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Low level programming bugs 

C-programming bugs 
There are a few kinds of programming bugs that can lead to serious security exploits: 

- Buffer overflows 

o Traditional stack code injection 

o return-to-libc attacks (return oriented programming) 

o Heap overflow attacks 

- Double frees 

- Integer overflows 

- Format string bugs 

Stack overflow 
The following piece of code illustrates a stack overflow vulnerability: 

void getuser(int sock) 

{ 

    char buf[1024]; 

    read(sock, buf, 2048);  /* reading 2048 bytes into 1024 byte buffer is bad */ 

     

    /* ... */ 

} 

Refresher on how the stack works 
Remember that the stack grows downward, which means arguments are pushed on the stack starting at higher 

addresses and going down to lower addresses. 

Stack 

0xFFFF sock 

0xFFFB retaddr 

0xFAE9 buf 

 

When the getuser function executes: 

- Pushes sock on the stack 

- Pushes the return address retaddr on the stack 

- Pushes the 1024 byte buffer buf on the stack 

o Now, if the address of retaddr was  , then the address of the last byte of buf has to be    , which 

means the address of the first byte of buf will be      . 

o This is crucial to understand. The stack grows downward, but the buffer buf will grow upward (within 

the stack). It has to, because buf[511] has to be at a higher address than buf[0]. That’s just how arrays 

work in C. 

o Also, this is crucial in making the buffer overflow work. Why? Well, if you write buf[0], buf[1], buf[2], 

…, buf[511], and then “accidentally” write buf[512] then you wrote over the first byte of retaddr. 

o However, even if buf grew downward along with the stack, the attack would still be possible, as it will 

be later explained. 
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When the function exits, it needs to clean up the arguments and local variables pushed on the stack, so it will pop stuff 

off the stack by incrementing the stack pointer. Finally, it will jump to the return address which it popped off the stack. 

Again: Note that buf [0] starts at the bottom and buf [1023] is at the top, so if you were to write to buf [1024] to buf 

[1027] you would overwrite the 4 bytes of the return address retaddr. 

Stack 

0xFFFF sock 

0xFFFB retaddr 

0xFFFA  buf[1023] 

buf[i], 0 < i < 1023 

0xEFD7 buf[0] 

How can this facilitate an attack? 
An attacker can figure out where the buffer buf will be in memory by running your program with a debugger and 

analyzing it. 

If your program is vulnerable to a buffer overflow vulnerability, then he can set his username to binary executable code 

of 1024 bytes length, plus an additional 4 bytes containing the address of the buffer buf in memory.  

This way when the function getuser attempts to return, the program will jump into the buffer buf where the attacker 

code resides and execute this (evil) code. 

What’s the point of such an attack? 
There are a few things an attacker can do if he finds a buffer overflow vulnerability in your program: 

- The attacker can execute arbitrary code on your machine. He can do bad stuff. 

- If your program is privileged, then he can do even more damage and take over the system.  

- If the attacker can remotely exploit a buffer overflow and your program is running with a lot of privileges, then 

the attacker could remotely take over your system. 

Possible fixes for buffer overflows 
Fortunately, there are a couple of ways of fixing buffer overflows, some of which can be enforced by the guest OS. 

Fix 1 (bad): Buffers should grow downward along with the stack 

If buffers were to grow downward along with the stack, such that the address of buf[0] is        and the address of 

buf[1023] is  , then we will show attacks are still possible.  

Note that implementing this would be very tedious and abnormal and would interfere with normal pointer semantics: 

Where should *(p+1) take you? 1 byte ahead or 1 byte back? 

The reason this would not work as a fix is because there might be an activation record beneath the buffer in the stack, 

which can be overflown. In our case, the read function was called which pushed some arguments on the stack and also 

had a return address. As the read function fills in our buffer, we can overflow its return address and still succeed with 

the attack. 

Take another look at our code and at the stack layout as the code is executing the read function: 
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void getuser(int sock) 

{ 

    char buf[1024]; 

    read(sock, buf, 2048);  /* reading 2048 bytes into 1024 byte buffer is bad */ 

     

    /* ... */ 

} 

 
While the read function executes, the stack will be arranged like this: 

Stack 

Activation record for getuser 

0xFFFF sock 

0xFFFB retaddr for getuser 

0xFFFA  buf[0] 

buf[i], 0 < i < 1023 

0xEFD7 buf[1023] 

Activation record for read 

0xFED3 buffer length 

0xEFCF buffer pointer 

0xEFCB sock 

0xEFC7 retaddr for read 

other local variables for read 

 

It is now fairly obvious that the attacker can overflow the buffer over read’s activation record and change its return 

address to one of his choice. Therefore, having the buffer grow downward along with the stack will not prevent this 

attack. In addition, it will also make compiler design more complicated since the address of buf[0] is higher than the 

address of buf[1023] which does not respect normal pointer semantics. 

Fix 2 (good): Put buffers on another stack or put return addresses on another stack. 

Fix 3 (good): Don’t allow executing code on the stack. In general, memory pages should be W^X (either writable or 

executable, but not both). 

