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Lecture 8:

Gaussian processes
Multivariate Gaussian distributions

y(x),x € X = R?

For any subset of points x®, ., x(n), the corresponding random variables evaluated at those points is a multivariate
Gaussian: y = x, . y( = )

If it is a Gaussian, we only need to specify their mean and their covariance, to fully specify their definition. We must do
that for any point x. So we need a mean function:

m(x) = E{y(x)}, vx
In our case, we always assume the mean is zero.

What's left is to specify a covariance function, which tells us for any two points x, x':

Clx,x") = E{(y(x) = m(0)(y(x") —m(x"))}

( and 0 are n x 1 vectors)

C = C(x(i),x(j))

Dave’s explanation of Gaussian processes
You have aset Y = {y,} e, indexed by elements from a fixed set y, and Y € R4,
-y isusually infinite, but it can also be finite. For our machine learning purposes, y is the set of x; values in the
training set {(x;, ¥;)}i=,

How can you sample a bivariate Gaussian? If v;, v, are the eigenvectors, you can draw z; ~N(0, 62), z,~N(0, 6%),
(where o7 and g, are the eigenvalues of the covariance matrix) and build z,v; + z,v,.

Last time we went over Bayesian regression:
6 =N(0,D

y® = 0¢(xD) + &, ~N(0,0?)
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In the problem set, we will get:

C(x(i),x(j)) = (bayesian regression) = K(x(i),x(j)) + 6l-j02

_(Li=j
5if‘{0,i¢j

How to use a Gaussian process for prediction?

A e e
Vx (n+1)x1r KT C(x,x) =K(x,x)+ o> (n+1)x(n+1)

K, = [K (x(.l),x)]
Whatis P(y, | y®, ..., y™) =72
All I need is mean A(x) = E{y, | y¥, ..., y™} and variance v?(x) = E {(yx - u(x))2 | y®, ...,y(”)}
AG) = E{ye |y D, ...y} = Ki CinVnxa = K{ (K + 02D ™ Fsa
v2() = E{(x —1())" 1y®, .., y™} = K x) + 0% = KI(K +02D)7'K,
Let’s work with K(x, x") = xx'
(see figure 3 & 4)
What is ¢2?
0 = argmax P(y(l), Wy @@, ...,x(”),az)
o

Kernel matrix and covariance matrix are “equivalent”, you can use one in place of the other.

The decision boundary is: KT C~1y = 0

Regression trees

R, = R4, L(T) = leaves of regression tree
LEL(T)

9()= ) fillx € R}, where fillx € Ri]l = fi,if x € R,
1eL(T)

= > O£

LEL(T) i:xWeR,
min J(T) over the entire tree is computationally hard. So to partition, we can do it greedily.

Bias is low. Variance is high.
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Over-fitting is a problem.



