
CSE 409, Fall 2011, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, September 26th, 2011

Format string attacks

Format string bugs
Format string bugs allow arbitrary memory writes. A format string bug will allow you to set [] .

int printf(const char * fmt, ...);

int snprintf(char * buff, int size, const char * fmt, ...);

If you had a string you wanted to print and you were lazy, you might just do: printf(str); As long as str does not

contain % characters, you’re good. However, the right (safe) way to print any string would be: printf(“%s”, str);

Important details
Consider the following line of code: printf(username);

- What happens if a user has a username which contains % characters? If it has a %d, the function will attempt to

take an argument off the stack. Sometimes that argument could be missing and printf will end up using

something else off the stack.

- Remember that printf can tell you the number of bytes written up to a certain point.

- For instance, printf("%s%n%d", str, &cnt, x); will store the number of bytes outputted up until the %n

in the format string into the variable cnt. In this case, the number of bytes outputted until that point would be

just strlen(str).

- Even if the buffer given to snprintf is too small, snprintf will still report the bytes that would have been

written up to a certain point in the %n variables.

Conclusion: If an attacker has control over the format-string argument of printf then maybe he can get printf to do

something interesting for him.

How does printf know where to get its next format-string argument from? printf-like functions have an argument

pointer (ARGP) which points to the first format-string argument on the stack. After such an argument is used, this

pointer is incremented by 4-bytes to go to the next argument.

The format string arguments will be pushed first on the stack, since arguments are pushed in reverse order on the stack.
So the stack will look something like this after a snprintf(char * buff, int size, const char * fmt,
...); call:

Caller activation record Caller activation record
0xABCD variables 0xABCD variables

snprintf with format string arguments snprintf without format string arguments
0xABC9 fmt-str-arg 3 fmt

0xABC5 fmt-str-arg 2 size

0xABC1 fmt-str-arg 1 buff

fmt retaddr

size ARGP (points to 0xABCD)

buff other snprintf local variables

retaddr
ARGP (points to 0xABC1)

other snprintf local variables

CSE 409, Fall 2011, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, September 26th, 2011
Note: Each printf argument will be a pointer (4 bytes) or an integer/floating point value (4 bytes).

Vulnerable code
Consider the following vulnerable function:

void log_user(char * user)

{

 char buff[512];

 int x = 1;

 snprintf(buff, sizeof(buff), user);

}

This is what the stack will look like when snprintf executes:

The stack

log_user activation record
0x1111 F127 user ptr (4 bytes)

0x1111 F123 retaddr

0x1111 EC11 buff(512 bytes)

0x1111 EC0D x (4 bytes)

snprintf activation record
0x1111 EC09 fmt = user ptr

size = 512

buffer = &buff = 0xEC11

retaddr = &log_user

ARGP (points to 0xEC09)

other snprintf local variables

In our attack, we will show how to modify the value of x at address 0xEC0D to equal the value 100. Similar attacks can

be constructed to modify the return address of log_user of or virtually any other location in memory.

Note: Attention has to be paid whether the system is little endian or big endian. We are assuming big endian here (the

most significant byte stored in the lower address) just so it is easier to understand the memory address placed in the

format string.

The attack
What if the username provided to log_user was something like this:

user = “\x11\x11\xEC\x0D%96d%n”

Step 1

Since there are no format-string arguments in the call to snprintf, ARGP will point where it would normally expect

those arguments to be, just above the fmt string, at location 0x1111 EC0D, which happens to be the address of x.

Step 2

When snprintf executes, it will store 0x1111 EC0D in the first 4 bytes of buff (note this is the address of x).

- snprintf’s outputted bytes count will be incremented and will equal 4 bytes.

CSE 409, Fall 2011, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, September 26th, 2011
Step 3

Then, the %96d specifier will print (with 96 space-padding) the first format string argument, which according to ARGP

will be whatever is at address 0x1111 EC0D. Since x is at that address, the value of x will be copied in the buffer buff

(with the 96 spaces, minus the length of x).

- snprintf’s outputted bytes count will be incremented by another 96 bytes and will equal 100 bytes.

- Since ARGP was used to read one format-string argument (x in our case), ARGP will now be incremented by 4

bytes to point to the next format string argument. Guess what that might be?

Note: As you will later see, the only reason we had to print x inside buff, with 96 spaces padding was to get

snprintf’s byte count to equal 100. We really did not care about reading x or copying x inside buff.

Step 4

Now the next thing snprintf has to do is handle the %n specifier in our format string. As we said before, ARGP has

been incremented and now points to 0x1111 EC0D + 4 = 0x1111 EC11. This is the address of the first 4 bytes of buff.

Remember that in step 2 we stored 0x1111 EC0D (the address of x) in those 4 bytes. We did that for a reason. Now

snprintf will handle the %n specifier and store the outputted bytes count at the address specified by the next format-

string argument, which according to ARGP (which points to the first 4 bytes of buff at 0x1111 EC11) is 0x1111 EC0D.

The net result is that the value 100 (the number of outputted bytes) will be stored at 0x1111 EC0D, which is the address

of x. We just changed x arbitrarily.

More examples
More information about format string attacks can be found in the papers below:

- Format string attacks, by Tim Newsham

- Exploiting format string vulnerabilities, by scut / team teso

- Analysis of format string bugs, by Andreas Thuemmel

http://www.thenewsh.com/~newsham/format-string-attacks.pdf
http://julianor.tripod.com/bc/formatstring-1.2.pdf
http://www.cs.cornell.edu/Courses/cs513/2005fa/paper.format-bug-analysis.pdf

