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Hacking WEP (Wired Equivalent Privacy) 

Why WEP? 
Businesses and individuals need privacy over their wireless network to protect their secrets. 

Amongst the different kinds of protection, the most important probably are: 

- Secrecy or confidentiality  

- Authentication 

- Integrity of the data (laptop should receive the same data that the base station sent) 

- Availability (protection against DoS attacks, since a microwave can take your wireless network down availability 

is an inherent issue) 

How WEP works 
WEP is used to encrypt and decrypt link-layer frames sent over an 802.11 wireless network. 

WEP uses a secret key 𝑘 shared among the communicating parties (a laptop and wireless access point) to protect the 

transmitted frames. 

Encrypting a message 𝑚 means going through a series of steps: 

- Integrity check-summing: using the CRC32 algorithm a 32bit checksum 𝐶𝑅𝐶(𝑚) is computed for the message 𝑚. 

This checksum is appended to the message forming the plaintext 𝑝 = 〈𝑚, 𝐶𝑅𝐶(𝑚)〉 

- RC4 keystream generation: for each transmitted frame, a random initialization vector (IV) 𝑣 is generated. Using 

the IV and the secret key 𝑘 as input to the RC4 algorithm a keystream 𝐾𝑠 = 𝑅𝐶4(𝑣, 𝑘) is generated. 

- Actual encryption of the plain text: finally the plaintext 𝑝 and the keystream 𝐾𝑠 are XORed together to obtain the 

ciphertext 𝑐 = 𝑝 ⨁ 𝐾𝑠 

- Transmitting the frame: in order for the receiver to decrypt the ciphertext 𝑐 the sender will prepend the IV 𝑣 to 

the ciphertext 𝑐, obtaining the frame 𝑓 = 〈𝑣, 𝑐〉 which is finally sent over the network. 

Once the receiver gets a frame, he has the IV 𝑣 appended to this frame, he has the secret key 𝑘, so he can use RC4 to get 

the keystream 𝐾𝑠, which he can XOR with the ciphertext 𝑐 to get the plaintext 𝑝 = 〈𝑚, 𝐶𝑅𝐶(𝑚)〉. He can now compute 

the CRC of 𝑚 and ensure it matches the one sent along with the message. Job done. 

What is the point of the IV? 
If the plain-text 𝑝 was merely XORed with the secret key 𝑘 and sent over the network as a frame 𝑓 = 𝑝 ⨁ 𝑘, then an 

attacker could get two frames 𝑓1 = 𝑝1 ⨁ 𝑘 and 𝑓2 = 𝑝2 ⨁ 𝑘, XOR them together 𝑓1 ⨁ 𝑓2 = (𝑝1 ⨁ 𝑘) ⨁ (𝑝2 ⨁ 𝑘) =

𝑝1 ⨁ 𝑝2 and now he can potentially crack 𝑝1 ⨁ 𝑝2 using trial-and-error (same problem as reusing a key with the one-

time pad).  

We can see that it is essential for each frame to be encrypted with a unique keystream. Therefore, a randomly 

generated IV 𝑣 and the secret key 𝑘 are used together with the RC4 algorithm to seed a unique keystream 𝐾𝑠. In reality, 

we will see that the likelihood of “IV collisions,” having two frames with the same IV sent over the network, is quite high 

and is instrumental in breaking WEP. 



Alin Tomescu, CSE408 
Tuesday, February 3rd, Lecture #2 

 

WEP attacks 
WEP is susceptible to many attacks for a couple of reasons: 

- The secret shared key 𝑘 is rarely changed (it could take weeks or months before someone thinks about changing 

it), which means we can consider it a constant in our attacks. 

- The small IV space (24 bits only) pretty much guarantees there will be IV collisions, if IVs are chosen randomly, 

which means some frames will be XORed using the same keystream and could be cracked. 

- The CRC32 check-summing algorithm used by the underlying 802.11 layer is not cryptographically secure, 

allowing attackers to intercept and modify sent frames 

- The ACKs sent by the underlying 802.11 layer upon receival of a corrupt frame can be used to build a reaction 

attack for guessing remaining bytes of an incomplete keystream 

The birthday attack 
After the transmitter has sent 𝑘 frames, it will have made 𝑘 choices of IVs from a bucket of 224 IVs. What is the 

probability that the 𝑖𝑡ℎ IV is the same as the 𝑗𝑡ℎ IV? After the 𝑖𝑡ℎ IV is picked there is just one choice for the 𝑗𝑡ℎ IV such 

that it 𝐼𝑉𝑖 = 𝐼𝑉𝑗 

𝑃[𝐼𝑉𝑖 = 𝐼𝑉𝑗] =
1

224
 

𝐸[# 𝑜𝑓 𝑖, 𝑗′𝑠 𝑠𝑡. 𝐼𝑉𝑗 = 𝐼𝑉𝑖] = (
𝑘

2
)

1

224
 =
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When 𝑘 = 212.5, we have 
𝑘2

225 = 1, therefore we can see that after approximately 6000 frames, an IV collision is bound to 

occur. 

How does an IV collision help us decrypt traffic? 

Unique IVs seed unique keystreams using the RC4 algorithm. We know it is essential for each transmitted frame to be 

encrypted with a unique keystream 𝐾𝑆 = 𝑅𝐶4(𝑣, 𝑘), where 𝑣 is the randomly picked IV and 𝑘 is the shared secret key, 

therefore it is essential for each frame to have an unique IV. 

