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Lecture 11

Understanding generalizations, what kind of guarantees can we give about a learning algorithm?

Today, we will work with the training error:
n
1 . . . .
Ru(h) =) Lossos (yOh(x®)), (x@,y©)~p'
i=1

We wish to optimize the generalization error:

R(h) = E(x,y)Np*{LossoljL (yh(x))}

H = set of classifiers
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We are looking for an upper bound on R(h), such that R(h) < R, (h) + ¢
The gap depends on the number of training examples. (because you can better train the classifier with more examples?)
Cases:

(1) |H| < o0, H = {hy, ..., hy}, realizable, which means 3h* € H, R(h*) = 0. What guarantees can we give in this
case?
(2) || < 0o, H = {h4, ..., hi}, but not realizable
(3) |H| = oo for example, the set of linear classifiers is such an H
(4) No longer pick one single classifier, but pick a distribution over the classifiers h € H
a. Have a “prior” P(h), and | will select a “posterior” Q(h)
b. Inthis case, the training error corresponds to taking an expected value of the generalization error of the
classifier over the distribution that | choose
i Ep-g{Ra(R)}
i. Ep-o{R(h)}
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Casel: |H| < oo,3h* € H,R(h*) =0
The types of guarantees we hope to have in case 1, is that the generalization error is lower than the training error. With
high probability, we want:

Pr(R(h) <R, (h)+e)=1-6
e=¢(H,n,0)
If the problem is realizable, then the training error is
Rn(h) = min R, (h) = 0

Since, we know there exists a classifier that generalizes perfectly, that classifier will also have to train perfectly (with no -
training errors).

Pr(R(h) <R,(h)+&)=1-8 © Pr(3h € H R,(h) = O,R(h) > &) <§
(Rn(h) = min R, (h) = 0)

We do not consider classifiers that have non-zero training error since we only care about the ones that generalize
perfectly. The probability that there exists a classifier that violates the first probability (Pr(R(ﬁ) < Rn(ﬁ) + 8) =>1-9)
is less that 6.

Let:
R(h) =&

Let’s pick h such that g, > ¢. If | pick some classifier that does not generalizes as well as | want what is the probability
that it survives my screening process.

Pr(R,(h)=0)=AQ—-¢g)"<(1—-¢&)"

This means that the generalization error is exactly the probability that | would make an error on a randomly chosen
training example. There are n such examples.

Union bound: Pr(4; or A, or A; or ...) < Pr(4;) + Pr(4;) + -+ Pr(4;)

Pr(3h € K R, (h) = 0,R(h) > &) < Z Pr(R, (k) = 0)
heH ,ep>€
But, Pr(R,(h) =0) < (1 — &)™, so:
Pr(3h € H R, (h) = O,R(h) > &) < |H|(1— )" = &

So, with probability at least 1 — 4:

1
log|H| + logg e

R(E)SRn(fl)+s(}[,n,6),£= ,Wwhenl—e<e
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The gap goes down as a function of the training examples. The gap increases logarithmically in terms of the size of sets

of classifiers.

Case2: |H| < oo,Vh* e H,R(h*) # 0
Pr(R(h) <R, (h)+e)=1-6

Now there’s no h that generalizes perfectly, so this is harder.
If we prove something stronger, then the above statement is also true.

Pr(vhe H,R(h) <R,(h)+¢&)=>1-§
As a result the € will be a little bit larger than we would like.

© Pr(3h e H,R(h) > R, (h)+¢) <

We can use the union bound:

Pr(3h € H,R(h) > R, (h) + &) < Z Pr(R(h) > R, () + €)
heH

What is Pr(R(h) > R, (h) + €)?
We can define an R.V. S; = Lossg, (y(i)h(x(i))) = the loss on the i*" training example.
What is E{S;}?
E{S;} = E(x(i),y(i))~p* {Lossoll (y(i)h(x(i)))} = E(x'y)Np*{Lossorl(yh(x))} = R(h)

So the expected value of the training error if you do not train the classifier is exactly the generalization error. But it is not
the generalization error when you adjust h based on the training set.

S = Si
1 n
Pr <E{S} > Ez S+ s) < e~2¢* (by Chernof f bound)
i=1

So,

Pr(3h € H,R(h) > R, (h) + ¢) < |g{|e—2ngz —5

L \/logl}[l + log (%)

2n

TODO: Make sure this is a 2n and not a 2

logl?—[|+log(%)
2n

With probability at least 1 — &, for all classifiers h € H,R(h) < R, (h) + ¢,¢& =
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This result is poorer, since the gap is smaller.

Case 3: |H| =

|H| = oo (example: linear classifiers).

Many of the classifier choices perform the same. So somehow we have to collapse these togethere.
xW L x™

Pick h; € H, that predicts +, —, ... +

Pick h, € H, that predicts —, —, ... +

Pick h; € H, that predicts +, —, ... +

In some sense h; and h; are the same (roughly equal), because they classify the training set the same.

It turns out there is a finite # of distinct labelings. Let’s call this number N}[(x(l), . x(”)).

— (€9)] )
Ny (n) x(lr)r,lj'g((n)]\f}[x e, X )

This is known as the growth function. “Find the set of examples that maximize the # of distinct labelings”.
Let’s take an example, like linear classifiers in 2D, and see how this behaves.
x; = Ny (1) = 21
X1, Xz = Ny (2) = 22
X1, %, X3 = Ny (3) = 2°

X1, X5, X3,%4 = Nyr(4) = 14 < 2* (because we cannot separate the XOR function)

(
APD N

A 1
dbc i

dyc = max{h : N3 (h) = 2"} = max # of points for which the growth function is exactly 2"
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Definition: A classifier can shatter a set of points when the classifier can generate all instances of possible labelings over
the points. Or, if the classifier can classify the points correctly independent of the labeling.



