changes the ownerships
and permissions of service executables at launch if they
are not appropriately set. The directory used in Step 4 is
the only one in the jailed file system to which the child
service can write. If such a directory does not exist or
has the wrong ownership or permissions, okld creates and
configures it accordingly.

okld catches SIGCHLDwhen services die. Upon receiv-
ing a non-zero exit status, okld changes the owner and
mode of any core files left behind, rendering them inac-
cessible to other OKWS processes. If a service exits un-
cleanly too many times in a given interval, okld will mark
it broken and refuse to restart it. Otherwise, okld restarts
dead services following the steps enumerated above.

4.2 okd

The okd process accepts incoming HTTP requests and
demultiplexes them based on the “Request-URI” in their
first lines. For example, the HTTP/1.1 standard [11] de-
fines the first line of a GET request as:

GET /〈abs path〉?〈query〉 HTTP/1.1

Upon receiving such a request, okd looks up a Web ser-
vice corresponding to abs path in its dispatch table. If
successful, okd forwards the remote client’s file descrip-
tor to the requested service. If the lookup is successful
but the service is marked “broken,” okd sends an HTTP
500 error to the remote client. If the request did not match

a known service, okd returns an HTTP 404 error. In typ-
ical settings, a small and fixed number of these services
are available—on the order of 10. The set of available
services is fixed once okd reads its configuration file at
launch time.

Upon startup, okd reads the OKWS configuration file
(/etc/okws config) to construct its dispatch table. It
inherits two file descriptors from okld: one for logging,
and one for RPC control messages. okd then listens on
the RPC channel for okld to send it the server side of
the child services’ HTTP and RPC connections (see Sec-
tion 4.1, Step 6). okd receives one such pair for each ser-
vice launched. The HTTP connection is the sink to which
okd sends incoming HTTP requests from external clients
after successful demultiplexing. Note that okd needs ac-
cess to oklogd to log Error 404 and Error 500 messages.

okd also plays a role as a control message router for
the child services. In addition to listening for HTTP
connections on port 80, okd also listens for internal re-
quests from an administration client. It services the two
RPC calls: REPUB and RELAUNCH. A site maintainer
should call the former to “activate” any changes she
makes to HTML templates (see Section 4.4 for more de-
tails). Upon receiving a REPUB RPC, okd triggers a sim-
ple update protocol that propagates updated templates.

A site maintainer should issue a RELAUNCH RPC af-
ter updating a service’s binary. Upon receiving a RE-
LAUNCH RPC, okd simply sends an EOF to the relevant
service on its control socket. When a Web service re-
ceives such an EOF, it finishes responding to all pending
HTTP requests, flushes its logs, and then exits cleanly.
The launcher daemon, okld, then catches the correspond-
ing SIGCHLD and restarts the service.

4.3 oklogd

All services, along with okd, log their access and error ac-
tivity to local files via oklogd—the logger daemon. Be-
cause these processes lack the privileges to write to the
same log file directly, they instead send log updates over
a local Unix domain socket. To reduce the total number
of messages, services send log updates in batches. Ser-
vices flush their log buffers as they become full and at
regularly-scheduled intervals.

For security, oklogd runs as an unprivileged user in
its own chroot environment. Thus, a compromised okd
or Web service cannot maliciously overwrite or truncate
log files; it would only have the ability to fill them with
“noise.”



4.4 pubd

Dynamic Web pages often contain large sections of static
HTML code. In OKWS, such static blocks are called
HTML “templates”; they are stored as regular files, can
be shared by multiple services and can include each other
in a manner similar to Server Side Includes [4].

OKWS services do not read templates directly from
the file system. Rather, upon startup, the publishing dae-
mon (pubd) parses and caches all required templates. It
then ships parsed representations of the templates over
RPC to other processes that require them. pubd runs as
an unprivileged user, relegated to a jail directory that con-
tains only public HTML templates. As a security pre-
caution, pubd never updates the files it serves, and ad-
ministrators should set its entire chrooted directory tree
read-only (perhaps, on those platforms that support it, by
mounting a read-only nullfs).