If we have two frames 𝑓1 = 𝑝1 ⨁ 𝑅𝐶4(𝑣𝑐𝑜𝑙 , 𝑘) and 𝑓2 = 𝑝2 ⨁ 𝑅𝐶4(𝑣𝑐𝑜𝑙 , 𝑘) which were encrypted using the same IV 

𝑣𝑐𝑜𝑙, then that means the same keystream 𝐾𝑠 = 𝑅𝐶4(𝑣𝑐𝑜𝑙 , 𝑘) was used to XOR the plaintexts in both frames. We can 

now XOR 𝑓1 and 𝑓2 together, which will cancel the keystream out effectively giving us 𝑝1 ⨁ 𝑝2 which can be broken using 

traditional methods. 

Once we have 𝑝1 or 𝑝2 we can obtain the keystream 𝐾𝑠 = 𝑅𝐶(𝑣𝑐𝑜𝑙 , 𝑘) associated with the IV 𝑣𝑐𝑜𝑙 by computing 

𝑓1 ⨁ 𝑝1 = 𝐾𝑠 = 𝑅𝐶4(𝑣𝑐𝑜𝑙 , 𝑘). In this manner we can build a decryption table that associates 𝐼𝑉’s with their 

corresponding keystreams. Since a frame is 1500 bytes and there are 224 possible IVs, about 24GB of space will suffice 

to build it. We can now inject and decrypt all WEP-encrypted traffic. 

WEP tampering 
CRC32 is a linear function, this means it has the following property: 

𝐶𝑅𝐶(𝑝1 ⨁ 𝑝2) = 𝐶𝑅𝐶(𝑝1) ⨁ 𝐶𝑅𝐶(𝑝2) 
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This linearity of CRC is a dangerous property, because it allows us to flip bits (or XOR bits) in an encrypted frame and 

then alter the CRC so that the 802.11 integrity check succeeds for the modified frame. 

Suppose we had an encrypted frame 𝑓 = 𝑝 ⨁ 𝐾𝑠, where 𝑝 = 〈𝑚, 𝐶𝑅𝐶(𝑚)〉 is the plaintext. We can modify the plaintext 

in the encrypted frame 𝑓 using the properties of XOR and the linearity of the CRC as follows: 

Suppose instead of the message 𝑚, we would like the receiver to get 𝑚′ = 𝑚 ⨁ Δ. We can modify 𝑓 into 𝑓′ as follows: 

First we obtain a modified plaintext 𝑝′ that contains 𝑚′ and 𝐶𝑅𝐶(𝑚′) by doing XOR operations on the frame 𝑓: 

𝑝′ = 𝑝 ⨁ Δ = 〈𝑚 ⨁ Δ, 𝐶𝑅𝐶(𝑚) ⨁ 𝐶𝑅𝐶(Δ)〉 = 〈𝑚 ⨁ Δ, 𝐶𝑅𝐶(𝑚 ⨁ Δ)〉 = 〈𝑚′, 𝐶𝑅𝐶(𝑚′)〉 

We did two things here: 

- We obtained 𝑚′ = 𝑚 ⨁ Δ 

- We altered the CRC of 𝑚, and obtained 𝐶𝑅𝐶(𝑚′) = 𝐶𝑅𝐶(𝑚) ⨁ 𝐶𝑅𝐶(Δ) = 𝐶𝑅𝐶(𝑚 ⨁ Δ) 

Note that even though we only have the encrypted frame 𝑓 and not the actual plaintext 𝑝 or the message 𝑚, we are 

using XOR’s commutativity and associativity to modify 𝑚’s bits by XORing part of the encrypted frame 𝑓 with Δ and with 

𝐶𝑅𝐶(Δ). 

Now that we have altered the plaintext 𝑝 as 𝑝′ inside the encrypted frame 𝑓 we effectively obtained 𝑓′ which can be 

sent over the network. 

WEP reaction attack 
Imagine the attacker obtained the IV and a short corresponding keystream (like 100 bytes) and he would now like to 

learn more of that keystream. The attacker can use 802.11 acknowledgements to guess the next bytes of the keystream. 

When the base station receives a packet which passes the CRC check it sends a short ACK packet back, letting the sender 

know that the packet arrived intact. If the CRC check fails, the receiver does nothing causing the sender to resend the 

packet. The attacker can use the ACKs in his reaction attack as follows: 

 

Suppose the attacker has 𝑛 bytes of a keystream 𝐾𝑠 associated with the IV 𝑣 and he wants to guess byte # 𝑛 + 1. The 

attacker can try all possibilities for that byte (28 = 64 possibilities), for each possibility sending a frame with a dummy 

plaintext 𝑝 consisting of a random message 𝑚 and of 𝐶𝑅𝐶(𝑚). This plaintext will be XORed with the derived keystream 

𝐾𝑠
′ = 𝐾𝑠 + 𝑔𝑢𝑒𝑠𝑠𝑒𝑑 𝑏𝑦𝑡𝑒 to from the frame.  

The victim will receive and decrypt the frame, obtaining the message 𝑚 and the CRC of 𝑚. However, the last byte of the 

CRC will have been decrypted using the guessed byte of the keystream 𝐾𝑠
′. If the keystream 𝐾𝑠

′ = 𝐾𝑠 + 𝑔𝑢𝑒𝑠𝑠𝑒𝑑 𝑏𝑦𝑡𝑒 

was the correct one, then the decrypted CRC from the frame will match the one computed by the receiver, causing him 

to send an ACK, letting the attacker know the 𝑛 + 1 byte is correct. If there was a mismatch, this means the part of the 

keystream that was guessed was incorrect since it resulted in a bad CRC being decrypted on the receiver’s side. 


