CBC mode security proof and Message Integrity

Theorem: If F_k is a (t, q, ε) -secure PRP then CBC^{F_k} (CBC mode with a random IV for each message) is a $(t - O(q), q, \varepsilon + \frac{q^2}{2^{n+1}})$ -RoR-secure encryption scheme.

Proof: We want to prove that $CBC^{F_k} \sim CBC^{F_k} \circ$ \$. Let us define a variable x_i .

$$x_1 = IV XOR p_1$$
$$x_i = c_{i-1} XOR p_i, \forall i > 1$$

Note the following equality is true:

$$CBC^{F_k} \circ \$ = CBC^{F_k \circ \$}$$

Also note that since $F_k \sim \pi$ then by DPI: ε

$$\begin{array}{c} t - O(q), q\\ CBC^{F_k} \sim CBC^{\pi}\\ \varepsilon\end{array}$$

Also, we can reason that CBC^{π} and $CBC^{F_k \circ \$}$ are indistinguishable without collisions among the x_i 's.

$$CBC^{\pi} \overset{\infty, q}{\underset{q^2/2^{n+1}}{\sim}} CBC^{F_k \circ \$}$$

Message integrity

First of all, encryption does not give you integrity. Encryption gives you secrecy. To get integrity, more work has to be done.

Our world:

- Alice sends messages to Bob and Mallory is in between them
- Alice encodes the message m as $c = M_k(m)$
- Mallory can see c, and can modify c into c' and send it to Bob
- Mallory can choose the *m*'s and see the corresponding *c*'s
- Bob will always runs $V_k(c') = m', \bot$
 - If \perp is set, this tells Bob if *c* has been tampered with

$$\circ \quad V_k\big(M_k(m)\big) = m, \forall m, k$$

- Mallory gets access to the verification function V_k

Alin Tomescu, CSE408

Thursday, February 24th, Lecture #8

There are **two levels of security** here: We can choose not to care if *c* is tampered as long as Bob still gets the original *m*, or we can choose to always be able to detect any tampering whatsoever.

Integrity of ciphertext (INT-CCA)

Mallory wins if after making q queries $m_1 \dots m_q$, which get mapped to $c_1 \dots c_q$, he finally manages to make a V_k query $c \notin \{c_1 \dots c_q\}$ such that $V_k(c) \neq \bot$

Definition: M_k , V_k is a (t, q, q', ε) -secure message integrity code if \forall algorithms A running in time \leq t and making $\leq q$ M_k queries and $\leq q' V_k$ queries then:

$$Adv A = \Pr[A^{M_k,V_k} wins] \le \varepsilon$$

Winning, in this case, means successfully forging a message.