
Alin Tomescu
6.867 Machine learning | Week 8, Tuesday, October 22nd, 2013| Lecture 13

Page | 1

Lecture 13

Previously, we were looking at having empirical risk as just a fraction of misclassified examples:

𝑅𝑛(ℎ) =
1

𝑛
∑[[𝑦𝑖 ≠ ℎ(𝑥𝑖)]]

𝑛

𝑖=1

𝑅(ℎ) = 𝐸(𝑥,𝑦)~𝑝{[[𝑦 ≠ ℎ(𝑥)]]}

If I have a set of classifiers ℋ and I pick ℎ̂ ∈ ℋ, how well will it generalize?

Key idea: The more choices you have for your classifier, the bigger the gap between training and generalization error.

We looked (will look) at:

 Finite set of classifiers ℋ, |ℋ| < ∞

 Infinite set of classifiers (eg., set of linear classifiers, uncountable)

 Distributions over classifiers

Case 2: |𝓗| < ∞, ∀𝒉∗ ∈ 𝓗, 𝑹(𝒉∗) ≠ 𝟎
Assume |ℋ| < ∞ (finite), then we can say with probability at least 1 − 𝛿 (and we can fix 𝛿: you tell me the confidence

that you want), for all classifiers in my set, that the generalization error will not be too far from the training error and

the gap is related to the size of the set of classifiers.

𝑅(ℎ) ≤ 𝑅𝑛(𝐻) + √
log|ℋ| + log 1/𝛿

2𝑛

What does this mean? The gap will increase logarithmically with the size/complexity of the set of classifiers and will

decrease with a larger number of training examples

Alin Tomescu
6.867 Machine learning | Week 8, Tuesday, October 22nd, 2013| Lecture 13

Page | 2

complexity ↑ ⇒ gap ↑

of training examples ↑ ⇒ gap ↓

Trivial example: Labels are completely random. So this is a classification task you don’t want to solve since there’s no

relation between 𝑥 and 𝑦.

Here, since the 𝑦 labels are random and independent of the 𝑥 values, increasing the complexity will only fit the noise in

the data and will only serve to increase the training/generalization error gap, as the training error is decreased.

In general, regularization can help avoid fitting through the noise and result in a smaller gap, as can be seen below:

Case 3: |𝓗| = ∞
If we have a fixed ℋ and an 𝑆𝑛 = {𝑥1, 𝑥2, … , 𝑥𝑛} and we pick a classifier ℎ𝑖 that gives a particular labeling of the training

examples.

We defined 𝑁ℋ(𝑥1, 𝑥2, … , 𝑥𝑛) to be the number of distinct labelings that we can generate with classifiers from ℋ on

the 𝑥1, 𝑥2, … , 𝑥𝑛 training set, aka a growth function.

Alin Tomescu
6.867 Machine learning | Week 8, Tuesday, October 22nd, 2013| Lecture 13

Page | 3

Note: There are 2𝑛 distinct labelings for 𝑛 items in a training set:

We can defined 𝑁ℋ(𝑛) = max
𝑥1,𝑥2,…,𝑥𝑛

𝑁ℋ(𝑥1, 𝑥2, … , 𝑥𝑛) as a better measure over all the training examples.

Definition: 𝑁ℋ(𝑛) the maximum number of distinct labelings that we can generate with classifiers from ℋ over a

particular training set of 𝑛 examples. (Important: Not over all training sets however)

“For this training set of size 𝑛 we can label it in 𝑁ℋ(𝑛) ways using well-picked classifiers from ℋ“

𝑑𝑉𝐶 = max{𝑛: 𝑁ℋ(𝑛) = 2𝑛}

Definition: VC-dimension is the largest number of points (in some configuration) that the set of classifiers can shatter

(i.e. that the classifier can generate all instances of possible labelings over training examples, or that the classifier can

classify independent of the labeling)

The VC dimension of the class { 𝑓(𝑥, 𝛼) } is defined to be the largest number of points (in some configuration) that can

be shattered by members of { 𝑓(𝑥, 𝛼) }.

Alin Tomescu
6.867 Machine learning | Week 8, Tuesday, October 22nd, 2013| Lecture 13

Page | 4

“Is there a training set of size 𝑛 that we can shatter? Can we still shatter sets of size 𝑛 + 1?”

Important note: By definition, if VCdim(𝐻) = 𝑑, there exists a set of size 𝑑 that can be fully shattered. But, this does

not imply that all sets of size 𝑑 or less are fully shattered, in fact, this is typically not the case.

Consequence: If you are told a set of classifiers has VC-dimension 𝑑𝑉𝐶, then to confirm or prove it:

- Find a set of size 𝑑𝑉𝐶 that can be shatter (pick/place your points wisely)

- Prove that any set of larger size cannot be shattered (this means that for any placement/positioning of points,

there exists some labeling that cannot be achieved/created/reproduced by a classifier in the set)

The VC-dimension will represent the complexity of our sets of classifiers.

𝑁ℋ(𝑛) = {

2𝑛, 𝑛 ≤ 𝑑𝑉𝐶

≤ (
𝑒𝑛

𝑑𝑉𝐶
)
𝑑𝑉𝐶

, 𝑛 > 𝑑𝑉𝐶

Examples: RBF and linear classifiers
For radial basis kernel, the VC-dimension is infinite because it can shatter an infinite number of points.

What makes a classifier with infinite VC-dimension still good for generalization? The notion of margin. (RBF kernel

margin is not good?)

