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Lecture 11 

Understanding generalizations, what kind of guarantees can we give about a learning algorithm? 

Today, we will work with the training error: 

𝑅𝑛(ℎ) =
1

𝑛
∑ 𝐿𝑜𝑠𝑠0,1 (𝑦(𝑖)ℎ(𝑥(𝑖)))

𝑛

𝑖=1

, (𝑥(𝑖), 𝑦(𝑖))~𝑝∗ 

We wish to optimize the generalization error: 

𝑅(ℎ) = 𝐸(𝑥,𝑦)~𝑝∗{𝐿𝑜𝑠𝑠0,1(𝑦ℎ(𝑥))} 

ℋ = set of classifiers 

 

We are looking for an upper bound on 𝑅(ℎ), such that 𝑅(ℎ) ≤ 𝑅𝑛(ℎ) + 𝜀 

The gap depends on the number of training examples. (because you can better train the classifier with more examples?) 

Cases: 

(1) |ℋ| < ∞, ℋ = {ℎ1, … , ℎ𝑘}, realizable, which means ∃ℎ∗ ∈ ℋ, 𝑅(ℎ∗) = 0. What guarantees can we give in this 

case? 

(2) |ℋ| < ∞, ℋ = {ℎ1, … , ℎ𝑘}, but not realizable 

(3) |ℋ| = ∞ for example, the set of linear classifiers is such an ℋ 

(4) No longer pick one single classifier, but pick a distribution over the classifiers ℎ ∈ ℋ 

a. Have a “prior” 𝑃(ℎ), and I will select a “posterior” 𝒬(ℎ) 

b. In this case, the training error corresponds to taking an expected value of the generalization error of the 

classifier over the distribution that I choose 

i. 𝐸ℎ~𝒬{𝑅𝑛(ℎ)} 

ii. 𝐸ℎ~𝒬{𝑅(ℎ)} 
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Case 1: |𝓗| < ∞, ∃𝒉∗ ∈ 𝓗, 𝑹(𝒉∗) = 𝟎 
The types of guarantees we hope to have in case 1, is that the generalization error is lower than the training error. With 

high probability, we want: 

Pr(𝑅(ℎ̂) ≤ 𝑅𝑛(ℎ̂) + 𝜀) ≥ 1 − 𝛿 

𝜀 = 𝜀(ℋ, 𝑛, 𝛿) 

If the problem is realizable, then the training error is  

𝑅𝑛(ℎ̂) = min
ℎ∈ℋ

𝑅𝑛(ℎ) = 0 

Since, we know there exists a classifier that generalizes perfectly, that classifier will also have to train perfectly (with no -

training errors). 

Pr(𝑅(ℎ̂) ≤ 𝑅𝑛(ℎ̂) + 𝜀) ≥ 1 − 𝛿 ⇔ Pr(∃ℎ ∈ ℋ 𝑅𝑛(ℎ) = 0, 𝑅(ℎ) > 𝜀) < 𝛿 

(𝑅𝑛(ℎ̂) = min
ℎ∈ℋ

𝑅𝑛(ℎ) = 0) 

We do not consider classifiers that have non-zero training error since we only care about the ones that generalize 

perfectly. The probability that there exists a classifier that violates the first probability (Pr(𝑅(ℎ̂) ≤ 𝑅𝑛(ℎ̂) + 𝜀) ≥ 1 − 𝛿) 

is less that 𝛿. 

Let: 

𝑅(ℎ) = 𝜀ℎ 

Let’s pick ℎ such that 𝜀ℎ > 𝜀. If I pick some classifier that does not generalizes as well as I want what is the probability 

that it survives my screening process. 

Pr(𝑅𝑛(ℎ) = 0) = (1 − 𝜀ℎ)𝑛 ≤ (1 − 𝜀)𝑛 

This means that the generalization error is exactly the probability that I would make an error on a randomly chosen 

training example. There are 𝑛 such examples. 

Union bound: Pr(𝐴1 𝑜𝑟 𝐴2 𝑜𝑟 𝐴3 𝑜𝑟 … ) ≤ Pr(𝐴1) + Pr(𝐴2) + ⋯ + Pr (𝐴3) 

Pr(∃ℎ ∈ ℋ 𝑅𝑛(ℎ) = 0, 𝑅(ℎ) > 𝜀) ≤ ∑ Pr(𝑅𝑛(ℎ) = 0)

ℎ∈ℋ,𝜀ℎ>𝜖

 

But, Pr(𝑅𝑛(ℎ) = 0) ≤ (1 − 𝜀)𝑛, so: 

Pr(∃ℎ ∈ ℋ 𝑅𝑛(ℎ) = 0, 𝑅(ℎ) > 𝜀) ≤ |ℋ|(1 − 𝜀)𝑛 = 𝛿 

So, with probability at least 1 − 𝛿: 

𝑅(ℎ̂) ≤ 𝑅𝑛(ℎ̂) + 𝜀(ℋ, 𝑛, 𝛿), 𝜀 =
log|ℋ| + log

1
𝛿

𝑛
, 𝑤ℎ𝑒𝑛 1 − 𝜀 ≤ 𝑒−𝑛𝜀 
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The gap goes down as a function of the training examples. The gap increases logarithmically in terms of the size of sets 

of classifiers. 