5 OKWS In Practice

Though its design is motivated by security goals, OKWS
provides developers with a convenient and powerful
toolkit. Our experience suggests that OKWS is suitable
for building and maintaining large commercial systems.

5.1 Web Services

A Web developer creates a new Web service as follows:

1. Extends two OKWS generic classes: one that cor-
responds to a long-lived service, and one that corre-
sponds to an individual HTTP request. Implements
the init method of the former and the process

method of the latter.

2. Runs the source file through OKWS’s preprocessor,
which outputs C++ code.

3. Compiles this C++ code into an executable, and in-
stalls it in OKWS’s service jail.

4. Adds the new service to /etc/okws config.

5. Restarts OKWS to launch.

The resulting Web service is a single-threaded, event-
driven process.

The OKWS core libraries handle the mundane me-
chanics of a service’s life cycle and its connections to
OKWS helper processes. At the initialization stage,
a Web service establishes persistent connections to all
needed databases. The connections last the lifetime of
the service and are automatically reopened in the case of

abnormal termination. Also at initialization, a Web ser-
vice obtains static HTML templates and local configura-
tion parameters from pubd. These data stay in memory
until a message from okd over the RPC control channel
signals that the Web service should refetch. In imple-
menting the init method, the Web developer need only
specify which database connections, templates and con-
figuration files he requires.

The processmethod specifies the actions required for
incoming HTTP requests. In formulating replies, a Web
service typically accesses cached soft-state (such as user
session information), database-resident hard state (such
as inbox contents), HTML templates, and configuration
parameters. Because a Web service is implemented as a
single-threaded process, it does not require synchroniza-
tion mechanisms when accessing these data sources. Its
accesses to a database on behalf of all users are pipelined
through a single asynchronous RPC channel. Similarly,
its accesses to cached data are guaranteed to be atomic
and can be achieved with simple lightweight data struc-
tures, without locking. By comparison, other popular
Web servers require some combination of mmap’ed files,
spin-locks, IPC synchronization, and database connec-
tion pooling to achieve similar results.

At present, OKWS requires Web developers to pro-
gram in C++, using the same SFS event library that un-
dergirds all OKWS helper processes and core libraries.
To simplify memory management, OKWS exposes SFS’s
reference-counted garbage collection scheme and high-
level string library to the Web programmer. OKWS also
provides a C++ preprocessor that allows for Perl-style
“heredocs” and simplified template inclusion. Figure 3
demonstrates these facilities.

5.2 Asynchronous Database Proxies

OKWS provides Web developers with a generic li-
brary for translating between asynchronous RPC and
any given blocking client library, in a manner similar to
Flash’s helper processes [23], and “manual calling au-
tomatic” in [1]. OKWS users can thus simply imple-
ment database proxies: asynchronous RPC front-ends
to standard databases, such as MySQL [21] or Berkeley
DB [29]. Our libraries provide the illusion of a standard
asynchronous RPC dispatch routine. Internally, these
proxies are multi-threaded and can block; the library han-
dles synchronization and scheduling.

Database proxies employ a small and static number of
worker threads and do not expand their thread pool. The
intent here is simply to overlap requests to the underlying
data source so that it might overlap its disk accesses and



void my_srvc_t::process ()

{

str color = param["color"];

/*o

print (resp) <<EOF;

<html>

<head>

<title>${param["title"]}</title>

</head>

EOF

include (resp, "/body.html",

{ COLOR => ${color}});

o*/

output (resp);

}

Figure 3: Fragment of a Web service programmed in OKWS.
The remote client supplies the title and color of the page via
standard CGI-style parameter passing. The runtime templating
system substitutes the user’s choice of color for the token COLOR
in the template /body.html. The variable my svc t::resp

represents a buffer that collects the body of the HTTP re-
sponse and then is flushed to the client via output(). With
the FilterCGI flag set, OKWS filters all dangerous metachar-
acters from the param associative array.

benefit from disk arm scheduling.
Database proxies ought to run on the database ma-

chines themselves. Such a configuration allows the site
administrator to “lock down” a socket-based database
server, so that only local processes can execute arbitrary
database commands. All other machines in the cluster—
such as the Web server machines—only see the struc-
tured, and thus restricted, RPC interface exposed by the
database proxy.

