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Lecture 21: Hidden Markov Models

Final exam: Evening of December 10, location and time to be announced.
- Hidden Markov models are sure to be on the final exam, because it is so easy to use them as a test of how well
you understand generative modelling

Bayesian networks are graphical models that characterize how variables are independent of each other.
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Hidden Markov models

A particular type of Bayesian network. The graph gives us “parsimony of description” (a compact way of describing it). It
also gives us efficiency of computation.

Notation change: The latent variables we don’t know about are denoted with the letter s, which stands for “state.”

States are coupled with observations. | know something about each state.
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By contrast, a simple mixture model looks like this:
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Example: x; can be a word and all the observations would constitute a sentence, such as:

terrible,,

= Xq,X,, X2, X
great 1,422,734

“This course is {

You would like to give a part of speech tag for each of these words, as follows:
s, = det, s, = noun, s3 = verb, s, = adjective
How can we write down the distribution for this graphical model, for this Bayesian network?
P(Xq, ., Xy, S1,y w0y Sp) =7
What independence properties are satisfied?
1. Xxq,...,xy, are conditionally independent given sy, ..., s,
n
P(X1, ey X, S1y w00y Sp) = P(Xq, 000, Xp|S1, 10, SR P(S1, v Sn) =cond indep= nP(x1|sl, vy Sp)P(S1, ey Sp)
i=1
2. S4,S3,..,5;_ and s; are conditionally independent given s;_;
Si L sz, 81] Sic1 © P(Si,Si—z -, 811 Si1) = P(51,52, 0, Si—2| Si-1)P(si, | Si-1)
n
P(Xq1, ) Xy, S1, ) Sp) = nP(x1|51, iy S)P(S1, o) Sp)

i=1

= P(x11S1, «o» Sn)P(Sn|Sn1,Sn—2s «+» S1)P(Spn—1,Spn—2) =+, S1) = ***

|21,

= P(x11S1, -, Sp)P(51)P(52181)P (8352, 51) P(Sp|Sp—1, .-, S1)
1

i

E

= | [ PCralsy, ., s)P(51)P(s2]51)P(s3]52) P (splSn-1)
11

3. x; L all the other x;s and all the other s;s | s;

n n
P(xl' vy Xy 81, ""Sn) = [1_[ Px,i(xilsi)] Pl(sl) nPi(Silsi—l)] =
i=1 i=2

4. We will make an additional assumption here not shown in the graph: HMM is homogenous (the probabilities
P(z; = z|z;_, = Z') do not depend on the position i along the sequence)

[P1 (s1) 1_[ PT(Silsi—l)]
i=2

n
P(xq, ., Xy, 81, e Sp) = [1_[ Pg(xi|s;)
i=1

What do we need to specify an HMM?
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What are the states? s € {1, ..., k}

Rd

What are the outputs? x € X = {W

We need to specify the initial state distribution P, (S;)

We need to specify emission output probabilities: P;(x|s), which is a table of probabilities, or it could be a Gaussian
distribution with a mean that depends on the state N (x; pig, a1).

We need to model the transition probabilities: P (s'|s)

Example:
1151 =1
P1(s1): [0] s; =2
Pr(s¢ls¢-1)
ss=1 s =2
Se1 =1 0 1
Sg_q =2 0 1

Pg(x|s) = N(x; pg; 02 ), 11 > ity
What does this model generate? What is a likely sequence of states?
51,852,583, .. = 1,2,2,2, e

In terms of observations, at time 1 | am always in state 1 and at time 2 or greater | am always going to be and remain in
state 2.
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Transition diagram
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How to use these HMM models?
We need to be able to solve a few problems: How likely is an observation sequence in this model, after specifying it. We

need to evaluate:

P(xq, ., Xxp) = Z P(Xq1, e, Xy, S1, oer Sp)
all k™ possible sq,....5p
XD, D)
We need to be able to estimate P, (s;), Pz (x|s), Pr(s'|s) from data :
NONENG!
1 Xy

We need to estimate the prediction (53, ..., $;,) = argmax P(xy, ..., X, S, ..., S ) for a particular data row of x;‘s in the
S1,-u5n

above data matrix.

