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Pseudo Random Number Generators 

Expansion functions 
As we’ve discussed before, the one-time-pad when used with a random key that is as large as the plaintext is a secure 

encryption algorithm. 

However, in the real world, keys that are as large as the data to be encrypted are very impractical. Therefore, we would 

like to be able to expand a smaller key 𝑘 to a larger “pseudo-random” key. We will now focus on an expansion function 

𝐺 whose purpose is to expand smaller keys into larger keys. 

Properties an expansion function G should have: 

1. 𝐺(𝑘) needs to be pseudo-random (look like a randomly generated string) 

2. 𝐺 needs to be hard or impossible to invert 

3. Given 𝑛 bits of 𝐺(𝑘), an attacker should not be able to correctly guess the (𝑛 + 1)th bit 

4. 𝐺 needs to be an injective function: 𝑥1 ≠ 𝑥2 ⇒ 𝑓(𝑥1) ≠ 𝑓(𝑥2) 

5. 𝐺 needs to be efficient, and not take too long to execute 

6. 𝐺 needs to be hard to recognize 

A good story 
Two armies are planning to coordinate an attack. They are either attacking at dawn or dusk. The enemy knows they’ll 

get attacked at either dawn or dusk. The message between the armies has been encrypted with the output of 𝐺. The 

enemy sees 𝐸(𝑚). He can take the ciphertext and XOR it with “attack at dawn” and “attack at dusk” getting two 

different outputs of 𝐺. Suppose he can tell G could never generate one of those outputs. That would be bad. He could 

then tell that the matching plaintext was wrong, and he will know the time of the attack. 

The big concept 
Consider the (probability) distribution of random numbers of a certain length. Now consider the distribution of 𝐺(𝑘) of 

the same length. Obviously, this one is a smaller distribution than the distribution of random numbers: it will have fewer 

elements. 

The enemy gets to see samples over these distributions. The enemy shouldn’t be able to tell whether you’re getting 

samples from distribution 𝐴 or distribution 𝐵. 

Simple example 
You have two black boxes. 

- one box, you hit a button, it flips 𝑛 coins and gives you a random number on 𝑛 bits 

- one box, you hit a button, it flips 128 coins, gives you a pseudo-random number on 𝑛 bits 

The goal is to never be able to tell (realistically in a couple of years) which box the generated 𝑛-bit number came from. 

Notion: The security of a system is parameterized by how well an attacker can do in a certain amount of time. 

- if you can break my ciphertext in a 1000 years, be my guest 

- if you can break my ciphertext in a couple of days, I’d better find a more secure algorithm 
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The concept of advantage 
Definition 

Let 𝐷0 and 𝐷1 be distributions on some space 𝑋. Then 𝐷0 and 𝐷1 are (𝒕, 𝛆)-computationally indistinguishable if ∀ 

algorithms 𝐴 (𝐴 outputs 0 if input is from 𝐷0 and outputs 1 if input is from 𝐷1) running in time ≤ 𝑡, then: 

𝐴𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒(𝐴) = 𝐴𝑑𝑣 𝐴 = |Pr[𝐴(𝑥) = 0|𝑥 ← 𝐷0] − Pr[𝐴(𝑥) = 0|𝑥 ← 𝐷1]| ≤ ε 

Note: ε is related to the time 𝑡. If I give you more time, your ability should improve. 

Notation: 𝐷0 
𝑡
~
ε

 𝐷1 means 𝐷0 and 𝐷1 are (𝑡, ε)-computationally indistinguishable. 

Example 
Consider the following distributions. 

 Probability it’s a 0 Probability it’s a 1 

𝐷0 .5 .5 

𝐷1 0 1 

 

Case 1: Suppose we have an algorithm 𝐴 that can distinguish (heuristically in this example) between 𝐷0 and 𝐷1.  

Then it is only normal for 𝐴(0) = 0, since Pr[𝑥 ← 𝐷1|𝑥 = 0] = 0 ⇒ Pr[𝑥 ← 𝐷0|𝑥 = 0] = 1.  