Finally, database proxies employ a simple mechanism
for authenticating Web services. After a Web service
connects to a database proxy, it supplies a 20-byte au-
thentication token in a login message. The database
proxy then grants the Web service permission to access
a set of RPCs based on the supplied authentication token.

To facilitate development of OKWS database prox-
ies, we wrapped MySQL’s standard C library in an in-
terface more suitable for use with SFS’s libraries. We
model our MySQL interface after the popular Perl DBI
interface [24] and likewise transparently support both
parsed and prepared SQL styles. Figure 4 shows a simple
database proxy built with this library.

5.3 Real-World Experience

The author and two other programmers built a commer-
cial Web site using the OKWS system in six months [22].
We were assisted by two designers who knew little C++
but made effective use of the HTML templating system.

The application is Internet dating, and the site features a
typical suite of services, including local matching, global
matching, messaging, profile maintenance, site statistics,
and picture browsing. Almost a million users have estab-
lished accounts on the site, and at peak times, thousands
of users maintain active sessions. Our current implemen-
tation uses 34 Web services and 12 database proxies.

We have found the system to be usable, stable and
well-performing. In the absence of database bottle-
necks or latency from serving advertisements, OKWS
feels very responsive to the end user. Even those
pages that require iterative computations—like match
computations—load instantaneously.

Our Web cluster currently consists of four load bal-
anced OKWS Web server machines, two read-only cache
servers, and two read-write database servers, all with dual
Pentium 4 processors. We use multiple OKWS machines
only for redundancy; one machine can handle peak loads
(about 200 requests per second) at about 7% CPU uti-
lization, even as it gzips most responses. A previous in-
carnation of this Web site required six ModPerl/Apache
servers [20] to accommodate less traffic. It ultimately
was abandoned due to insufficient software tools and pro-
hibitive hardware and hosting expenses [30].

5.4 Separating Static From Dynamic

OKWS relies on other machines running standard Web
servers to distribute static content. This means that all
pages generated by OKWS should have only absolute
links to external static content (such as images and style
sheets), and OKWS has no reason to support keep-alive
connections [11]. The servers that host static content for
OKWS, however, can enable HTTP keep-alive as usual.

We note that serving static and dynamic content from
different machines is already a common technique for
performance reasons; administrators choose different
hardware and software configurations for the two types
of workloads. Moreover, static content service does not
require access to sensitive site data and can therefore hap-
pen outside of a firewalled cluster, or perhaps at a differ-
ent hosting facility altogether. Indeed, some sites push
static content out to external distribution networks such
as Akamai [2].

In our commercial deployment, we host a cluster of
OKWS and database machines at a local colocation facil-
ity; we require hands-on hardware access and a network
configured for our application. We serve static content
from leased, dedicated servers at a remote facility where
bandwidth is significantly cheaper.



struct user_xdr_t {

string name<30>;

int age;

};

// can only occur at initialization time

q = mysql->prepare (

"SELECT age,name FROM tab WHERE id=?");

id = 1; // get ID from client

user_xdr_t u;

stmt = q->execute (id); // might block!

stmt->fetch (&u.age, &u.name);

reply (u);

Figure 4: Example of database proxy code with MySQL wrap-
per library. In this case, the Web developer is loading SQL
results directly into an RPC XDR structure.

6 Security Discussion

In this section we discuss OKWS’s security benefits and
shortcomings.

6.1 Security Benefits

(1) The Local Filesystem. An OKWS service has almost
no access to the file system when execution reaches
custom code. If compromised, a service has write access
to its coredump directory and can read from OKWS
shared libraries. Otherwise, it cannot access setuid

executables, the binaries of other OKWS services, or
core dumps left behind by crashed OKWS processes. It
cannot overwrite HTTP logs or HTML templates. Other
OKWS services such as oklogd and pubd have more
privileges, enabling them to write to and read from the
file system, respectively. However, as OKWS matures,
these helpers should not present security risks since they
do not run site-specific code.