But how can we sum over k™ possible terms? We can perform the summation in time linear to the length of the
sequence due to the independence relations.

The forward-backward algorithm
Gives us P(xq, ..., xp) in linear time.

Forward probabilities: Predictive probabilities. For a particular sequence x4, ..., x,, with s; € {1, ..., k}, we want to

predict a; (i) = P(xq, ..., X¢, S¢ = i). Then we can predict P(s; = i|xq, ..., X¢) = Za;(i()j)-
jat

a1(s1) = P1(51)Pg(x41]51) = P(x1,51)

> (s = P@x)

S1
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ay(sz) = Z P(xq,%3,51,S2) = Z(P1(S1)PE(9C1|S1)PT(32|51)PE(9C2|52)) = Z a5 (s1)Pr(s21s1)Pg(x2]s2)

as(s3) = Z P(xy1,X3,X3,S1,S2,53) = Z ZP(xl,xz,sl,sz) Pr(s3|sz)Pg(x3]s3) = Z a5 (s2)Pr(s3]s2)Pg(x3]s3)
S1

51,52 S2 S2

In general, we get:

ap(se) = P(xq, %3, 000, X, S¢) = Z P(X1, X2, ey X, 51,525 00, S¢) = Z p—1(Se—1)Pe(Se|Se—1)Pg(xe|st),

51,52,St-1 St—1

Vs, =1,..,k

Z a;(sy) = P(xq,Xg, ey Xt)

St

For a4 (s1), we have k possible values, corresponding to each s; € {1, ..., k}.
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What is the computational cost of evaluating P(xy, x5, ..., x,,)? 0(nk?), because | have k numbers to fill in for a; and
each one involves summing over the k previous a,_; values. Note that t € {1, ..., n} hence the 0(nk?).

Note: Increasing the number of values k for the hidden states in an HMM has much greater effect on the computational
cost of 0(nk?) forward-backward algorithm than increasing the length n of the observation sequence.

Backward probabilities: The complement of forward probabilities. Diagnostic probabilities.
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Bt (D) = P(Xt41, o Xn|Se = 1)

Be(se) = P(X¢g1) s XnlSt)

If | start from that state, then what is the probabilities of generating all the future observations?
ﬁn(sn) =1
Bra(5no1) = PGinlsn1) = ) Pr(sulsn )P (ials)
Sn

Bn_3(Sp—2) = P(xp_1,XplSp—2) = Z Pr(Sp-1l5n-2) P (Xn—115n-1) Pr(SplSn-1) Pr (xn|55)

SnSn—-1

]

> Pr(salsn-PeCenlsn) | Pr(snoslsn-2)Pe Conrlsn1)
Sn

Sn-1

= Z By—1(Sp—1)Pr(sp-1lsn—2)Pg (xn_1lspn-1)

Sn-1

Be(se) = Z Pr(st41150)Pg(Xes11Se+1)Bea1 (Ses1)

St+1
How to evaluate the posterior probability of a particular state:

Porm s Ity P(Xy, )Xy Se = 5) _ P(xq, o Xp, Sg = S)P(Xpp1y o) X |Sp = S) _ a(s)pB:(s)
t L An P(xq, ..., Xp) P(x1, o) Xp) s a4 (s)B:(s)

How to evaluate the probability of the data set:

P(xl'xZ' ""xn) = Z Q:n(sn)

Sn

P(x1, X3, 0 Xp) = zp(sl)P(x1|51)ﬁ1(S1)

P(xq, X3, ey Xp) = z a;(se)Be(st)

St
How to evaluate the posterior probability that the HMM went s — s’ at time t.

_ o _ a;(s)Pr(s'|s)Pg(xp1118)Bes1(s")
P(s; =S,St41 = S'|X1, e, Xp) = S . )
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