Lecture 7: Statistical modeling

Model is always a set.

\[y = \theta \phi(x) + \epsilon, \epsilon \sim N(0, \sigma^2) \]

Assuming \(N(0, \sigma^2) \) is fixed, we can compute \(P(y \mid x, \theta) \):

\[P(y \mid x, \theta) = N(y; \theta \phi(x), \sigma^2) \]

- the \(y \) in \(N(y; \theta \phi(x), \sigma^2) \) indicates \(y \) is the random variable
- \(\theta \phi(x) \) is the mean
- \(\sigma^2 \) is the variance.

\[N(y; \theta \phi(x), \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y-\theta \phi(x))^2} \]

\[y^{(1)} = \phi(x^{(1)}) + \epsilon_1 \]

\[; \]

\[y^{(n)} = \phi(x^{(n)}) + \epsilon_n \]

Maximum likelihood

Find \(\theta \) that maximizes the likelihood function \(L(\theta; S_n) \):

\[
P(y \mid x, \theta) = L(\theta; S_n) = \prod_{i=1}^{n} P(y^{(i)} \mid x^{(i)}, \theta)
\]

\[
\max L(\theta; S_n) = \max \log L(\theta; S_n) = l(\theta; S_n) = -\frac{1}{\sigma^2} \sum_{i=1}^{n} \frac{1}{2} (y^{(i)} - \phi(x^{(i)}))^2 + \text{constant}
\]

Maximum a posteriori estimation

Find \(\theta \) that maximizes \(L(\theta; S_n)P(\theta) \), where \(P(\theta) \) is the prior.

A typical prior is \(P(\theta) = N(\theta; 0, \nu^2 I) = \frac{1}{(2\pi\nu^2)^d} e^{-\frac{1}{2\nu^2} \|\theta\|^2} \), where \(d \) is the dimension of \(\theta \) (see fig. 2) (this is a multivariate Gaussian).

\[
l(\theta; S_n) = \log L(\theta, S_n) + \log P(\theta) = -\frac{1}{\sigma^2} \sum_{i=1}^{n} \frac{1}{2} (y^{(i)} - \phi(x^{(i)}))^2 - \frac{1}{2\nu^2} \|\theta\|^2 + \text{constant}
\]

\[
-\frac{1}{\sigma^2} \left[\sum_{i=1}^{n} \frac{1}{2} (y^{(i)} - \phi(x^{(i)}))^2 + \frac{1}{2\nu^2} \|\theta\|^2 \right] + \text{constant}
\]
Regularization parameter is: $\lambda = \frac{\sigma^2}{\nu^2}$

Bayesian estimator

$$ P(\theta \mid S_n) = \frac{1}{Z(S_n)} L(\theta; S_n) P(\theta) $$

(what is $Z(S_n)$? Z is just a normalization constant.

$$ Z(S_n) = \int_{\mathbb{R}^d} L(\theta; S_n) P(\theta) d\theta = \int_{\mathbb{R}^d} \prod_{i=1}^n P(y^{(i)} \mid x^{(i)}, \theta) d\theta = P(y^{(1)}, y^{(2)}, ..., y^{(n)} \mid x^{(1)}, x^{(2)}, ..., x^{(n)}, \mathcal{M}) = Z(S_n, \mathcal{M}) $$

This is marginal likelihood.

No longer depends on θ, but it depends on the model. What is the model here?

$$ \mathcal{M} = \{ N(y; \theta \phi(x), \sigma^2), P(\theta), \theta \in \mathbb{R}^d \} $$

Model selection:

$$ \mathcal{M}_1: \phi(x) = x $$

$$ \mathcal{M}_2: \phi(x) = \begin{bmatrix} x^2 \\ x \end{bmatrix} $$

...
For all of these I can evaluate: $Z(S_n; \mathcal{M}_1), Z(S_n; \mathcal{M}_2)$

We will select \mathcal{M} that maximizes this marginal likelihood $Z(S_n, \mathcal{M}_i)$

Bayesian information criterion

$$\log Z(S_n; \mathcal{M}) \approx \log L(\hat{\theta}_{ML}; S_n) - \frac{d}{2} \log n$$

Penalty: $\frac{d}{2} \log n$, where d is the # of parameters.

Asymptotic expansion (leading order term $\log n$).

When n is large and d is smaller, this is good.

We no longer depend on the prior. What happened to the prior? As n increases, the prior no longer dominates.

Bayesian prediction

Data $S_n \Rightarrow P(\theta; S_n)$

I have a new x, what is $P(y | x, S_n) =$?

If we were doing ML, then we’d use $P(y | x, \hat{\theta}_{ML})$

$$P(y | x, S_n) = \int_{\mathbb{R}^d} P(y | x, \theta) P(\theta | S_n) d\theta = \int_{\mathbb{R}^d} P(y | x, \theta) \frac{\prod_{i=1}^n P(y^{(i)} | x^{(i)}, \theta)}{Z(S_n)} d\theta$$

$$= \frac{1}{Z(S_n)} P(y^{(1)}, y^{(2)}, ..., y^{(n)} | x^{(1)}, x^{(2)}, ..., x^{(n)}, \mathcal{M})$$

$$\theta \sim P(\theta) = N(\theta; 0, v^2 I)$$

$$\vdots$$

$$y^{(i)} = \theta \phi(x^{(i)}) + \epsilon_i, \epsilon_i \sim N(0, \sigma^2)$$

$$\vdots$$

Gaussian process

A Gaussian process is a collection of random variables $\{y_x, x \in \mathcal{X}\}$ if $\forall n \{X^1, ..., X^{(n)}\}$ and $\{y^{(i)} = y_x^{(i)}\}$ are jointly Gaussian.