
CSE 409, Fall 2011, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, September 23rd, 2011

Low level programming bugs

C-programming bugs
There are a few kinds of programming bugs that can lead to serious security exploits:

- Buffer overflows

o Traditional stack code injection

o return-to-libc attacks (return oriented programming)

o Heap overflow attacks

- Double frees

- Integer overflows

- Format string bugs

Stack overflow
The following piece of code illustrates a stack overflow vulnerability:

void getuser(int sock)

{

 char buf[1024];

 read(sock, buf, 2048); /* reading 2048 bytes into 1024 byte buffer is bad */

 /* ... */

}

Refresher on how the stack works
Remember that the stack grows downward, which means arguments are pushed on the stack starting at higher

addresses and going down to lower addresses.

Stack

0xFFFF sock

0xFFFB retaddr

0xFAE9 buf

When the getuser function executes:

- Pushes sock on the stack

- Pushes the return address retaddr on the stack

- Pushes the 1024 byte buffer buf on the stack

o Now, if the address of retaddr was , then the address of the last byte of buf has to be , which

means the address of the first byte of buf will be .

o This is crucial to understand. The stack grows downward, but the buffer buf will grow upward (within

the stack). It has to, because buf[511] has to be at a higher address than buf[0]. That’s just how arrays

work in C.

o Also, this is crucial in making the buffer overflow work. Why? Well, if you write buf[0], buf[1], buf[2],

…, buf[511], and then “accidentally” write buf[512] then you wrote over the first byte of retaddr.

o However, even if buf grew downward along with the stack, the attack would still be possible, as it will

be later explained.

CSE 409, Fall 2011, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, September 23rd, 2011
When the function exits, it needs to clean up the arguments and local variables pushed on the stack, so it will pop stuff

off the stack by incrementing the stack pointer. Finally, it will jump to the return address which it popped off the stack.

Again: Note that buf [0] starts at the bottom and buf [1023] is at the top, so if you were to write to buf [1024] to buf

[1027] you would overwrite the 4 bytes of the return address retaddr.

Stack

0xFFFF sock

0xFFFB retaddr

0xFFFA buf[1023]

buf[i], 0 < i < 1023

0xEFD7 buf[0]

How can this facilitate an attack?
An attacker can figure out where the buffer buf will be in memory by running your program with a debugger and

analyzing it.

If your program is vulnerable to a buffer overflow vulnerability, then he can set his username to binary executable code

of 1024 bytes length, plus an additional 4 bytes containing the address of the buffer buf in memory.

This way when the function getuser attempts to return, the program will jump into the buffer buf where the attacker

code resides and execute this (evil) code.

What’s the point of such an attack?
There are a few things an attacker can do if he finds a buffer overflow vulnerability in your program:

- The attacker can execute arbitrary code on your machine. He can do bad stuff.

- If your program is privileged, then he can do even more damage and take over the system.

- If the attacker can remotely exploit a buffer overflow and your program is running with a lot of privileges, then

the attacker could remotely take over your system.

Possible fixes for buffer overflows
Fortunately, there are a couple of ways of fixing buffer overflows, some of which can be enforced by the guest OS.

Fix 1 (bad): Buffers should grow downward along with the stack

If buffers were to grow downward along with the stack, such that the address of buf[0] is and the address of

buf[1023] is , then we will show attacks are still possible.

Note that implementing this would be very tedious and abnormal and would interfere with normal pointer semantics:

Where should *(p+1) take you? 1 byte ahead or 1 byte back?

The reason this would not work as a fix is because there might be an activation record beneath the buffer in the stack,

which can be overflown. In our case, the read function was called which pushed some arguments on the stack and also

had a return address. As the read function fills in our buffer, we can overflow its return address and still succeed with

the attack.

Take another look at our code and at the stack layout as the code is executing the read function:

CSE 409, Fall 2011, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, September 23rd, 2011
void getuser(int sock)

{

 char buf[1024];

 read(sock, buf, 2048); /* reading 2048 bytes into 1024 byte buffer is bad */

 /* ... */

}

While the read function executes, the stack will be arranged like this:

Stack

Activation record for getuser

0xFFFF sock

0xFFFB retaddr for getuser

0xFFFA buf[0]

buf[i], 0 < i < 1023

0xEFD7 buf[1023]

Activation record for read

0xFED3 buffer length

0xEFCF buffer pointer

0xEFCB sock

0xEFC7 retaddr for read

other local variables for read

It is now fairly obvious that the attacker can overflow the buffer over read’s activation record and change its return

address to one of his choice. Therefore, having the buffer grow downward along with the stack will not prevent this

attack. In addition, it will also make compiler design more complicated since the address of buf[0] is higher than the

address of buf[1023] which does not respect normal pointer semantics.

Fix 2 (good): Put buffers on another stack or put return addresses on another stack.

Fix 3 (good): Don’t allow executing code on the stack. In general, memory pages should be W^X (either writable or

executable, but not both).

