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Lecture 3: Linear classifiers continued 

Maximum margin linear classifier: 
min
𝜃

1

2
‖𝜃‖2 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑦(𝑖)𝜃𝑥(𝑖) ≥ 1,∀𝑖 = 1,… , 𝑛 

Properties of this solution: 

 𝜃 is unique 

 Solution is sparse: we rely only on the subset of the training example 

o 𝑦(1)(𝜃𝑥(1)) = 1, these examples are called support vectors 

 Points that lie exactly on the boundary margin 

o 𝑦(2)(𝜃𝑥(2)) > 1 

o … 

o Sparsity leads to compression 

 Solution is very sensitive to outliers. The boundary can shift dramatically with an outlier. 

o If we have mislabeled training examples, for instance 

Support vector machines 
We have a maximum margin linear classifier (MMLC), that we call a support vector machine (SVM) 

min
𝜃, 𝜃0

1

2
‖𝜃‖2 , such that 𝑦(𝑖)(𝜃𝑥(𝑖) + 𝜃0) ≥ 1, ∀𝑖 = 1,… , 𝑛 

How do we accommodate violations of MMLC constraints? Like allowing examples that might be correctly classified but 

not on the right of the margin boundary… 

min
𝜃, 𝜃0, 𝜉𝑖

1

2
‖𝜃‖2 +

𝐶

𝑛
∑𝜉𝑖

𝑛

𝑖=1

, such that 𝑦(𝑖)(𝜃𝑥(𝑖) + 𝜃0) ≥ 1 − 𝜉𝑖 , ∀𝑖 = 1,… , 𝑛, 𝜉𝑖 ≥ 0 

𝜉𝑖  is called a slack variable: 

- 𝜉𝑖 > 0 for points correctly classified after the boundary 

- 𝜉𝑖 ∈ (0,1) for points almost correctly classified between the boundary and the line 

- 𝜉𝑖 > 1 for points incorrectly classified 

As 𝐶 increases (𝐶 → ∞), we prefer less slack at the cost/expense of a smaller margin. 

As 𝐶 decreases, we prefer a larger margin at the cost of more slack. 

𝐶 = 0 means there is no cost to mislabeling negative points so they would not appear as support vectors (i.e. points 

that the solution would depend on). You can give the points as much slack as you want and you can still satisfy the 

constraints without affecting the value of 𝜃 or 𝜃0. 

This is still a quadratic programming problem. 

If we fix 𝜃, 𝜃0. What is the maximum slack? The minimum would be:  

𝜉𝑖(𝜃, 𝜃0) = 1 − 𝑦(𝑖)(𝜃𝑥(𝑖) + 𝜃0) 
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Assuming 𝑦(𝑖)(𝜃𝑥(𝑖) + 𝜃0) is positive, since if: 

𝑦(𝑖)(𝜃𝑥(𝑖) + 𝜃0) ∈ (0,1) 

Then, we need to “allow” this 𝑖𝑡ℎ example to be inside the maximum margin. It needs 1 − 𝑦(𝑖)(𝜃𝑥(𝑖) + 𝜃0) slack. 

𝜉𝑖(𝜃, 𝜃0) = max{1 − 𝑦(𝑖)(𝜃𝑥(𝑖) + 𝜃0), 0} 

So, 

min
𝜃, 𝜃0, 𝜉𝑖

1

2
‖𝜃‖2 +

𝐶

𝑛
∑𝜉�̂�𝑖

(𝜃, 𝜃0)

𝑛

𝑖=1

 

𝜉�̂�𝑖
(𝜃, 𝜃0) looks like a loss on the 𝑖𝑡ℎ training example 

1

2
‖𝜃‖2 is the regularization 

Balance between regularization and loss on the training examples is a recurring theme in machine learning. 

𝑧𝑖 = 1 − 𝑦(𝑖)(𝜃𝑥(𝑖) + 𝜃0) = 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 

𝐿𝑜𝑠𝑠ℎ(𝑧𝑖) 

Non-linear predictors 
𝑋 → 𝑌 

So far we’ve looked at 𝑌 = {−1, 1} and 𝑋 = ℝ𝑑 

𝑌 could be {1,… , 𝑘},ℝ, {−1,1}𝑚, 𝐺 ∈ (𝑉, 𝐸), {∅, 1} a.k.a. 1-class 

𝑋 could be a document, a trajectory, a graph. 

Consider 𝑋 = [
𝑥1

𝑥2
] = ℝ2 

We can remap the input: [
𝑥1

𝑥2
] →

[
 
 
 
 
 

𝑥1
2

𝑥2
2

𝑥1𝑥2√2
𝑥1

𝑥2 ]
 
 
 
 
 

= 𝜙(𝑥) ∈ ℝ5 

Take each training example and map it to a feature vector: 𝑥(𝑖) → 𝜙(𝑥(𝑖)) = 𝑦(𝑖) 

ℎ(𝑥; 𝜃, 𝜃0) = 𝑠𝑖𝑔𝑛 (𝜃𝜙(𝑥) + 𝜃0), 𝜃 ∈ ℝ5 

𝜃𝜙(𝑥) + 𝜃0 = 𝜃1𝑥1
2 + 𝜃2𝑥2

2 + 𝜃3𝑥1𝑥2√2 + 𝜃4𝑥1 + 𝜃5𝑥2 + 𝜃0 

𝜙(𝑥)𝜙(𝑥′) = (𝑥𝑥′) + (𝑥𝑥′) 