We will set 𝐴(1) = 1, since it is more likely for a 1 to have been picked from 𝐷1 instead of 𝐷0 because: 

Pr[𝑥 = 1|𝑥 ← 𝐷1] = 1 > Pr[𝑥 = 1|𝑥 ← 𝐷0] = .5 

Let’s calculate the advantage of 𝐴: 

𝐴𝑑𝑣 𝐴 = |Pr[𝐴(𝑥) = 0|𝑥 ← 𝐷𝑜] − Pr[𝐴(𝑥) = 0|𝑥 ← 𝐷1]| = .5 − 0 = .5 

Case 2: What happens if we let A always pick distribution 𝐷0? 

𝐴(0) = 0 𝑎𝑛𝑑 𝐴(1) = 0 

𝐴𝑑𝑣 𝐴 = |1 − 1| = 0 

Case 3: What happens if we let 𝐴(0) = 0 and 𝐴(1) output a 0 or a 1 with equal probability Pr[𝐴(1) = 0] =

Pr[𝐴(1) = 1] = .5? 

𝐴𝑑𝑣 𝐴 = |Pr[𝐴(𝑥) = 0|𝑥 ← 𝐷𝑜] − Pr[𝐴(𝑥) = 0|𝑥 ← 𝐷1]| =? 

Pr[𝐴(𝑥) = 0|𝑥 ← 𝐷𝑜] = Pr[𝐴(𝑥) = 0|𝑥 = 0] Pr[𝑥 = 0|𝑥 ← 𝐷0] + Pr [𝐴(𝑥) = 0|𝑥 = 1] Pr[𝑥 = 1|𝑥 ← 𝐷0] = 

= 1 × .5 + .5 × .5 = 0.75 

Pr[𝐴(𝑥) = 0|𝑥 ← 𝐷1] = Pr[𝐴(𝑥) = 0|𝑥 = 0] Pr[𝑥 = 0|𝑥 ← 𝐷1] + Pr[𝐴(𝑥) = 0|𝑥 = 1] Pr[𝑥 = 1|𝑥 ← 𝐷1] = 

= 1 × 0 + 1 × .5 = .5 

So therefore 𝐴𝑑𝑣 𝐴 = |. 75 − .5| = .25 
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Definition 

A pseudo-random generator 𝐺: {0,1}𝑙 → {0,1}𝐿 is (𝒕, 𝛆)-secure if 𝐺(𝑈𝑙  ) 
𝑡
~
ε

 𝑈𝐿, where 𝑈𝑘 = 𝑘-bit uniform random 

strings. This definition pretty much states that a pseudo-random generator is (𝑡, ε)-secure if its output is (𝑡, ε)-

indistinguishable from the uniform distribution of random strings. 

A bad example of a pseudo-random generator 
A Linear Feedback Shift Register (LFSR) is a type of PRNG. The following example would be a broken LFSR. 

 

The LFSR is initialized with some bits 𝑥1, 𝑥2, … 𝑥5 (the seed value) and then a pseudo-random bit 𝑦0 is generated as 

follows: 

𝑦0 = 𝑥2⨁ 𝑥4 

The register will change its data as follows 

- First 𝑥0 = 𝑥3⨁ 𝑥5, and then the shifting is done (the old 𝑥0 is used to do the shifting) 

- Shifting is done: ∀𝑘, 0 ≤ 𝑘 ≤ 4, 𝑥𝑘+1 = 𝑥𝑘 

- 𝑥5 gets discarded 

The reason this LFSR is insecure is because the output bits would give you a system of linear equations which could be 

easily solved to find the seed value consisting of the 𝑥1, 𝑥2, … 𝑥5 bits. 

You would just have to solve 

𝑦0 = 𝑥2⨁ 𝑥4 

𝑦1 = 𝑥1⨁ 𝑥3 

𝑦2 = 𝑥0⨁ 𝑥2 

𝑦3 = 𝑥3⨁ 𝑥5⨁ 𝑥1 

So for instance XORing 𝑦1⨁ 𝑦3 would output 𝑥5. With this method, once you have enough output bits you can 

determine 𝑥1, 𝑥2, … 𝑥5. 
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Data processing inequality or DPI 
Theorem 

If 𝐷0 
𝑡
~
ε

 𝐷1 and 𝑓 is a function running in time 𝑡′ then 𝑓(𝐷0) 
𝑡 − 𝑡′

~
ε

 𝑓(𝐷1).  

What this says is that if you have distributions and you can’t tell them apart, then a simple operation such as squaring 

them won’t help you to tell them apart either. This is almost like a reduction. 

 


