
Alin Tomescu, CSE408
Tuesday, February 22nd, Lecture #7

Block ciphers and their operation modes

RoR security
Ideal world:

- Whenever Alice sends a message to Bob, she sends him 𝐸𝑘(𝑚) and she also sends 𝐸𝑘($𝑚) to Eve, where $

replaces 𝑚 with random bits.

o That’s to say Eve will always know that a message of a particular length was sent.

Real world:

- Whenever Alice sends a message 𝐸𝑘(𝑚) to Bob, Eve gets a copy of 𝐸𝑘(𝑚).

- Even can also provide a message 𝑚 to Alice for her to send it encrypted as 𝐸𝑘(𝑚) to Bob.

o Eve can now see 𝐸𝑘(𝑚).

In real or random security the goal is for the encryption scheme to make it impossible for Eve to distinguish whether

she’s in the ideal or in the real world.

Definition: An encryption scheme is a family of functions 𝐸𝑘: {0,1}∗ → {0,1}∗ is (𝑡, 𝑞, 𝜀)-real-or-random secure if ∀

algorithms 𝐴 running in time 𝑡 and making at most 𝑞 bits of queries, then the advantage of 𝐴 is:

𝐴𝑑𝑣 𝐴 = |Pr[𝐴𝐸𝑘 = 0] − Pr[𝐴𝐸𝑘∘ $ = 0]| ≤ 𝜀

Modes of operation for block-ciphers
A mode of operation takes a block-cipher (a PRF or a PRP usually) and converts it into an encryption scheme.

Electronic codebook mode (ECB)
Last time we used a black-box 𝐹𝑘 that took blocks of our plaintext 𝑃 and converted them to blocks of ciphertext 𝐶. This

was bad because identical plaintext blocks got encrypted to the identical ciphertext blocks.

The end result would be that an attacker could distinguish patterns in the ciphertext when ECB mode is used. You can

see very good example of this below:

Alin Tomescu, CSE408
Tuesday, February 22nd, Lecture #7

You couldn’t really rely on ECB for encrypting a bitmap, for instance, since the encrypted bitmap would reveal a lot of

information about the original bitmap.

Counter mode (CTR)
Counter mode basically turns a block cipher into a stream cipher.

In counter mode, the sender maintains a small amount of state: the counter. To encrypt the plaintext, which is

essentially a set of blocks 𝑃 = {𝑃1, 𝑃2, … 𝑃𝑛}, we will take our block cipher 𝐹𝐾, feed it an IV and obtain a small key, and

the we will XOR the key with 𝑃1 obtaining 𝐶1. We then increment the IV, feed it to 𝐹𝑘 obtain another small key, XOR it

with 𝑃2 and obtain 𝐶2. We repeat the process until we finally get the ciphertext 𝐶 = {𝐶1, 𝐶2, … 𝐶𝑛}.

The IV will be part of the ciphertext, since the receiver needs it to start decrypting the ciphertext.

In order to keep this secure, you have to keep track of the IV properly. To encrypt the 𝑛𝑡ℎ block you need to feed 𝐸𝐾

𝐼𝑉𝑛 = 𝐼𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + (𝑛 − 1). Using the same IV would defeat the purpose of encrypting identical plaintext blocks to

different ciphertext blocks.

What happens if one of the packets gets lost (i.e. when the encryption scheme is used along a network connection)?

Even if some packets get lost, the recipient can resync with the sender by just looking at the IV in the package.

Alin Tomescu, CSE408
Tuesday, February 22nd, Lecture #7

What happens if we reuse an IV? Lots and lots of bad stuff (see WEP). We better make this IV really big, at least 128 bits.

If the IV was small, in the real world an attacker could keep sending the same message to Alice and she would encrypt it

until she runs out of IVs. The attacker would know Alice ran out of IVs when she sees the same ciphertext being

transmitted again.

𝐹𝐾 does not need to be invertible.

Theorem:

If 𝐹𝑘 is a (𝑡, 𝑞, 𝜀)-secure PRF then 𝐶𝑇𝑅𝐹𝑘 (counter mode built on 𝐹𝑘) is a (𝑡 − 𝑂(𝑞), min(𝑞, |𝐼𝑉𝑠𝑝𝑎𝑐𝑒|) , 𝜀)-RoR-secure

encryption scheme.

Proof:

We want to prove that 𝐶𝑇𝑅𝐹𝑘 ~ 𝐶𝑇𝑅𝐹𝑘 ∘ $

𝐹𝑘 is a (𝑡, 𝑞, 𝜀)-secure means 𝐹𝑘

𝑡, 𝑞
~
𝜀

𝑅𝑎𝑛𝑑𝑜𝑚𝑓

By DPI 𝐶𝑇𝑅𝐹𝑘

𝑡 − 𝑂(𝑞), 𝑞
~
𝜀

 𝐶𝑇𝑅𝑅𝑎𝑛𝑑𝑜𝑚𝑓

As long as the IV never wraps, 𝐶𝑇𝑅𝑅𝑎𝑛𝑑𝑜𝑚𝑓

∞, |𝐼𝑉𝑠𝑝𝑎𝑐𝑒|
~
0

𝐶𝑇𝑅𝐹𝑘 ∘ $

By transitivity we take the minimum on the time and the queries, and the sum of the epsilons and we get 𝐶𝑇𝑅𝐹 to be a

(𝑡 − 𝑂(𝑞), min[𝑞, |𝐼𝑉𝑠𝑝𝑎𝑐𝑒|] , 𝜀)-RoR-secure encryption scheme.

Later on we will show how to make this secure against CCA attacks, since you can take any CPA-secure system and turn

it into a CCA-secure system.

Cipher block chaining (CBC)
In CBC mode, we have blocks of plaintext 𝑃𝑖, we will have an invertible function 𝐹𝑘, and an 𝐼𝑉.

To encrypt a message, we take 𝑃1 and XOR it with the IV, feed the result to 𝐹𝑘 which gives us 𝐶1. We then repeat the

process for 𝑃2 except we use 𝐶1 as the IV. So in CBC mode, the IV for the next block will be the previous ciphertext.

Alin Tomescu, CSE408
Tuesday, February 22nd, Lecture #7

𝐶𝑖 = 𝐹𝑘(𝑃𝑖 ⊗ 𝐶𝑖−1), 𝐶0 = 𝐼𝑉

𝑃𝑖 = 𝐹𝑘
−1(𝐶𝑖) ⊗ 𝐶𝑖−1, 𝐶0 = 𝐼𝑉

What happens if 𝐶𝑖 gets corrupted? It’s going to screw up 𝑃𝑖 𝑎𝑛𝑑 𝑃𝑖+1 but 𝑃𝑖+2 will decrypt correctly. Encryption is not

parallel but decryption is. 𝐹𝐾 needs to be invertible.

How do you choose the IV? Pick it randomly for each message, a.k.a. 𝐶𝐵𝐶$, or pick it randomly for the first message and

use 𝐶𝑛 as IV for the next message and repeat.

