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Lecture 23: Inference in Bayesian networks

Final will be on December 10, 7-10pm.

Today we’ll try to infer more on arbitrary graphs.

Directed acyclic graph (DAG)
Such graphs capture independence properties.
- They have nodes from 1, ...,n
- Random variables are associated with the nodes x4, ..., x,

- Each node has a parent pa;, i = 1,...,n. Xpq, = {Xj}jepa-
L

- Ifthe graph is acyclic then there exists a node with no parent: 3k s.t. X;,;, = @
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Probabilities on any such graph can be computed as follows:
P(xq, ., Xp) = 1_[ Pi(xl-|xpal.)
i=1.n
Gy B2 < - spisaaparent of x;
O d tors of
! ;‘ - 5, and s, are ancestors of x,
. \ \ - S, and x, are descendants of s;
i Wy b
.
a % - Thisis an “open V-structure,” E = earthquake, B = burglary, A = alarm
"{ Y - E 1 B (E and B are independent of each other)
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O

If we apply our graph inference rule:

POy, ) = | | Piailpa,)
i=1

.n

We get:
P(E,B) = ) P(E,B,A) = ) P(A|E,B)P(E)P(B) =P(E)P(B) ) P(A|E,B) = P(E)P(B)
Z Z Z

Are E 1L B | A? If | know there was an alarm, that implies either an earthquake or a burglary occurred so | cannot set the
variables independently. Thus, they are not independent given A. This is called induced dependence.

PB=1|A=1)=5

Now we can include a “radio report” event in the graph, such that if an earthquake occurred, a radio report will be
released with probability 1. Now we can ask if R 1L B? Yes.

o

WhatisP(B=1|R=1,A=1)=.01=P(B =1)

Why is that? “Explaining away” phenomenon (See http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html). Now, we can
add a “will leave” event in the graph.
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How to read off independence statements from the graph
D-separation (and independence), says x; L x; | x, if i and j are separated (no path between them) by k in the
moralized ancestral graph.

How can we answer such independence questions?
1. Keep only x;, x;, x; and their ancestors (prune the graph)
2. “marry” the parents of all the nodes (in my initial notes | had just “of the 3 nodes”): you draw an edge between
any two pair of parents
a. After this point you can think of it as an undirected graph
3. x; L xj | xi istrueif k separates i and j in the resulting graph

P(E,B,R,A) = P(E)P(B|E)P(R|E,B)P(A|E,B,R)
BLlE
RLB|E
ALR|EB
P(E,B,R,A) = P(E)P(B|E)P(R|E,B)P(A|E,B,R) = P(E)P(B)P(R|E)P(A|E,B)
What does this mean: Variable is independent of its preceding non-parents given the parents.

A variable is conditionally independent of its non-descendants given its immediate parents.
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Equivalence of graphs
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Definition: Graph G and G’ are equivalent iff they make the same independence assumptions.

Two graphs are equivalent if:
- they have the same set of edges (undirected)
- they have the same open v-structures
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