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Lecture 24: More Bayesian networks 

Today we’ll focus on learning Bayesian networks from data. 

Graph: 

- Nodes are associated with random variables 𝑋1 … 𝑋𝑛 

- Graph is acyclic, as a representation of dependencies between the variables it must be acyclic 

- Graph comes from specifying independence relations between variables 

o D-separation criterion gives us these independence relations 

- Graph implies a partial ordering on the variables 

o Any variable coming later in the ordering must… 

o (See figure below) 

 

 

 

Distribution: 

Distribution reflects the graph (consistency), and this implies: 

𝑃(𝑥1, … , 𝑥𝑛) = ∏ 𝑃𝑖(𝑥𝑖|𝑥𝑝𝑎𝑖
)

𝑛

𝑖=1

 

Whatever the graph states the distribution must hold (see figure below). 

 

The reverse might not be true. 
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Learning Bayesian networks from data 
Assumptions: complete data (means we have a value assignment for each observation), discrete variables 

𝑥1, … , 𝑥𝑛, where 𝑥𝑖 ∈ {1, … , 𝑟𝑖} 

Complete data: 

 𝑥1 𝑥2 𝑥3 𝑥4 
Obs. 1 10 8 3 15 

Obs. 2 7 13 9 10 

 

Assume these are i.i.d. samples from some 𝑝∗(𝑥1, … , 𝑥𝑛) 

𝐷 = {(𝑥1
𝑡, … , 𝑥𝑛

𝑡 ), 𝑡 = 1, … , 𝑇} 

When we learn we have 3 problems to solve 

1. Parameter estimation, for a given graph 𝐺 

a. ML, MAP, Bayesian 

2. Model selection problem (score) 

a. Bayesian information criterion, Bayesian score 

3. Graph search problem (must find highest scoring graph) 

Parameter estimation 
Given a graph 𝐺, we know: 

𝑃(𝑥1, … , 𝑥𝑛) = ∏ 𝑃𝑖(𝑥𝑖|𝑥𝑝𝑎𝑖
)

𝑛

𝑖=1

 

Now we parameterize this distribution: 

𝑃(𝑥1, … , 𝑥𝑛; 𝜃) = ∏ 𝑃𝑖(𝑥𝑖|𝑥𝑝𝑎𝑖
; 𝜃)

𝑛

𝑖=1

 

We will assume that the model is fully parameterized, which means I am fully exploring the freedom to choose this 

distribution and the 𝑃𝑖 conditional probabilities. (see figure below). 
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𝑙(𝜃; 𝐷) = ∑ log 𝑃(𝑥1
𝑡 , … , 𝑥𝑛

𝑡 ; 𝜃)

𝑇

𝑡=1

= ∑ ∑ log 𝑃𝑖(𝑥𝑖
𝑡|𝑥𝑝𝑎𝑖

𝑡 ; 𝜃𝑖)

𝑛

𝑖=1

𝑇

𝑡=1

= ∑ [∑ log 𝑃𝑖(𝑥𝑖
𝑡|𝑥𝑝𝑎𝑖

𝑡 ; 𝜃𝑖)

𝑇

𝑡=1

]

𝑛

𝑖=1

= ∑ ∑ 𝑛𝑖(𝑥𝑖, 𝑥𝑝𝑎𝑖
) log 𝑃𝑖(𝑥𝑖

𝑡|𝑥𝑝𝑎𝑖
𝑡 ; 𝜃𝑖)

𝑥𝑖,𝑥𝑝𝑎𝑖

𝑛

𝑖=1

 

𝑛𝑖(𝑥𝑖, 𝑥𝑝𝑎𝑖
) = ∑ 𝟏(𝑥𝑖

𝑡 = 𝑥𝑖) ∏ 𝟏(𝑥𝑗
𝑡 = 𝑥𝑗)

𝑗∈𝑝𝑎𝑖

𝑇

𝑡=1

 

How do we solve for the parameters? What is the ML parameter estimate? Since the model is fully parameterized I 

know each conditional probability can be chosen independently (because the parameters are not tied across different 

conditional probability tables). 

For the 𝑖𝑡ℎ variable: 

∑ [∑ 𝑛𝑖(𝑥𝑖, 𝑥𝑝𝑎𝑖
) log 𝑃(𝑥𝑖|𝑥𝑝𝑎𝑖

; 𝜃𝑖 )

𝑥𝑖

]

𝑥𝑝𝑎𝑖

 

This equation corresponds to a particular row in the conditional probability table that we drew for 𝑃3(𝑥3|𝑥1, 𝑥2; 𝜃3). 

Fix 𝑥𝑝𝑎𝑖
, then 

𝑃(𝑥𝑖|𝑥𝑝𝑎𝑖
; 𝜃𝑖 ) =

𝑛𝑖(𝑥𝑖, 𝑥𝑝𝑎𝑖
)

∑ 𝑛𝑖(𝑥𝑖
′, 𝑥𝑝𝑎𝑖

)𝑥𝑖
′
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Model selection 

 

 𝑙(𝜃, 𝐷, 𝐺) = ∑ ∑ 𝑛𝑖(𝑥𝑖, 𝑥𝑝𝑎𝑖
) log 𝑃(𝑥𝑖|𝑥𝑝𝑎𝑖

; 𝜃𝑖 )

𝑥𝑖,𝑥𝑝𝑎𝑖

𝑛

𝑖=1

= ∑ 𝑙(𝑖|𝑝𝑎𝑖 , 𝐷)

𝑛

𝑖=1

 

𝐵𝐼𝐶(𝐺) = 𝑙(𝜃, 𝐷, 𝐺) −
# 𝑝𝑎𝑟𝑎𝑚

2
log 𝑇 

𝐺 ⇔ 𝑝𝑎1, … , 𝑝𝑎𝑛, 𝑥𝑖 ∈ {1, … , 𝑟𝑖} 

𝑠𝑐𝑜𝑟𝑒(𝑖|𝑝𝑎𝑖, 𝐷) = 𝑙(𝑖|𝑝𝑎𝑖, 𝐷) −
# 𝑝𝑎𝑟𝑎𝑚

2
log 𝑇 = 𝑙(𝑖|𝑝𝑎𝑖, 𝐷) −

(∏ 𝑟𝑗𝑗∈𝑝𝑎𝑖
)(𝑟𝑖 − 1)

2
log 𝑇 

Heavily penalizes models with large number of parents. 

Now we get a decomposable score: 

𝐵𝐼𝐶(𝐺) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑖|𝑝𝑎𝑖 , 𝐷)

𝑛

𝑖=1

 

Graph search 

 

Step 1: Evaluate 𝑠𝑐𝑜𝑟𝑒(𝑖|𝑝𝑎𝑖) for each 𝑖 = 1, … , 𝑛, for each 𝑝𝑎𝑖 ⊆ {1, … , 𝑛} − {𝑖} 

Step 2: Find the highest scoring acyclic graph that maximizes ∑ 𝑠𝑐𝑜𝑟𝑒(𝑖|𝑝𝑎𝑖 , 𝐷)𝑛
𝑖=1  

𝑂(𝑛2𝑛−1) 
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