(2) Other Operating System Privileges. Because
OKWS runs logically separate processes under different
user IDs, compromised processes (with the exception
of okld) do not have the ability to kill or ptrace other
running processes. Similarly, no process save for okld
can bind to privileged ports.

(3) Database Access. As described, all database
access in OKWS is achieved through RPC channels,
using independent authentication mechanisms. As a
result, an attacker who gains control of an OKWS web
service can only interact with the database in a manner
specified by the RPC protocol declaration; he does
not have generic SQL client access. Note that this is
a stronger restriction than simple database permission

systems alone can guarantee. For instance, on PHP
systems, a particular service might only have SELECT

permissions to a database’s USERS table. But with
control of the PHP server, an attacker could still issue
commands like SELECT * FROM USERS. With OKWS,
if the RPC protocol restricts access to row-wise queries
and the keyspace of the table is sparse, the attacker has
significantly more difficulty “mining” the database.1

OKWS’s separation of code and privileges further lim-
its attacks. If a particular service is compromised, it can
establish a new connection to a remote RPC database
proxy; however, because the service has no access to
source code, binaries, or ptraces of other services, it
knows no authentication tokens aside from its own.

Finally, OKWS database libraries provide runtime
checks to ensure that SQL queries can be prepared only
when a proxy starts up, and that all parameters passed to
queries are appropriately escaped. This check insulates
sloppy programmers from the “SQL injection” attacks
mentioned in Section 2.2. We expect future versions of
OKWS to enforce the same invariants at compile time.

(4) Process Isolation and Privilege Separation. OKWS
is careful to separate the traditionally “buggy” aspects of
Web servers from the most sensitive areas of the system.
In particular, those processes that do the majority of
HTTP parsing (the OKWS services) have the fewest
privileges. By the same logic, okld, which runs as
superuser, does no message parsing; it responds only
to signals. For the other helper processes, we believe
the RPC communication channels to be less error-prone
than standard HTTP messaging and unlikely to allow
intruders to traverse process boundaries.

Process isolation also limits the scope of those DoS
attacks that exploit bugs in site-specific logic. Since
the operating system sets per-process limits on resources
such as file descriptors and memory, DoS vulnerabilities
should not spread across process boundaries. We could
make stronger DoS guarantees by adapting “defensive
programming” techniques [26]. Qie et al. suggest com-
piling rate-control mechanisms into network services, for
dynamic prevention of DoS attacks. Their system is
applicable within OKWS’s architecture, which relegates
each service to a single address space. The same cannot
be said for those systems that spread equivalent function-
ality across multiple address spaces.

6.2 Security Shortcomings

The current implementation of OKWS supports only
C++ for service development. OKWS programmers



<html><head><title>Test Result</title></head>

<body>

<?

$db = mysql_pconnect("okdb.lcs.mit.edu");

mysql_select_db("testdb", $db);

$id = $HTTP_GET_VARS["id"];

$qry = "SELECT x,y FROM tab WHERE x=$id";

$result = mysql_query("$qry", $db);

$myrow = mysql_fetch_row($result);

print("QRY $id $myrow[0] $myrow[1]\n");

?>

</body>

</html>

Figure 5: PHP version of the null service

should use the provided “safe” strings classes when gen-
erating HTML output, and they should use only auto-
generated RPC stubs for network communication; how-
ever, OKWS does not prohibit programmers from us-
ing unsafe programming techniques and can therefore
be made more susceptible to buffer overruns and stack-
smashing attacks. Future versions of OKWS might make
these attacks less likely by supporting higher-level pro-
gramming languages such as Python or Perl.

Another shortcoming of OKWS is that an adversary
who compromises an OKWS service can gain access to
in-memory state belonging to other users. Developers
might protect against this attack by encrypting cache en-
tries with a private key stored in an HTTP cookie on the
client’s machine. Encryption cannot protect against an
adversary who can compromise and passively monitor a
Web server.

Finally, independent aspects of the system might be
vulnerable due to a common bug in the core libraries.

