
CSE409, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, November 11th, 2011

Buffer overflow defenses

There are two categories of buffer-overflow defenses:

- “Make it hard for the attacker to exploit buffer overflow”

o Address space layout randomization

o Model checking to catch abnormal execution

- “Maintain bounds information for each buffer or pointer in the program so that overflows are caught early”

o Fat pointers

o Deputy

Fat pointers
Consider the following example, how can we ensure that is always in bounds?

int sum(int * p, int n)

{

 int sum = 0;

 for (int i = 0; i < n; ++i)

 {

 sum += *(p+i);

 }

 return sum;

}

With fat pointers, each pointer comes with bounds information. We can the use these bounds to perform runtime

assertions on the bounds of .

int sum(int * p, int n, int * p_lo, int * p_hi)

{

 int sum = 0;

 for (int i = 0; i < n; ++i)

 {

 assert(p_lo <= p + i < p_hi);

 assert(p + i != NULL);

 sum += *(p+i);

 }

 return sum;

}

If is a local variable, then the bounds variables are introduced in ’s scope (done automatically by the compiler):

{

 int * p;

 int * p_lo, * p_hi;

}

What about assignment? When you assign pointer to pointer then pointer ’s bounds should be assigned to ’s

bounds as well. Bounds can be determined when you malloc something and they can be set to zero when you free.

int foo()

{

CSE409, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, November 11th, 2011
 // On malloc...

 int * p = malloc(2 * sizeof(int));

 int * p_lo = p;

 int * p_hi = p + 2;

 // On assignment...

 int * p = q;

 p_lo = q_lo;

 p_hi = q_hi;

 // On free...

 free(p);

p = 0;

 p_lo = p_hi = 0;

}

On a function call, the compiler can perform the following actions automatically:

int p[3];

int * p_lo = p;

int * p_hi = p + 3;

sum(p, 5, p_lo, p_hi);

For pointers declared within structures, bounds can be added in the structure:

struct foo {

 int * a;

 int n;

 // Add bounds for a in the struct

 int * a_lo, * a_hi;

}

struct foo * p = malloc(sizeof(struct foo));

// Introduce p_lo, p_hi for p

struct foo * p_lo = p, * p_hi = p + 1;

p->a = malloc(2*sizeof(int));

// Bound p->a

p->a_lo = p->a;

p->a_hi = p->a + 2

On a function call, the bounds for p->a are already in the struct, but we also need the bounds for p:

// You need bound checking for p and p->a

int funct(struct foo * p, struct foo * p_lo, struct foo * p_hi)

{

 assert(p_lo <= p < p_hi);

 assert(p != NULL);

 assert(p->a_lo <= p->a < p->a_hi);

 int tmp = *(p->a)

 return tmp + 2;

}

Advantages of this approach:

- Foolproof (sound)

- No programmer’s effort (the compiler inserts the bounds and the checking code)

CSE409, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, November 11th, 2011
Disadvantages of this approach:

- Performance overhead (runtime checks are performed on the bounds)

- Memory overhead (new variables are introduced to store the bounds)

- Not backwards compatible

o Function prototypes are changed so compatibility is broken.

 Whenever a function is instrumented, its callers have to be instrumented as well.

o Similar for structs, you end up breaking programs

o It cannot be applied to a library model

Reducing overhead example
Sometimes overhead can be reduced by performing some of the runtime checks, statically at compile time:

struct foo * p = malloc(...);

struct foo * p_lo = p, * p_hi = p+1;

// We can statically see that this check will always evaluate to true,

// so we can get rid of the check. The compiler can do dead code elimination

// and get rid of the bounds variables itself.

assert(p_lo <= p < p_hi);

p->n = 3;

Deputy approach
The idea is to let the programmer specify the bounds of a pointer in terms of expressions in the same “scope.” For

formal arguments, the programmer can only use other formal arguments in the expression.

With the previous approach we initially had:

int sum(int * p, int n)

{

 int s = 0;

 for (int i = 0; i < n; ++i)

 {

 s += *(p+i);

 }

 return s;

}

And then we had the compiler perform the following changes to ensure proper bounds:

int sum(int * p, int n, int * p_lo, int * p_hi)

{

 int sum = 0;

 for (int i = 0; i < n; ++i)

 {

 assert(p_lo <= p + i < p_hi);

 assert(p + i != NULL);

 sum += *(p+i);

 }

 return sum;

}

CSE409, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, November 11th, 2011
However, with functions like sum, the bounds parameters are redundant since the function already takes a size

parameter n which can be used to infer the bounds. Therefore, instead of passing p_lo and p_hi, the programmer can

specify to the compiler that the bounds of are ().

The compiler can then generate the runtime checks like before, but now the function’s prototype is left unchanged,

which provides better compatibility.

assert(p <= p + i < p + n);

assert(p+i != NULL);

int * p = malloc(2 * sizeof(int));

BND(p, p + 2);

// This is safe

sum(p, 1);

// This is not safe

sum(p, 3);

The rule is if p is a pointer such that () and we pass it to a context which expects the bounds to be

then it must be the case that (

) () []

struct foo {

 int * a; // Programmer specifies BND(a, a+n)

 int n;

}

int bar(struct foo * /* BND(p, p + 1) */ p)

{

 assert(p <= p < p + 1);

 assert(p != NULL);

 int * /* BND(p->a, p->a + n) */ tmp = p->a;

 assert(p->a <= tmp < p->a + n);

 assert(tmp != NULL);

 int n = *tmp;

 return n;

}

Advantages:

- Backwards compatibility

Disadvantages:

- Overhead because of runtime-assertions

o Get rid of some of them using static analysis

- Programmer overhead, since he has to write all the bounds

o We can do type inference, like in OCaml, PHP, and determine some of the bounds

Deputy
Deputy can do type inference for local variables like tmp or for malloc calls:

int bar(struct foo * /* BND(p, p + 1) */ p)

CSE409, Rob Johnson, http://www.cs.stonybrook.edu/~rob/teaching/cse409-fa11/
Alin Tomescu, November 11th, 2011
{

 assert(p <= p < p + 1);

 assert(p != NULL);

 int * /* the deputy can infer these: BND(p->a, p->a + n) */ tmp = p->a;

 assert(p->a <= tmp < p->a + n);

 assert(tmp != NULL);

 int n = *tmp;

 return n;

}

The programmer still has to annotate:

- struct field pointers

- function arguments

- global variables

- function variables

The deputy can infer local variables.

