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Lecture 2: Supervised learning continued 

Send questions to 6.867-staff@lists.csail.mit.edu for faster responses! 

All homework-related questions should be posted by Friday! 

Supervised learning: Given a few examples find a predictor function that works for new examples. 

We are given a training set. We’ll primarily talk about batch / offline supervised classification where training data is 

given upfront. 

Training set: 𝑆𝑛 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛}, (𝑥𝑖 , 𝑦𝑖)~𝑝∗ 

We select ℎ̂: 𝑋 = 𝑅𝑑 → 𝑌 = {−1,1} 

Goal is to minimize generalization error (risk): 

𝑅(ℎ̂) = 𝐸(𝑥, 𝑦)~𝑝∗ {𝐿𝑜𝑠𝑠 (𝑦, ℎ̂(𝑥))} 

(expected value of loss on pairs sampled over 𝑝∗) 

𝐿𝑜𝑠𝑠 (𝑦, ℎ̂(𝑥)) = {
1, 𝑖𝑓 𝑦 ≠ 𝑦′

0, 𝑜. 𝑤.
 

Generative approach to solve the supervised learning problem 
If I knew 𝑝∗ I could perform optimal. I could evaluate what the generalization error is and find an ℎ̂ that would minimize 

it. 

Estimate 𝑝̂(𝑥, 𝑦) based on the training set 𝑆𝑛. We need constraints for estimating.  

Once we have a guess on 𝑝∗ we’ll use a predictor ℎ̂(⋅) =
argmin

ℎ
 𝐸(𝑥, 𝑦)~𝑝̂ {𝐿𝑜𝑠𝑠(𝑦, ℎ(𝑥))} 

Discriminative approach 

𝑅̂𝑛(ℎ) =
1

𝑛
∑ 𝐿𝑜𝑠𝑠 (𝑦𝑖, ℎ(𝑥𝑖))

𝑛

𝑖=1

 

ℎ ∈ 𝐻 − 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑠 

We want to find an ℎ minimize 𝑅̂𝑛(ℎ) 

Use ℎ̂(. ) =
𝑎𝑟𝑔𝑚𝑖𝑛
ℎ ∈ 𝐻

𝑅̂𝑛(ℎ) 
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Linear classifiers 
𝑋 = 𝑅𝑑 

𝑌 = {−1,1} 

ℎ(𝑥; 𝜃, 𝜃0) = 𝑠𝑖𝑔𝑛(𝜃𝑥 + 𝜃0) = {
+1, 𝑖𝑓 𝜃𝑥 + 𝜃0 > 0

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

You can get arbitrarily complex classifiers if you know how to handle linear classifiers. 

 𝜃𝑥⃗ + 𝜃0 = 0 ⇔ 𝜃(𝑥⃗ − 𝑥0⃗⃗⃗⃗⃗) = 0 ⇒ 𝜃𝑥0⃗⃗⃗⃗⃗ = −𝜃0 ⇒ 𝜃0 = −𝜃𝑥0⃗⃗⃗⃗⃗ 

Distance to boundary 
𝑦(𝜃𝑥)

 ‖𝜃‖
, where ‖𝜃‖ = 𝑛𝑜𝑟𝑚 𝑜𝑓 𝑡ℎ𝑒𝑡𝑎 

 

TODO: Put graph in 

Training without errors 
Assumption 1: Training examples are linearly separable with margin 𝛾: 

∃𝜃∗𝑠. 𝑡. ∀𝑖,
𝑦𝑖𝜃∗𝑥𝑖

‖𝜃‖
> 𝛾, 𝛾 > 0, 𝑖 = 1, … , 𝑛 

This says that all training examples are at least distance 𝛾 from the boundary. 

Put another way, this means the examples are linearly separable. 

Assumption 2: Training examples are bounded by a sphere/circle of radius 𝑟: ‖𝑥(𝑖)‖ ≤ 𝑟, 𝑖 = 1, … , 𝑛 

Perceptron algorithm 
- Start at step 0: 𝜃(0) = 0 (vector) 

- Cycle through training samples correcting errors 
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- If 𝑦(𝑖)(𝜃(𝑘)𝑥(𝑖)) ≤ 0 (mistake), then 𝜃(𝑘+1) = 𝜃(𝑘) + 𝑦(𝑖)𝑥(𝑖) 

Thus, if our two assumptions hold, then our perception algorithm makes at most 
𝑟2

𝛾2 mistakes. 

The number of mistakes does not depend on the number of training examples or on the dimension of 𝑋, dim (𝑋)  

Training without errors online 
Assumption 1: Training examples are linearly separable with margin 𝛾: 

∃𝜃∗𝑠. 𝑡. ∀
𝑦𝑖𝜃∗𝑥𝑖

‖𝜃‖
> 𝛾, 𝛾 > 0, 𝑖 = 1, … , ∞ 

Assumption 2: Training examples are bounded by a sphere/circle or radius 𝑟: ‖𝑥(𝑖)‖ ≤ 𝑟, 𝑖 = 1, … , ∞ 

Perceptron algorithm online 
- Start at step 0: 𝜃(0) = 0 (vector) 

- Cycle through training samples correcting errors 

- If 𝑦(𝑖)(𝜃(𝑘)𝑥(𝑖)) ≤ 0 (mistake), then 𝜃(𝑘+1) = 𝜃(𝑘) + 𝑦(𝑖)𝑥(𝑖) 

Once again, if our two assumptions hold, then our perception algorithm makes at most 
𝑟2

𝛾2 mistakes. 

Why the 𝑟2/𝛾2 bound? 

cos(𝜃𝑘, 𝜃∗) =
𝜃𝑘𝜃∗

‖𝜃𝑘‖×‖𝜃∗‖
, where 𝜃𝑘 is theta after k updates and theta star is the theta we assume exists 

Step 1: Show that as we keep updating 
𝜃𝑘𝜃∗

||𝜃∗||
≥ 𝑘𝛾 

𝜃𝑘𝜃∗

||𝜃∗||
=

(𝜃𝑘−1 + 𝑦𝑖𝑥𝑖) × 𝜃∗

||𝜃∗||
=

𝜃𝑘−1 × 𝜃∗

||𝜃∗||
+

𝑦𝑖𝑥𝑖 × 𝜃∗

||𝜃∗||
 

𝑦𝑖𝑥𝑖 × 𝜃∗

||𝜃∗||
≥ 𝛾 

⇒
𝜃𝑘𝜃∗

‖𝜃∗‖
≥ 𝑘𝛾 

Step 2: Norm of our parameter vector does not increase too high: ‖𝜃𝑘‖
2

≤ 𝑘𝑟2 

- We only update based on a mistake. We are correcting mistakes, which keeps the norm in check. 

cos(𝜃𝑘, 𝜃∗) =
𝜃𝑘𝜃∗

‖𝜃𝑘‖ × ‖𝜃𝑘‖
≥

𝑘𝛾

‖𝜃𝑘‖
≥

𝑘𝛾

√𝑘 × 𝑟
= √𝑘

𝛾

𝑟
 

Why use the perception algorithm when we can find the maximum margin linear separator directly? We know 𝛾. 
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Maximum margin linear separator 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔
1

2
‖𝜃‖2 

𝑦𝑖𝜃𝑥𝑖 ≥ 1, ∀𝑖 

Unique answer 