7 Performance Evaluation

In designing OKWS we decided to limit its process pool
to a small and fixed size. In our evaluation, we tested
the hypothesis that this decision has a positive impact
on performance, examining OKWS’s performance as a
function of the number of active service processes. We
also present and test the claim that OKWS can achieve
high throughputs relative to other Web servers because
of its smaller process pool and its specialization for dy-
namic content.

7.1 Testing Methodology

Performance testing on Web servers usually involves the
SPECweb99 benchmark [31], but this benchmark is not
well-suited for dynamic Web servers that disable Keep-
Alive connections and redirect to other machines for
static content. We therefore devised a simple benchmark

that better models serving dynamic content in real-world
deployments, which we call the null service benchmark.
For each of the platforms tested, we implemented a null
service, which takes an integer input from a client, makes
a database SELECT on the basis of that input, and returns
the result in a short HTML response (see Figure 5). Test
clients make one request per connection: they connect to
the server, supply a randomly chosen query, receive the
server’s response, and then disconnect.

7.2 Experimental Setup

All Web servers tested use a large database table filled
with sequential integer keys and their 20-byte SHA-1
hashes [12]. We constrained our client to query only the
first 1,000,000 rows of this table, so that the database
could store the entire dataset in memory. Our database
was MySQL version 4.0.16.

All experiments used four FreeBSD 4.8 machines. The
Web server and database machines were uniprocessor
2.4GHz and 2.6GHz Pentium 4s respectively, each with
1GB of RAM. Our two client machines ran Dual 3.0GHz
Pentium 4s with 2GB of RAM. All machines were con-
nected via fast Ethernet, and there was no network con-
gestion during our experiments. Ping times between the
clients and the Web server measured around 250 µs, and
ping times between the Web server and database machine
measured about 150 µs.

We implemented our test client using the OKWS li-
braries and the SFS toolkit. There was no resource strain
on the client machines during our tests.

7.3 OKWS Process Pool Tests

We experimentally validated OKWS’s frugal process
allocation strategy by showing that the alternative—
running many processes per service—performs worse.
We thus configured OKWS to run a single service as a
variable number of processes, and collected throughput
measurements (in requests per second) over the different
configurations. The test client was configured to simu-
late either 500, 1,000 or 2,000 concurrent remote clients
in the different runs of the experiment.

Figure 6 summarizes the results of this experiment as
the number of processes varied between 1 and 450. We
attribute the general decline in performance to increased
context-switching, as shown in Figure 7. In the single-
process configuration, the operating system must switch
between the null service and okd, the demultiplexing dae-
mon. In this configuration, higher client concurrency im-
plies fewer switches, since both okd and the null service
have more outstanding requests to service before calling
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Figure 6: Throughputs achieved in the process pool test

sleep. This effect quickly disappears as the server dis-
tributes requests over more processes. As their numbers
grow, each process has, on average, fewer requests to
service per unit of time, and therefore calls sleep sooner
within its CPU slice.

The process pool test supports our hypothesis that a
Web server will consume more computational resources
as its process pool grows. Although the experiments
completed without putting memory pressure on the op-
erating system, memory is more scarce in real deploy-
ments. The null service requires about 1.5MB of core
memory, but our experience shows real OKWS service
processes have memory footprints of at least 4MB, and
hence we expect memory to limit server pool size. More-
over, in real deployments there is less memory to waste
on code text, since in-memory caches on the Web ser-
vices are crucial to good site performance and should be
allowed to grow as big as possible.

7.4 Web Server Comparison

The other Web servers mentioned in Section 3.3—
Haboob, Flash and Apache—are primarily intended for
serving static Web pages. Because we have designed
and tuned OKWS for an entirely dynamic workload, we
hypothesize that when servicing such workloads, it per-
forms better than its more general-purpose peers. Our
experiments in this section test this hypothesis.

