
Alin Tomescu, CSE408 
Tuesday, February 1st, Lecture #1 

What is security? 
Let us introduce Alice and Bob, two people who want to communicate “securely”. Also, let us introduce Eve, as their evil 

enemy who will always eavesdrop on Alice and Bob’s conversations. 

Since Eve is always listening, sending a message between Alice and Bob is risky business. Encryption will allow Alice and 

Bob to send messages between each other securely. 

Alice will never send the message 𝑚 to Bob, because Eve can completely understand it. Alice will send the encrypted 

version of 𝑚, called 𝐸(𝑚), which only Bob can decrypt, getting back the actual message 𝑚. 

From this perspective, we can think of “good security” in the following way: 

If we give Eve the encrypted message 𝐸(𝑚), then she gains no information whatsoever about 𝑚. 

The following figure illustrates this communication scenario: 

- Alice and Bob share the same secret key together 

- Alice and Bob both know how to use an encryption algorithm 

- Alice and Bob are communicating over an unsecure channel, that Eve can listen to 

- Eve sits in the middle attempting to decipher the encrypted messages 

o With good security, Eve is unable to do so. 

 

Figure 1: Alice and Bob communicating while Eve is listening 

One-time pad analysis 
The one-time pad (OTP) is an encryption algorithm proven to be impossible to crack if used correctly. 

How does it work? 
With the one-time-pad, each bit (or character) from the message is XOR’ed with the next bit (or character) from the 

secret key, obtaining the ciphertext. 

As long as the following conditions are met, the ciphertext will be impossible to decrypt without the secret key. 

- the key is truly random 

- the key is as large or greater than the message 

- the key is never reused (fully or partially) 

- the key is never divulged (obvious) 



Alin Tomescu, CSE408 
Tuesday, February 1st, Lecture #1 

One time pad analysis (simple case) 
We will analyze the one-time pad algorithm for the most basic case: encrypting a single bit. 

- Our message 𝑚 can be either 0 or 1 

- Our key 𝑘 can be either 0 or 1 

- Therefore, the ciphertext 𝑐 = 𝑚 ⨁ 𝑘 can be either 0 or 1 

Our goal is the following: If Eve has the ciphertext 𝑐, then she gains no information whatsoever about the original 

message 𝑚. 

Mathematically, this is equivalent to proving that: Pr[𝑚 = 0|𝑐 = 0] = Pr[𝑚 = 0] (there are 3 other possible 

combinations for 𝑚 and 𝑐, but the proof for them remains the same) 

Proof 

We assume that Pr[𝑘 = 0] = Pr[𝑘 = 1] =
1

2
, as it should be if the key is picked randomly. Also note that Pr[𝑚 = 0] =

1

2
 

and that Pr[𝑐 = 0] =
1

2
 since both the message and the ciphertext can be either 0 or 1 with equal probability. 

Pr[𝑚 = 0|𝑐 = 0] =
Pr[𝑐 = 0|𝑚 = 0] × Pr[m = 0]

Pr[𝑐 = 0]
=

Pr[𝑘 = 0] × Pr[𝑚 = 0]

Pr[𝑐 = 0]
=

1
2
1
2

× Pr[𝑚 = 0] = Pr[𝑚 = 0] 

Problems with the one-time pad 
One problem with the one-time pad is that the key has to be as large as the message in order to achieve perfect 

secrecy. Therefore, the problem of transmitting the message securely is now reduced to transmitting the secret key 

securely, which is no good. Also, real-world applications demand smaller, more portable keys. 

Key reuse 
Suppose you have two messages 𝑚1 and 𝑚2 encrypted under the same key 𝑘 as 𝑐1 = 𝑚1 ⨁ 𝑘 and 𝑐2 = 𝑚2 ⨁ 𝑘. 

If Eve intercepts 𝑐1 and 𝑐2, and XORs them together she will get 𝑐1 ⨁ 𝑐2 = (𝑚1 ⨁ 𝑘) ⨁ (𝑚2 ⨁ 𝑘) = 𝑚1 ⨁ 𝑚2 (thanks 

to XOR’s associativity and commutativity). 

Now, once Eve has 𝑚1 ⨁ 𝑚2 she effectively got the key 𝑘 out of the equation and she can again use XOR’s properties to 

decipher 𝑚1 and 𝑚2 out of 𝑚1 ⨁ 𝑚2. 

Note that if Eve knows part of 𝑚1 (let’s say she knows 𝑚1[𝑖 … 𝑗]), she can obtain part of 𝑚2 (specifically the same part of 

𝑚2 overlapping the known part of 𝑚1, that would be 𝑚2[𝑖 … 𝑗]) by XORing 𝑚1 ⨁ 𝑚2 with the known part of 𝑚1. 

Example 

Suppose 𝑚1 is "alan has apples and oranges". 

Suppose 𝑚2 is "brian likes network security". 

If Eve knows that 𝑚1 contains the sentence "has apples" she can take this known sentence 𝑤 and XOR it with 𝑚1 ⨁ 𝑚2. 

An important detail is that Eve needs to try XORing 𝑤 in at different offsets (assuming she does not know where 𝑤 

actually starts within 𝑚1) until she determines 𝑤’s offset within 𝑚1. Eve will figure out the right offset by looking at the 

results she gets from 𝑤 ⨁ (𝑚1 ⨁ 𝑚2). Some of these will be complete junk, but some of them will reveal letters, or 

even better, full words from 𝑚2. 



Alin Tomescu, CSE408 
Tuesday, February 1st, Lecture #1 
Eve can repeat this process by guessing words (or doing a dictionary attack) on either one of 𝑚1 or 𝑚2. If the guess is 

correct, it will reveal more words or partial words from the other message, which Eve can now continue to work with. 

This will go on until the entire message is revealed. 

 