Other good fixes:

- Address space layout randomization: always pick a random location where the stack will start in virtual memory,

rather than having the stack always start at the same fixed memory address which makes the addresses of

buffers very predictable

- Canary stack protector: introduce a random canary variable between the return address and the local variables

of a function. This way, if a local buffer is overflown, the canary will be overwritten. The program can check

when it returns whether the canary has remained the same or not and can thus detect a buffer overflow.

Some important details
What about guessing the buffer address? It turns out the buffer address will shift around a little bit. The stack gets

shifted around because the command-line arguments and the environment-variables of the program are pushed onto

the stack initially when the program starts up.

For the attacker this is not a big issue. The attacker can have a range where the buffer address is likely to be in. To

ensure that he can jump to the code in the buffer, he can put “landing zone” code in the beginning of the buffer, which

are just no-op instructions such that when the function jumps some of the landing code is executed until the real code

CSE 409, Fall 2011, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, September 23rd, 2011
starts. If he did not have landing code, then the program would jump into the middle of the buffer executing code there

and skipping the previous code, which would not make sense.

Return-to-libc attacks
To get past the W^X stack overflow protection mechanism, return-to-libc attacks were invented.

In a return-to-libc attack, the attacker sets the overflown return address to a function in libc (the standard C library),

such as system. This will get past the W^X protection since the libc memory pages are executable.

The system libc function takes one argument. The attacker is going overflow buf into retaddr such that it points to

system, but he also needs to take care of the stack above retaddr such that system can make sense of it and grab its

argument from it.

system will expects the following data on the stack: a pointer to a string representing the command and a return

address of its own

The command string pointer can point somewhere inside our overflown buffer. Also, the landing pad for the command

string can be just a bunch of semicolons.

Stack before overflow Desired stack after overflow

Activation record for the caller of getuser Forged system activation record
... 0x10007 cmd pointer (4 bytes)

0x10003 local variables, retaddr, etc. 0x10003 retaddr of system

Activation record for getuser Activation record for getuser
0xFFFF sock 0xFFFF sock

0xFFFB retaddr for getuser 0xFFFB retaddr = &system

0xFFFA buf[1023] 0xFFFA buf[1023]

buf[i], 0 < i < 1023 buf[i], 0 < i < 1023

0xEFD7 buf[0] 0xEFD7 buf[0]

CSE 409, Fall 2011, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, September 23rd, 2011

Return-oriented programming
In the “The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)” paper, Hovav

Shacham demonstrates how to mount an attack to execute arbitrary code after a buffer overflow in the absences of libc

functions.

Excerpt: “The building blocks for the traditional return-into-libc attack are functions, and these can be removed by the

maintainers of libc. By contrast, the building blocks for our attack are short code sequences, each just two or three

instructions long. Some are present in libc as a result of the code-generation choices of the compiler. Others are found in

libc despite not having been placed there at all by the compiler. In either case, these code sequences would be very

difficult to eliminate without extensive modifications to the compiler and assembler.”

The main idea: The attacker finds snippets of code that end in a return (jump instruction). He builds a list of such code

snippets and their starting addresses. He then overflows the stack with return addresses such that when he makes the

first jump to the first snippet, that snippet will return to the next snippet, which will return to the next snippet, and so

on. This way, the attacker executes arbitrary code (limited to the kinds of snippets he can find) on the machine.

Non-control-data overflows
In all of the presented attacks we hijacked the control flow of the program. Essentially, we caused the program to go

into places it would normally not go to. However, sometimes you can change the flow of a program by modifying its

variables. This flow change can be very useful for instance if you can change the flow inside a is_super_user

function, such that it always returns yes.

int is_super_user(char * username)

{

 int result;

 char buf[1024];

 db_lookup(username, userinfo);

 result = userinfo->id < 1024;

 // logs something

 strcpy(buf, username);

 /* ... */

 return result;

}

Attack: If the attacker sends in a long enough user name, he can overflow buf and the first thing he will write over will

be the result variable, which would trick the function to return 1, indicate the user is a super-user.

Intra-struct overflows
An attacker can use buffer overflows to change the values inside a stack or heap-allocated struct. Imagine changing

the is_admin field of the userinfo struct from false to true. It could be very useful >:)

struct userinfo {

 char username[16];

 int is_admin;

http://cseweb.ucsd.edu/~hovav/dist/geometry.pdf

CSE 409, Fall 2011, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, September 23rd, 2011
}

struct userinfo * login_user(char * username)

{

 struct userinfo * result = malloc(...);

 result->is_admin = ...;

 strcpy(result->username, username);

 return result;

}

Problem: Unclean user input. The attacker can provide a username longer than whatever was malloc’d and he can
overflow the userinfo struct, changing the is_admin field to true.

Fix: Use strncpy instead of strcpy.

Better, general fix: Only use snprintf when dealing with strings. It’s clear, clean and nice.

int snprintf(char * dest, int size, const char * fmt, ...);

snprintf always null terminates and it tells you how long your string would be if you had enough space, so you can
use to pre-allocate the exact amount of needed space