Haboob is Java-based, and we compiled and ran it with
FreeBSD’s native JDK, version 1.3. We tested Flash
v0.1a, built with FD SETSIZE set high so that Flash re-
ported an ability to service 5116 simultaneous connec-
tions. Also tested was Apache version 2.0.47 compiled
with multi-threading support and running PHP version
4.3.3 as a dynamic shared object. We configured Apache
to handle up to 2000 concurrent connections. We ran
OKWS in its standard configuration, with a one-to-one
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Figure 8: Throughputs for the single-service test

correspondence between processes and services.
We enabled HTTP access logging on all systems with

the exception of Haboob, which does not support it. All
systems used persistent database connections.

7.4.1 Single-Service Workload

In the single-service workload, clients with negligible la-
tency request a dynamically generated response from the
null service. This test entails the minimal number of ser-
vice processes for OKWS and Flash and therefore should
allow them to exhibit maximal throughput. By contrast,
Apache and Haboob’s process pools do not vary in size
with the number of available services. We examined the
throughput (Figure 8) and responsiveness (Figure 9) of
the four systems as client concurrency increased. Fig-
ure 10 shows the cumulative distribution of client laten-
cies when 1,600 were active concurrently.

Of the four Web servers tested, Haboob spent the most
CPU time in user mode and performed the slowest. A
likely cause is the sluggishness of Java 1.3’s memory
management.

When servicing a small number of concurrent clients,
the Flash system outperforms the others; however, its per-



formance does not scale well. We attribute this degrada-
tion to Flash’s CGI model: because custom-written Flash
helper processes have only one thread of control, each
instantiation of a helper process can handle only one ex-
ternal client. Thus, Flash requires a separate helper pro-
cess for each external client served. At high concurrency
levels, we noted a large number of running processes (on
the order of 2000) and general resource starvation. Flash
also puts additional strain on the database, demanding
one active connection per helper—thousands in total. A
database pooling system might mitigate this negative per-
formance impact. Flash’s results were noisy in general,
and we can best explain the observed non-monotonicity
as inconsistent operating system (and database) behavior
under heavy strain.

Apache achieves 37% of OKWS’s throughput on aver-
age. Its process pool is bigger and hence requires more
frequent context switching. When servicing 1,000 con-
current clients, Apache runs around 450 processes, and
context switches about 7500 times a second. We suspect
that Apache starts queuing requests unfairly above 1,000
concurrent connections, as suggested by the plateau in
Figure 9 and the long tail in Figure 10.

In our configuration, PHP makes frequent calls to the
sigprocmask system call to serialize database accesses
among kernel threads within a process. In addition,
Apache makes frequent (and unnecessary) file system ac-
cesses, which though serviced from the buffer cache still
entail system call overhead. OKWS can achieve faster
performance because of a smaller process pool and fewer
system calls.

7.4.2 Many-Service Workload

In attempt to model a more realistic workload, we inves-
tigated Web servers running more services, serving more
data, as experienced by clients over the WAN. We modi-
fied our null services to send out an additional 3000 bytes
of text with every reply (larger responses would have sat-
urated the Web server’s access link in some cases). We
made 10 uniquely-named copies of the new null service,
convincing the Web servers that they were serving 10 dis-
tinct services. Finally, our clients were modified to pause
an average of 75 ms between establishing a connection
and sending an HTTP request. We ran the experiment
from 200 to 2000 simultaneous clients, and observed a
graph similar in shape to Figure 8.

Achieved throughputs are shown in Table 2 and are
compared to the results observed in the single-service
workload. Haboob’s performance degrades most notably,
probably because the many-service workload demands
more memory allocations. Flash’s throughput decreases
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Figure 10: Client latencies for 1,600 concurrent clients

by 23%. We observed that for this workload, Flash re-
quires even more service processes, and at times over
2,500 were running. When we switched from the single-
service to the many-service configuration, the number of
OKWS service processes increased from 1 to 10. The
results from Figure 6 show this change has little im-
pact on throughput. We can better explain OKWS’s di-
minished performance by arguing that larger HTTP re-
sponses result in more data shuffling in user mode and
more pressure on the networking stack in kernel mode.
The same explanation applies for Apache, which experi-
enced a similar performance degradation.

