Alin Tomescu 6.867 Machine learning | Week 5, Thursday, October 3rd, 2013 | Lecture 9

Lecture 9

Exam: No lecture on that day. October 17th (evening exam)

- All the lecture materials that we will complete by the end of next week (1 thorugh 11)
- One more problem set this Friday, which will be fair material for the exam
- 5th problem set with exam-like questions
- Review session on that day in the lecture hall
- Closed book exam
- You will not need a calculator (but you can bring one)
- Not an algebra test

No lecture on October 15^{th}

Classification trees

How can we improve this to address over-fitting?

Bootstrap average (Bagging)

For $b = 1, \dots, B$

- (1) Draw *n* samples from the training set S_n with replacement $\Rightarrow S_n^b$
- (2) Build a tree \hat{T}^b based on our S^b_n

How can we predict?

$$\hat{h}_B(x) = \frac{1}{B} \sum_{b=1}^{B} h(x; \hat{T}^b)$$

Note that this is not a binary prediction, you can get $\hat{h}_B(x) = -0.25$, since $\hat{h}_B(x) \in [-1,1]$

How many training examples will not be selected in the bootstrap sample S_n^b :

The probability that an element will not be selected is $\left(1-\frac{1}{n}\right)$, since we have *n* elements:

$$\left(1-\frac{1}{n}\right)^n = \frac{1}{e}$$

The reason to do bootstrap average: introduce trees that make errors in an uncorrelated fashion.

Unfortunately, this is not enough, because the trees still have a bunch of the training set in common. Thus, their predictions are still correlated. We want to decorrelate the predictions even more.

Random forest

Input S_n , B, m and $x \in \mathbb{R}^d$, d = 100

For b = 1, ..., B

Alin Tomescu

6.867 Machine learning | Week 5, Thursday, October 3rd, 2013 | Lecture 9

- (1) Draw S_n^b with replacement (just like before)
- (2) Build a tree \hat{T}^b based on S^b_n , but...
 - a. At each node in the tree you draw *m* coordinates at random and then find the best split among the *m*
 - i. That means that instead of using all the d = 100 dimensions for making the decision at the current node in the tree, we will only use m.

$$\hat{h}_{rf}(x) = \frac{1}{B} \sum_{b=1}^{B} h(x; \hat{T}_m^b)$$

http://www.dabi.temple.edu/~hbling/8590.002/Montillo RandomForests 4-2-2009.pdf

http://www.youtube.com/watch?v=3kYujfDgmNk

How do we choose m?

For each tree, I can evaluate an error $\hat{\varepsilon}^b(m) = \text{error on out of "bag" examples (the ones that were left out when we selected <math>S_n^b$. We can apply our tree on those examples to get an error measurement.

We can the average all of them:

$$m = \operatorname{argmin}_{\mathrm{m}} \frac{1}{B} \sum_{b=1}^{B} \hat{\varepsilon}^{b}(m)$$

Ensemble methods

Random forests are one. We start with a too strong of a predictor, we randomize and take an average and as a result get a predictor that is stronger and generalizes well.

Boosting

Boosting looks at week learners and it optimizes the ensemble obtaining a strong predictor.

An example of an ensemble

$$h_m(x) = \sum_{i=0}^m \alpha_i h(x, \theta_i)$$
$$\alpha_i = votes$$

 $h(x, \theta_i) = weak \ learner$

There is too much power in this ensemble so we have to do a poor job at optimizing the solution so we can generalize well.

Train the ensemble to minimize the training error. We find $\vec{\alpha}$ and $\vec{\theta}$

$$\sum_{i=1}^{n} Loss\left(y^{(i)}h_m(x^{(i)})\right)$$

Alin Tomescu

6.867 Machine learning | Week 5, Thursday, October 3rd, 2013 | Lecture 9

$$z = y^{(i)}h_m(x^{(i)}) =$$
agreement

But this is computationally hard and also provides an overfitting solution. So we don't want this.

Loss(z) can be the hinge less or logistic loss $Loss(z) = \log(1 + e^{-z})$, or exponential loss $Loss(z) = e^{-z}$.

We will not use hinge loss, because we want a smooth decrease in the loss function so as to guide the ensemble optimization.

Forward fitting

You start with $h_0(x) = 0$.

(1) Fix $\hat{h}_{m-1}(x)$, what is the final piece that I should add that best complements what I have. Find α_m and θ_m that minimize $J(\alpha_m, \theta_m) = \sum_{i=1}^n Loss(y^{(i)}h_{m-1}(x^{(i)}) + y^{(i)}\alpha_m h(x; \theta_m))$. But even this is too much of a hard problem.