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Lecture 15

Project details:

Write-up for project: 4, 6, 8 pages (for 1, 2 and 3 people respectively)

Can be related to research but not collaborated with people outside the class
A way to express who did what on the project

Generative modelling (continued)

Last time we talked about supervised learning where we had data: {(xy,y;),i = 1, ...,n},y € {—1,1} (even though
labels did not have to be binary).
We need to find some constraint-limited way to find what the underlying distribution might be:

p(x,y;6)
Limiting the alternatives you are exploring while learning is critical.

p(x,y;0) = p(x|y; 0)P(y; 0)

We have to determine the two NV (x; uy,azl) and P, (fory = +1)

Today, we assume o is fixed.

In this model, theta is 8 = {uy, u_1, Py, P_1}. Note that we can compute P,
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Each training example is sampled iid (most certainly incorrect in practice) from a normal distribution N(

x®; w0, 621)
We can write down the log-likelihood for p(x, y; 8) of the data we have, where D is our training set:
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n n

1(6;D) = Zlog[P(x(i)|y(i);9)P(y(i);9)] = zmg [N (x(i);uy(i),azl) Py(z)]
i=1 i=1

n
N Z Z §(y,y®)log [N (x(i); “y(i)’azl) Py(”]

i=1y€ey

, 1,y = y(l)
8(y,y?) = {0 )% y®

The ML estimates (if you compute them) are:
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If we take the sum over all the y values, we get:

Z P, = z <Z?=1 5_(§:y(i))> 1= ZyEYZ?=_1/f(y'y(i)) Z Z 5(}/ y(l)) - Z 1=—

yey YEY i=1y€ey

n 5(3,’ y(i))
A &=l
P n

n
1 . .
g E;SWJOhI( )
So now we have classifier, it tells us exactly how the input examples are related to the labels.
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Given a new example x, my predicted label is:

¥ = argmax P(x, y; 9) = argmaxP(x|y; é)P(y; é) = argmax P(xly; é)Py
y y y

Another way is to write a discriminant function that is positive when predicted label is positive and negative when
predicted label is negative:

Py =1,6) N (xW; py, 021)Py oy 1 1 By
x;0) =lo =lo . = = — x— @12 + == |lx = fi_{||? + log==
fe0 g[P(x.y =-1;0) & N(ED;u_q,02DP,__4 202 Ibe = sl 202 Il = Al gpy:_1

If | make the class 1 more likely apriori (make Pyzl higher) then | make f (x; ) more positive.

f(x; 0) is a quadratic discriminant function in general. In this special case, where the variances are equal, this
discriminant function is actually linear because if you expand it (applying ||x — /1112 = (x — 47 (x — fi;)) we get:

Py_q

P,

1 1 1
f(x;0) = —m(lh +A-4)x —FHMHZ —F”#quz + log =wW- X+ W

Note: Again this only holds when Z; = X_;.

Example 1: When our model is correctly specified (that means we were right in picking a Gaussian model for the two
clusters of + and — points)
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Example 2: When our model is mis-specified (as in, we picked a Gaussian but the x values don’t look like a Gaussian)
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Mixture models
Let’s expand this model a little bit. Let’s try to estimate more complicated models.

Definition: Mixture models mix distributions together (they assume data is a mixture of multiple distributions).

Mixture models can be used in both supervised (labels are given) and unsupervised (labels are not given) learning.
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Example: Our exam scores will be clustered in different probability distributions based on our backgrounds (math,

programming, literature)

We still try to reconstruct P(x|y)P(y),y = 1, ..., k, where k is also a parameter we have to estimate from the data. But

we actually fix k to make the problem easier.

We are no longer doing binary classification. D = {x4, ..., x,,}, we are trying to uncover the types of data points.

We need to parameterize our distributions:

P(x|y; 0) = N(x; Ky» 021), where ¢ is fixed for all clusters. The reason we fix g is because it makes the problem easier.
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P(y;0) =P,

Assumptions about training set generation
The process that our model assumes the data was generated from is described below:

Foreachi =1, ...,n we would sample y(i)~Multinomial(P1, ..., Px) and once | have it | would generate a data point
from a corresponding Gaussian distribution:

x® =N (x(i);uy(i),azl)

Note: there are || = k such N(u,, 621) distributions that the x()’s can be drawn from. In the particular case above.
k = 3. So, you decided which one you pick from, based on what the label y(i) of x® was chosen as. Ify(i) was let’s say
2 (for our case with k = 3), then we pick x® from the 2™ distribution.

Now, given this way of generating the data, except we don’t get the labels, but we get the k, how can we figure out the
clusters?

Given data D = {x4, ..., X, } what is the log-likelihood of generating that data?

n k
1(6;D) = Zlog ZN(x(i);uy,azl)Py
i y

This is difficult to maximize? This is called incomplete log-likelihood.

Example: Suppose student took a 4 question exam with max. grades 38, 12, 24 and 18 for questions 1, 2, 3 and 4
respectively. We might want to cluster together students based on how well they did on certain questions. Maybe it
turns out there are 4 types of students, where each type does extremely well on question i and very poorly on the
others.
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The EM (expectation-maximization) algorithm
Estimation step (E-step): Figures out what the labels are (see figure 7)
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Maximization step (M-step): use the label assignments to do ML estimation
n k
1(6;x,y) = Z Z 5(y,y(i)) log[N(x(i); Iy, aZI)Py]
i=1y=1

A Zi 5(}"3’(1))
by ="

Ay = -+ (as before)

This would be nice, but we don’t have the labels. How do we figure out what the labels are? | could pick them randomly.
You can do a clustering algorithm. You could specify some parameters, like mean and ¢ and then you have a model, and
you can use it to predict the labels by predicting that model is the truth, then reestimate the model and then refine the
assignments.

Ey01500,6m {8, y0)) = E{5(3,y0) | 2, 617}
Step 1: 6[% is chosen at random just to get started.
Step E: Estimation step becomes: g™ (y|i) = E{6(y,y(i)) | x@, H[m]} = P(y|x(i); 9[’”])
(intuition: compute new assignments based on ()

Step M: Maximization step becomes:

We want to increase:
n k
ESL(6;x,y) = z Z g™y log[N(x(i);uy,azl)Py]
i=1y=1
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(intuition: recompute w,, based on labels, ¥y)

You can show that each iteration of this algorithm increases that log-likelihood. At some point, the mean and p,, will not
change anymore at which point we would have converged.

Notes from office hours:

Note that the EM algorithm really maximizes for:
®.
argmax Z logp(x ,9)
XESn

Where the training set S,, is given without the labels y(®.

Since, in general P(A) = Yg,e3 P(A N By), this becomes:

K
argmax Z logp(x; 0) = argmax Z logz p(x,y;60)

XESy XESH y=1

Now, since it’s not mathematically convenient to compute the log of a sum, and since a Gaussian is a concave function it
can be shown that:

K K
argmax Z logz p(x,y;0) = argmax Z Z logp(x,y; 0)
XESn y=1 XESp y=1

This means that maximizing the right-side will also maximize the left-side (since the left side is a lower bound for the
right side).

Again, k is assumed to be known, so as to make the problem easier.
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