Case 2: |𝓗| < ∞, ∀𝒉∗ ∈ 𝓗, 𝑹(𝒉∗) ≠ 𝟎 
Pr(𝑅(ℎ̂) ≤ 𝑅𝑛(ℎ̂) + 𝜀) ≥ 1 − 𝛿 

Now there’s no ℎ that generalizes perfectly, so this is harder.  

If we prove something stronger, then the above statement is also true. 

Pr(∀ℎ ∈ ℋ, 𝑅(ℎ) ≤ 𝑅𝑛(ℎ) + 𝜀) ≥ 1 − 𝛿 

As a result the 𝜀 will be a little bit larger than we would like. 

⇔ Pr(∃ℎ ∈ ℋ, 𝑅(ℎ) > 𝑅𝑛(ℎ) + 𝜀) ≤ 𝛿 

We can use the union bound: 

Pr(∃ℎ ∈ ℋ, 𝑅(ℎ) > 𝑅𝑛(ℎ) + 𝜀) ≤ ∑ Pr(𝑅(ℎ) > 𝑅𝑛(ℎ) + 𝜀)

ℎ∈ℋ

 

What is Pr(𝑅(ℎ) > 𝑅𝑛(ℎ) + 𝜀)? 

We can define an R.V. 𝑆𝑖 = 𝐿𝑜𝑠𝑠0,1 (𝑦(𝑖)ℎ(𝑥(𝑖))) = the loss on the 𝑖𝑡ℎ training example. 

What is 𝐸{𝑆𝑖}? 

𝐸{𝑆𝑖} = 𝐸(𝑥(𝑖),𝑦(𝑖))~𝑝∗ {𝐿𝑜𝑠𝑠0,1 (𝑦(𝑖)ℎ(𝑥(𝑖)))} = 𝐸(𝑥,𝑦)~𝑝∗{𝐿𝑜𝑠𝑠0,1(𝑦ℎ(𝑥))} = 𝑅(ℎ) 

So the expected value of the training error if you do not train the classifier is exactly the generalization error. But it is not 

the generalization error when you adjust ℎ based on the training set. 

𝑆 = 𝑆𝑖 

Pr (𝐸{𝑆} >
1

𝑛
∑ 𝑆𝑖 + 𝜀

𝑛

𝑖=1

) ≤ 𝑒−2𝑛𝜀2
 (𝑏𝑦 𝐶ℎ𝑒𝑟𝑛𝑜𝑓𝑓 𝑏𝑜𝑢𝑛𝑑) 

So, 

Pr(∃ℎ ∈ ℋ, 𝑅(ℎ) > 𝑅𝑛(ℎ) + 𝜀) ≤ |ℋ|𝑒−2𝑛𝜀2
= 𝛿 

𝜀 =
√log|ℋ| + log (

1
𝛿

)

2𝑛
 

TODO: Make sure this is a 𝟐𝒏 and not a 2 

With probability at least 1 − 𝛿, for all classifiers ℎ ∈ ℋ, 𝑅(ℎ) ≤ 𝑅𝑛(ℎ) + 𝜀, 𝜀 = √log|ℋ|+log(
1

𝛿
)

2𝑛
 



Alin Tomescu 
6.867 Machine learning | Week 6, Tuesday, October 10th, 2013| Lecture 11 
This result is poorer, since the gap is smaller. 

Case 3: |𝓗| = ∞ 
|ℋ| = ∞ (example: linear classifiers). 

Many of the classifier choices perform the same. So somehow we have to collapse these togethere. 

𝑥(1), … , 𝑥(𝑛) 

Pick ℎ1 ∈ ℋ, that predicts +, −, … + 

Pick ℎ2 ∈ ℋ, that predicts −, −, … + 

Pick ℎ3 ∈ ℋ, that predicts +, −, … + 

In some sense ℎ1 and ℎ3 are the same (roughly equal), because they classify the training set the same. 

It turns out there is a finite # of distinct labelings. Let’s call this number 𝒩ℋ(𝑥(1), … , 𝑥(𝑛)). 

𝒩ℋ(𝑛) = max
𝑥(1),…,𝑥(𝑛)

𝒩ℋ(𝑥(1), … , 𝑥(𝑛)) 

This is known as the growth function. “Find the set of examples that maximize the # of distinct labelings”. 

Let’s take an example, like linear classifiers in 2D, and see how this behaves. 

𝑥1 → 𝒩ℋ(1) = 21 

𝑥1, 𝑥2 → 𝒩ℋ(2) = 22 

𝑥1, 𝑥2, 𝑥3 → 𝒩ℋ(3) = 23 

𝑥1, 𝑥2, 𝑥3, 𝑥4 → 𝒩ℋ(4) = 14 < 24 (because we cannot separate the XOR function) 

 

𝑑𝑉𝐶 = max{ℎ ∶  𝒩ℋ(ℎ) = 2𝑛} = 𝑚𝑎𝑥 # 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑒𝑥𝑎𝑐𝑡𝑙𝑦 2𝑛 
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Definition: A classifier can shatter a set of points when the classifier can generate all instances of possible labelings over 

the points. Or, if the classifier can classify the points correctly independent of the labeling. 


