
CSE 409, Fall 2011, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, October 3rd, 2011

More examples of vulnerable code

Format string attack
We are going to demo a format string attack that does a return-to-libc attack. We will use the classic printf format

string vulnerability to specify values to write and the locations to write them to.

Remember: Values are specified by increasing snprintf’s count, while addresses are specified as bytes in the format

string.

Our goal is to overwrite three words:

- The return address of log_user

- The return address of the system function

- The pointer to the argument of the system function

This is what our stack will look like after the attack:

X +
high

New stack

 Argument for system
(pointer to system‘s command string)

 Return address for system

 Return address for log_user
 Saved base pointer ebp

 End of buffer buf

 …. (remaining buf)

 Third address to overwrite

 Second address to overwrite

 First address to overwrite

 Some junk (to increase the snprintf counter)
 ARGP points somewhere above and will be increased

X - low

Format string: We specify a series of (junk, address) pairs in the beginning of the snprintf format string.

- We use %90x to skip some extra junk and point to buf

- We use %150x to skip the first junk in the buff and get ARGP to point to the first address.

- The counter was just incremented to the desired value and will be written to the first address using %n.

Integer overflows & runtime integer checking
Integer overflows are pretty common and they are usually a build up to a memory error.

Two’s complement refresher
Take 4-bit integers as an example.

CSE 409, Fall 2011, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, October 3rd, 2011
If you’re dealing with unsigned numbers then 0000 is 0 and 1111 is 15. You can add numbers together like 1101 and

0101, however sometimes overflows occur. 4-bit numbers can only store values up to 15, but someone might be adding

10 to 13 and get 26, which is not representable as 4-bit number. You would need 5 bits.

Example: 1101 + 0101 = [1]0010. An overflow just occurred, since we only had 4 bits but the result needs 5 bits to be

represented.

How can we represent negative numbers? Using two’s complement:

Binary representation Decimal value

Negative numbers (minimum value)
1111 -1
...
1000 -8
Positive numbers (maximum value)
0111 7
…
0000 0

Problems:

- if you add two large positive numbers, you’ll get an overflow and the resulting number will be negative

- if you add two large negative numbers, you’ll get an underflow and the resulting number will be positive

Exploit: Integer overflows can be used to malloc 0 bytes and then copy a huge amount of data into memory.

Conside the following code:

void getComm(unsigned int len, char * src)

{

 unsigned int size;

 size = len - 2;

 char * comm = (char *) malloc(size + 1);

 memcypy(comm, src, size);

 return;

}

If you let then 0 bytes will be allocated (size + 1 will overflow and equal 0) and then you can overwrite

4GB worth of data.

Fix: Modify the compiler to check for underflow and overflow exceptions:

- Truncation check (make sure the higher bytes are all 0 when a variable is truncated).

- Sign check when casting signed to unsigned (ensure that the values have the same sign)

Double frees
Sometimes programmers have to handle error conditions and they screw up. The most common mistake looks like this:

p = malloc(sizeof(*p));

if(something_bad) {

 free(p);

 goto fail;

CSE 409, Fall 2011, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, October 3rd, 2011
}

fail:

 free(p);

The programmer will have freed p twice, if something_bad happened. It turns out this mistake can be exploited.

Heap memory is divided into chunks. Somewhere in memory the allocator has a linked list of the free chunks of memory.

Initially our malloc’d p might point to chunk #3.

#4 Chunk

#3 Chunk reserved for p

#2 Chunk

#1 Chunk

When you free p, a node will be added to the free list which points to that free chunk of memory. Note that after

free(p) is called, p will still point to chunk 3, so freeing it again will re-add the node to the free list. So the free list will

have two free slots which point to the same chunk in memory.

What can go wrong? Let’s take a struct example:

struct user {

 char * name; // programer is careful to put the name on the stack

 // so that it does not overflow into is_admin

 int is_admin;

};

void loginuser(char * name)

{

 struct user * u = malloc(sizeof(user));

 u->name = malloc(256);

 u->is_admin = is_administrator(name);

 strcpy(u->name, name);

}

Suppose the double free executes before loginuser gets to execute. So now the program is in a state where it has 2
free slots pointing to the same memory chunk.

malloc will allocate the user u to point to that chunk, and then malloc will allocate u->name to point to that same
chunk.

After this, the attacker chooses a careful username to give to loginuser such that its 2nd word has a non-zero value.
When strcpy copies the name into u->name it will overwrite the struct, since u->name points to the same location
the struct was allocated in.

