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Lecture 6: Regression problems

We assume that we have x € R%,y € R%,

Extend linear classification to (linear) regression, we still have y® = 9¢(x(i))

. N2
We will try to find 6 that minimizes J(0) = X1~ (y(‘) — 8¢(x(l)))

i=

n

minJ(6) = minz (y(i) — 9¢(x(i)))2

i=1
Why is there a problem with minimizing J(8)? Let’s say | have only one point (pair) in my training set, then | could get
many linear boundaries. Which one do | choose? As the dimensionality of the vectors increases the more ill-posed this
will become.

. , 2
Let’s add a regularization term % 1612 to our sum of the loss (y@ — ¢ (x®) — 6,)":

n

. . A
16,60 = ) (v0 = 0(x?) = 6)° + S 101

i=1
The regularization term will tell us what to choose in the absence of data. We would prefer an answer where 8 is 0.

The effect of the regularization term goes away as you have more examples.

If we drop the offset parameter and assuming ¢(x) = x is the identity mapping, what happens to the line?

Kernel version

i B 2
Let’s add a % to the sum: J(8) = ?=1%(y(‘) - Hcp(x(l))) + % 161>

n
a2/ (0) . , .
=5 = _Z (y(z) _ 9¢(x(l>)) d(xD)+26 =0
i=1
Let:
Aa; = y@ — 9¢(x(i)) ER
Then, after substituting in a]a—(? we have:
n
=) Aap(x©) +20 = 0
i=1
From 1) _ 0 we get:

a6
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0@ = ) aip(x?)

i=1
This is called representer’s theorem. Now, we replace the 8 in the definition on Aa:
Aa; = y© — 9¢>(x(i))
n n
Aa; = yD — 0(a)p(x®) = y® — Z a4 p(xP)p(x®) = y® — z oK (x®, x)

Jj=1 j=1
K(x(j), x(i)) = ¢(x(j))¢(x(i))

So we have:

n

da; = y@ — Z oK (x®, x )
=1

Aa(nxl vector) — Y(nx1vector) — K(nxn matrix) ° a(nxl vector)
AM=y—-Ka=>Ka+ld=y=>Ka+Alla=y=>aK+A)=y>a=K+1)"1y
K is positive semi-definite.

Predictions for new point x:

() = 0@ = ) p(x®) P00 = Y GK(xD,x) = Kla = KI(K + Dy
i=1 i=1
K(x(l),x)
K, = ;
K(x(”),x)

How our solution behaves:

A —verylarge = y(x) = 0 (less slope allowed on the regression line, see third figure in notebook)

Model selection
See figure 4: Which model is correct? Which one will work best with future samples?
- Often cross-validation is very good. Like leave one out cross-validation...

o~

a

]_i = coefficients computed without i*" training example

We come up with a predictor:

y—i(x) — z df}_iK(x(j),x)

J

Then we can select the model that minimizes the leave one out cross-validation error:
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model = argminz (y(i) - y—k(x(i)))z
K

i

A statistical perspective
y @ =0"¢*(xD) + &, 5~N(0,052)
y () = 0°6"(x)

1
¢ 257670’

P(g) = —

See Figure 5.

E{p(x)} —y*(x) = bias
Var {y(x)} = variance

Complexity of the predictor that | use will impact bias and variance. Inherent bias variance tradeoff.
We will look at models y = 9¢(x(i)) + &,6~N(0,0?) (See figure 6)
E{ylx} = 0¢(x)

Var{y|x} = o2

1 2
P(ylx,0,02) = e 220 0O) 2 N(y: 0(x), 02)

2mo?

How do we estimate such a model from the data?

Maximize likelihood: maximize L(6, o?; Sp) =11k, P(y(i) |x(i), 0, 02). This is good when you have a lot of data, since
it’s an asymptotic approach

Maximum a posteriori approach: maximize L(8,0%;S,)P(8), where likelihood is L and prior is P.

Bayesian: We assume a prior distribution on 8 and then we compute the posterior distribution:

P(S,|0)P(0)  P(S,|0)P(0)
P(S,)  [P(S,16)P(6)de [ L(6;S,)P(6)de

1
P65y = P(Sn|0)P(8) = —P(Sn|6)P(6)

n
1 . . 1
=-[ [P6®1®,6,6%) P6) = L(6: 5.)P®)
zl | z
z = jL(H;Sn)P(H)dH = marginal likelihood

Once we adjust the posterior on 8, we can predict using this posterior probability, instead of the prior:

POIX, ) = f9 P(ylx, 6)P(6]S,)do