Linear classifiers in 2𝐷 ⇒ 𝑑𝑉𝐶 = 3

Linear classifiers in ℝ𝑑 ⇒ 𝑑𝑉𝐶 = 𝑑 + 1 (the # of parameters in 𝜃 ∈ ℝ𝑑 and 𝜃0 ∈ ℝ)

𝑆𝑛 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2)… , (𝑥𝑛, 𝑦𝑛)}

�⃗�𝑖 =

[

0
⋮
1
⋮
0]

= 1 in 𝑖𝑡ℎ position

𝑥𝑑+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 0⃗⃗

Solution: I can find a 𝜃 and 𝜃0 that classify these correctly (I can set 𝜃 and 𝜃0 such that 𝑠𝑖𝑔𝑛 (𝜃�⃗�𝑖 + 𝜃0) = 𝑠𝑖𝑔𝑛 (𝜃𝑖 +

𝜃0) will classify example 𝑖 only).

We can take care of the last example 𝑥𝑑+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = 0⃗⃗ using 𝜃0:

𝜃0 = 𝑦𝑑+1

The rest of the examples �⃗�𝑖 can be classified by “overpowering” 𝜃0:

𝜃𝑖 = 2𝑦𝑖

Now we have to show we can’t shatter a larger set. This is because any extra �⃗�𝑛𝑒𝑤 examples will be a linear combination

of the previous 𝑑 + 1 ones (look at HW6 exercise 1, part c). This means that the corresponding �⃗�𝑛𝑒𝑤 label will be

Alin Tomescu
6.867 Machine learning | Week 8, Tuesday, October 22nd, 2013| Lecture 13

Page | 5

determined by how the 𝑑 + 1 �⃗�𝑖 points were classified, which means that, by changing the label, �⃗�𝑛𝑒𝑤
̅̅ ̅̅ ̅̅ could not be

classified correctly.

Examples: Decision stumps and ensembles
Decision stumps: how powerful are they?

In 2D, a decision stump can shatter (a particular set of) 3 points, but cannot shatter any 4 points. 𝑑𝑉𝐶 = 3

In ℝ𝑑:

Explanation (informal):

- Consider decision stumps in ℝ2. Limit yourself to only picking one decision stump on the 𝑥-axis. Worst case is if

all points are on a line parallel to the 𝑥-axis (or on some sort of curve above the 𝑥-axis, as long as no two points

have the same 𝑦 coordinate). Then we can place our decision stumps anywhere in between the points or on the

left of the left-most point. We get 2 labelings for each placement. There are 𝑛 placements, so we get 2𝑛

labelings. (The reason we don’t consider a decision stump on the right of the right-most point is because it gives

us the same labelings as the decision stump on the left of the left-most point).

- If we remove the limitation of only picking our decision stump on the 𝑥-axis then we add at most another 2𝑛

labelings.

- Thus, in ℝ2, we can get at most 2𝑛 + 2𝑛 labelings: 𝑁ℋ(𝑛) = 4𝑛

- In general in ℝ𝑑, we can get at most 2𝑛𝑑 labelings: 𝑁ℋ(𝑛) = 2𝑛𝑑

- Since 𝑑𝑣𝑐 = max{n:𝑁ℋ(𝑛) = 2𝑛} and 𝑁ℋ(𝑛) ≤ 2𝑛𝑑, then the maximum 𝑛 for which 𝑁ℋ(𝑛) = 2𝑛 would need

to have 𝑁ℋ(𝑛) = 2𝑛 ≤ 2𝑛𝑑.

Thus, for a single decision stump, we have 𝑑𝑣𝑐 = max
n

{𝑛: 2𝑛𝑑 ≥ 2𝑛} ≅ log𝑑

Alin Tomescu
6.867 Machine learning | Week 8, Tuesday, October 22nd, 2013| Lecture 13

Page | 6

The VC-dimension of an ensemble with 𝑚 stumps is ≥
𝑚

2
 (Why?)

Theorem: If we know 𝑑𝑉𝐶 for ℋ, then ∃ a set of points 𝑥1, 𝑥2, … , 𝑥𝑛, with 𝑛 < 𝑑𝑉𝐶 such that the following holds:

I can find ℎ ∈ ℋ that correctly classifies all the training examples. I can also find another classifier that also

reproduces those labels since 𝑑𝑉𝐶 > 𝑛, but for these two classifiers I can find a point 𝑥𝑛+1 that they will

disagree on.

Finally, we can modify the gap result in the infinite case. With probability at least 1 − 𝛿:

𝑅(ℎ) ≤ 𝑅𝑛(ℎ) +
√log𝑁ℋ(2𝑛) + log

4
𝛿

𝑛

log𝑁ℋ(𝑛) ≤ log [(
𝑒𝑛

𝑑𝑉𝐶
)
𝑑𝑉𝐶

]

⇒
√log𝑁ℋ(2𝑛) + log

4
𝛿

𝑛
≤

√
log ((

2𝑒𝑛
𝑑𝑉𝐶

)
𝑑𝑉𝐶

) + log
4
𝛿

𝑛
=

√
𝑑𝑉𝐶 log (

2𝑒𝑛
𝑑𝑉𝐶

) + log
4
𝛿

𝑛
=

√
𝑑𝑉𝐶 (1 + log (

2𝑛
𝑑𝑉𝐶

)) + log
4
𝛿

𝑛

Thus,

𝑅(ℎ) ≤ 𝑅𝑛(ℎ) +
√

𝑑𝑉𝐶 (1 + log (
2𝑛
𝑑𝑉𝐶

)) + log
4
𝛿

𝑛

Infinite VC-dimension
How do we handle cases where VC-dimension is infinite? We need some notion of margin.

Consider the case for linear classifiers in ℝ𝑑 where all examples are bounded by a circle: ‖𝑥‖ < 𝑅, ∀𝑥 ∈ 𝒳

Then, 𝑑𝑉𝐶 ≤ min (
𝑅2

𝛾2 , 𝑑) + 1

