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Lecture 8:  

Gaussian processes 
Multivariate Gaussian distributions 

𝑦(𝑥), 𝑥 ∈ 𝒳 = ℝ𝑑 

For any subset of points 𝑥(1), … , 𝑥(𝑛), the corresponding random variables evaluated at those points is a multivariate 

Gaussian: 𝑦(1) = 𝑥(1), … , 𝑦(𝑛) = 𝑥(𝑛)  

If it is a Gaussian, we only need to specify their mean and their covariance, to fully specify their definition. We must do 

that for any point 𝑥. So we need a mean function: 

𝑚(𝑥) = 𝐸{𝑦(𝑥)}, ∀𝑥 

In our case, we always assume the mean is zero.  

What’s left is to specify a covariance function, which tells us for any two points 𝑥, 𝑥′: 

𝐶(𝑥, 𝑥′) = 𝐸{(𝑦(𝑥) − 𝑚(𝑥))(𝑦(𝑥′) − 𝑚(𝑥′))} 

 

𝑦⃗ = [
𝑦(1)

⋮
𝑦(𝑛)

] ~𝑁(0⃗⃗, 𝒞) 

(𝑦⃗ and 0⃗⃗ 𝑎𝑟𝑒 𝑛 × 1 vectors) 

𝒞 = 𝐶(𝑥(𝑖), 𝑥(𝑗)) 

Dave’s explanation of Gaussian processes 
You have a set 𝑌 = {𝑦𝑥}𝑥∈𝜒 indexed by elements from a fixed set 𝜒, and 𝑌 ∈ ℝ𝑑.  

- 𝜒 is usually infinite, but it can also be finite. For our machine learning purposes, 𝜒 is the set of 𝑥𝑖 values in the 

training set {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑛  

 

How can you sample a bivariate Gaussian? If 𝑣1, 𝑣2 are the eigenvectors, you can draw 𝑧1~𝑁(0, 𝜎1
2), 𝑧2~𝑁(0, 𝜎2

2), 

(where 𝜎1 and 𝜎2 are the eigenvalues of the covariance matrix) and build 𝑧1𝑣1 + 𝑧2𝑣2. 

Last time we went over Bayesian regression: 

𝜃 = 𝑁(0, 𝐼) 

𝑦(𝑖) = 𝜃𝜙(𝑥(𝑖)) + 𝜀𝑖 , 𝜀𝑖~𝑁(0, 𝜎2) 
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In the problem set, we will get: 

𝐶(𝑥(𝑖), 𝑥(𝑗)) = (𝑏𝑎𝑦𝑒𝑠𝑖𝑎𝑛 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛) = 𝐾(𝑥(𝑖), 𝑥(𝑗)) + 𝛿𝑖𝑗𝜎2 

𝛿𝑖𝑗 = {
1, 𝑖 = 𝑗
0, 𝑖 ≠ 𝑗

 

How to use a Gaussian process for prediction? 

[
𝑦
𝑦𝑥

] ~𝑁 (0⃗⃗(𝑛+1)×1, [
𝒞 𝐾𝑥

𝐾𝑥
𝑇 𝐶(𝑥, 𝑥) = 𝐾(𝑥, 𝑥) + 𝜎2]

(𝑛+1)×(𝑛+1)

) 

𝐾𝑥 = [𝐾(𝑥(1), 𝑥)

⋮
] 

What is 𝑃(𝑦𝑥  | 𝑦(1), … , 𝑦(𝑛)) = ? 

All I need is mean 𝜇̂(𝑥) = 𝐸{𝑦𝑥 | 𝑦(1), … , 𝑦(𝑛)} and variance 𝑣2(𝑥) = 𝐸 {(𝑦𝑥 − 𝜇(𝑥))
2

 | 𝑦(1), … , 𝑦(𝑛)} 

𝜇̂(𝑥) = 𝐸{𝑦𝑥 | 𝑦(1), … , 𝑦(𝑛)} = 𝐾𝑥
𝑇𝐶𝑛×𝑛

−1 𝑦⃗𝑛×1 = 𝐾𝑥
𝑇(𝐾 + 𝜎2𝐼)−1𝑦⃗𝑛×1 

𝑣2(𝑥) = 𝐸 {(𝑦𝑥 − 𝜇(𝑥))
2

 | 𝑦(1), … , 𝑦(𝑛)} = 𝐾(𝑥, 𝑥) + 𝜎2 − 𝐾𝑥
𝑇(𝐾 + 𝜎2𝐼)−1𝐾𝑥 

Let’s work with 𝐾(𝑥, 𝑥′) = 𝑥𝑥′ 

(see figure 3 & 4) 

What is 𝜎2?  

𝜎 = argmax
σ

 𝑃(𝑦(1), … 𝑦(𝑛) | 𝑥(1), … , 𝑥(𝑛), 𝜎2) 

Kernel matrix and covariance matrix are “equivalent”, you can use one in place of the other. 

The decision boundary is: 𝐾𝑥
𝑇𝐶−1𝑦 = 0 

Regression trees 

⋃ 𝑅𝑙

𝑙∈𝐿(𝑇)

= ℝ𝑑 , 𝐿(𝑇) = leaves of regression tree 

𝑦̂(𝑥) = ∑ 𝑓𝑙[[𝑥 ∈ 𝑅𝑙]]

𝑙∈𝐿(𝑇)

, where 𝑓𝑙[[𝑥 ∈ 𝑅𝑙]] = 𝑓𝑙 , 𝑖𝑓 𝑥 ∈ 𝑅𝑙 

𝐽(𝑇) = ∑ ∑ (𝑦(𝑖) − 𝑓𝑙)
2

𝑖:𝑥(𝑖)∈𝑅𝑙𝑙∈𝐿(𝑇)

 

min 𝐽(𝑇) over the entire tree is computationally hard. So to partition, we can do it greedily. 

Bias is low. Variance is high. 
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Over-fitting is a problem. 

 