Other good fixes: 

- Address space layout randomization: always pick a random location where the stack will start in virtual memory, 

rather than having the stack always start at the same fixed memory address which makes the addresses of 

buffers very predictable 

- Canary stack protector: introduce a random canary variable between the return address and the local variables 

of a function. This way, if a local buffer is overflown, the canary will be overwritten. The program can check 

when it returns whether the canary has remained the same or not and can thus detect a buffer overflow. 

Some important details 
What about guessing the buffer address? It turns out the buffer address will shift around a little bit. The stack gets 

shifted around because the command-line arguments and the environment-variables of the program are pushed onto 

the stack initially when the program starts up.  

For the attacker this is not a big issue. The attacker can have a range where the buffer address is likely to be in. To 

ensure that he can jump to the code in the buffer, he can put “landing zone” code in the beginning of the buffer, which 

are just no-op instructions  such that when the function jumps some of the landing code is executed until the real code 
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starts. If he did not have landing code, then the program would jump into the middle of the buffer executing code there 

and skipping the previous code, which would not make sense. 

 

Return-to-libc attacks 
To get past the W^X stack overflow protection mechanism, return-to-libc attacks were invented.  

In a return-to-libc attack, the attacker sets the overflown return address to a function in libc (the standard C library), 

such as system. This will get past the W^X protection since the libc memory pages are executable. 

The system libc function takes one argument. The attacker is going overflow buf into retaddr such that it points to 

system, but he also needs to take care of the stack above retaddr such that system can make sense of it and grab its 

argument from it.  

system will expects the following data on the stack: a pointer to a string representing the command and a return 

address of its own 

The command string pointer can point somewhere inside our overflown buffer. Also, the landing pad for the command 

string can be just a bunch of semicolons. 

Stack before overflow Desired stack after overflow 

Activation record for the caller of getuser Forged system activation record 
... 0x10007 cmd pointer (4 bytes) 

0x10003 local variables, retaddr, etc. 0x10003 retaddr of system 

Activation record for getuser Activation record for getuser 
0xFFFF sock 0xFFFF sock 

0xFFFB retaddr for getuser 0xFFFB retaddr = &system 

0xFFFA  buf[1023] 0xFFFA buf[1023] 

buf[i], 0 < i < 1023  buf[i], 0 < i < 1023 

0xEFD7 buf[0] 0xEFD7 buf[0] 
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Return-oriented programming 
In the “The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls (on the x86)” paper, Hovav 

Shacham demonstrates how to mount an attack to execute arbitrary code after a buffer overflow in the absences of libc 

functions. 

Excerpt: “The building blocks for the traditional return-into-libc attack are functions, and these can be removed by the 

maintainers of libc. By contrast, the building blocks for our attack are short code sequences, each just two or three 

instructions long. Some are present in libc as a result of the code-generation choices of the compiler. Others are found in 

libc despite not having been placed there at all by the compiler. In either case, these code sequences would be very 

difficult to eliminate without extensive modifications to the compiler and assembler.”  

The main idea: The attacker finds snippets of code that end in a return (jump instruction). He builds a list of such code 

snippets and their starting addresses. He then overflows the stack with return addresses such that when he makes the 

first jump to the first snippet, that snippet will return to the next snippet, which will return to the next snippet, and so 

on. This way, the attacker executes arbitrary code (limited to the kinds of snippets he can find) on the machine. 

Non-control-data overflows 
In all of the presented attacks we hijacked the control flow of the program. Essentially, we caused the program to go 

into places it would normally not go to. However, sometimes you can change the flow of a program by modifying its 

variables. This flow change can be very useful for instance if you can change the flow inside a is_super_user 

function, such that it always returns yes. 

int is_super_user(char * username) 

{ 

    int result; 

     

    char buf[1024]; 

     

    db_lookup(username, userinfo); 

    result = userinfo->id < 1024; 

     

    //  logs something 

    strcpy(buf, username); 

     

    /* ... */ 

     

    return result; 

} 

 
Attack: If the attacker sends in a long enough user name, he can overflow buf and the first thing he will write over will 

be the result variable, which would trick the function to return 1, indicate the user is a super-user. 

Intra-struct overflows 
An attacker can use buffer overflows to change the values inside a stack or heap-allocated struct. Imagine changing 

the is_admin field of the userinfo struct from false to true. It could be very useful >:) 

struct userinfo { 

    char username[16]; 

    int is_admin; 

http://cseweb.ucsd.edu/~hovav/dist/geometry.pdf
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} 

 

struct userinfo * login_user(char * username) 

{ 

    struct userinfo * result = malloc(...); 

     

    result->is_admin = ...; 

     

    strcpy(result->username, username); 

     

    return result; 

} 

Problem: Unclean user input. The attacker can provide a username longer than whatever was malloc’d and he can 
overflow the userinfo struct, changing the is_admin field to true. 
 

Fix: Use strncpy instead of strcpy. 

Better, general fix: Only use snprintf when dealing with strings. It’s clear, clean and nice. 

int snprintf(char * dest, int size, const char * fmt, ...); 

 

snprintf always null terminates and it tells you how long your string would be if you had enough space, so you can 
use to pre-allocate the exact amount of needed space 
 