8 Related work

Apache’s [3] many configuration options and modules al-
low Web programmers to extend its functionality with
a variety of different programming languages. How-
ever, neither 1.3.x’s multi-process architecture nor 2.0.x’s
multi-threaded architecture is conducive to process isola-
tion. Also, its extensibility and mushrooming code base
make its security properties difficult to reason about.



Haboob Apache Flash OKWS

1 Service 490 895 1,590 2,401
10 Services 225 760 1,232 2,089

Change −54.0% −15.1% −22.5% −13.0%

Table 2: Average throughputs in connections per second

Highly-optimized event-based Web servers such as
Flash [23] and Zeus [47] have eclipsed Apache in terms
of performance. While Flash in particular has a history of
outstanding performance serving static content, our per-
formance studies here indicate that its architecture is less
suitable for dynamic content. In terms of process isola-
tion, one could most likely implement a similar separa-
tion of privileges in Flash as we have done with OKWS.

FastCGI [10] is a standard for implementing long-lived
CGI-like helper processes. It allows separation of func-
tionality along process boundaries but neither articulates
a specific security policy nor specifies the mechanics for
maintaining process isolation in the face of partial server
compromise. Also, FastCGI requires the leader process
to relay messages between the Web service and the re-
mote client. OKWS passes file descriptors to avoid the
overhead associated with FastCGI’s relay technique.

The Haboob server studied here is one of many possi-
ble applications built on SEDA, an architecture for event-
based network servers. In particular, SEDA uses serial
event queues to enforce fairness and graceful degrada-
tion under heavy load. Larger systems such as Ninja [33]
build on SEDA’s infrastructure to create clusters of Web
servers with the same appealing properties.

Other work has used the SFS toolkit to build static
Web Servers and Web proxies [46]. Though the current
OKWS architecture is well-suited for SMP machines, the
adoption of libasync-mp would allow for finer-grained
sharing of a Web workload across many CPUs.

OKWS uses events but the same results are possible
with an appropriate threads library. An expansive body
of literature argues the merits of one scheme over the
other, and most recently, Capriccio’s authors [34] argue
that threads can achieve the same performance as events
in the context of Web servers, while providing program-
mers with a more intuitive interface. Other recent work
suggests that threads and events can coexist [1]. Such
techniques, if applied to OKWS, would simplify stack
management for Web developers.

In addition to the PHP [25] scripting language investi-
gated here, many other Web development environments
are in widespread use. Zope [48], a Python-based plat-
form, has gained popularity due to its modularity and
support for remote collaboration. CSE [13] allows devel-

opers to write Web services in C++ and uses some of the
same sandboxing schemes we use here to achieve fault
isolation. In more commercial settings, Java-based sys-
tems often favor thin Web servers, pushing more critical
tasks to application servers such as JBoss [15] and IBM
WebSphere [14]. Such systems limit a Web server’s ac-
cess to underlying databases in much the same way as
OKWS’s database proxies. Most Java systems, however,
package all aspects of a system in one address space with
many threads; our model for isolation would not extend
to such a setting. Furthermore, our experimental results
indicate significant performance advantages of compiled
C++ code over Java systems.

Other work has proposed changes to underlying oper-
ating systems to make Web servers fast and more secure.
The Exokernel operating system [16] allows its Cheetah
Web server to directly access the TCP/IP stack, in order
to reduce buffer copies allow for more effective caching.
The Denali isolation kernel [45] can isolate Web services
by running them on separate virtual machines.

9 Summary and Future Work

OKWS is a toolkit for serving dynamic Web content, and
its architecture fits naturally into a compelling security
model. The system’s separation of processes provides
reasonable assurances that vulnerabilities in one aspect
of the system do not metastasize. The performance re-
sults we have seen are encouraging: OKWS derives sig-
nificant speedups from a small and fixed process pool,
lightweight synchronization mechanisms, and avoidance
of unnecessary system calls. In the future, we plan to
experiment with high-level language support and better
resilience to DoS attacks. Independent of future improve-
ments, OKWS is stable and practical, and we have used
it to develop a popular commercial product.
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Notes
1Similar security properties are possible with a standard Web server

and a database that supports stored procedures, views, and roles.


