
Alin Tomescu, CSE408
Tuesday, March 1st, Lecture #9

Message authentication codes (MACs)

The birthday problem
Application: You are given a bunch of people in a room, and you want to pick a number of them such that the

probability of selecting two people with the same birthday is at least 50%.

Theorem:

Fix a positive integer 𝑁, and say 𝑞 elements 𝑦1, 𝑦2 … 𝑦𝑞 are chose uniformly and independently at random from a set of

size 𝑁. Then the probability that there exist distinct 𝑖, 𝑗 with 𝑦𝑖 = 𝑦𝑗 is at most
𝑞2

2𝑁
, that is: 𝐶𝑜𝑙𝑙(𝑞, 𝑁) ≤

𝑞2

2𝑁

Proof:

Pr[𝐶𝑜𝑙𝑙𝑖,𝑗] =
1

𝑁

Pr[𝐶𝑜𝑙𝑙(𝑞, 𝑁)] = Pr [⋁ 𝐶𝑜𝑙𝑙𝑖,𝑗

𝑖≠𝑗

] ≤ ∑ Pr[𝐶𝑜𝑙𝑙𝑖,𝑗]

𝑖≠𝑗

= (
𝑞
2

)
1

𝑁
≤

𝑞2

2𝑁

Message authentication codes (MACs)
MACs are used to verify that messages have not been modified by adversaries.

MAC structure
A MAC is a tuple (𝐺𝑒𝑛, 𝑀𝑎𝑐, 𝑉𝑟𝑓𝑦), where:

 𝐺𝑒𝑛 – generate a key of length 𝑛

 𝑀𝑎𝑐𝑘(𝑚) – generates a tag (or a MAC) on the message 𝑚 using the key 𝑘 generated by 𝐺𝑒𝑛 as input

 𝑉𝑟𝑓𝑦𝑘(𝑚, 𝑡) – used to verify the integrity of the message 𝑚 that was tagged with the tag 𝑡 and key 𝑘

o returns 1 when the message is authentic

o returns ⊥ when the message has been forged

Security goal
No poly-time adversaries should be able to generate a correct (𝑚, 𝑡)-pair such that 𝑉𝑟𝑓𝑦𝑘(𝑚, 𝑡) = 1

Adversary model
Adversary can query 𝑀𝑎𝑐𝑘(𝑚), ∀𝑚 ∈ 𝑀𝑞 and get a list of tags. The goal is for the adversary not to be able to build a

message tag pair (𝑚, 𝑡) with 𝑚 ∉ 𝑀𝑞 that will be correctly validated by 𝑉𝑟𝑓𝑦.

Examples of MAC
PRFs like AES

𝑡′ = 𝑀𝑎𝑐𝑘(𝑚)

if 𝑡′ = 𝑡 then output 1 else output ⊥

Alin Tomescu, CSE408
Tuesday, March 1st, Lecture #9

Replay attack against MACs
Eve will see (𝑚, 𝑡) pairs between Alice and Bob and she can later send the same pair if she wants too. You can use

sequence numbers or timestamps to protect against such attacks.

Building secure MACs using PRFs
Construction:

 𝑀𝑎𝑐𝑘(𝑚) = 𝐹𝑘(𝑚)

 𝑉𝑟𝑓𝑦𝑘(𝑚, 𝑡) is defined as follows:

Theorem: If 𝐹𝑘 is a PRF then this construction is an EU-MAC.

Proof: We will show that if you can break the MAC construction then you can also break the PRF.

If ∃ a PPT adversary that can forge a tag 𝑡 for some message 𝑚 the we can build a PPT distinguisher 𝐷 to guess correctly

with a high probability if a function is the PRF or truly random.

Our distinguisher would forge 𝑡 = 𝑀𝑎𝑐𝑘(𝑥) and check if 𝑏𝑙𝑎𝑐𝑘𝑏𝑜𝑥(𝑥) = 𝑡. If it is, then the blackbox is a PRF, otherwise

it’s an RF.

MACs for variable-length messages
𝑚 = 𝑚1 ∥ 𝑚2 ∥ ⋯ ∥ 𝑚𝑥

|𝑚1| = |𝑚2| = |𝑚𝑖| = 𝑛

Example of constructions:

1. 𝑡 = 𝑀𝑎𝑐𝑘(𝑚1 ⊗ 𝑚2 ⊗ … ⊗ 𝑚𝑥), not secure because you could have a message pair 𝑚𝑖 = 𝑚𝑗 = 0

2. Authenticate each block separately: 𝑡𝑖 = 𝑀𝑎𝑐𝑘(𝑚𝑖), 𝑡 = 〈𝑡1, 𝑡2, … , 𝑡𝑥〉, bad because you could swap 𝑚𝑖 , 𝑚𝑗 and

𝑡𝑖, 𝑡𝑗 creating a new valid message-tag-pair

3. Use sequence # along with the messages: 𝑡𝑖 = 𝑀𝑎𝑐𝑘(𝑠𝑒𝑞 + 𝑚𝑖), bad because you could drop the last blocks

and create a new valid message-tag-pair

If you have sequence numbers, and the size of the message (maybe as the first tag 𝑡1), you should be able to build a

secure MAC. (Hint: plan to use a CBC MAC for the HW)

CBC-MAC for fixed length messages

Attack against CBC-MAC for variable length messages
Given (𝑚, 𝑡) and (𝑚′, 𝑡′) we can create 𝑚′′ with tag 𝑡′

if 𝐹𝑘(𝑚) = 𝑡 then output 1 else output ⊥

Alin Tomescu, CSE408
Tuesday, March 1st, Lecture #9

𝑚 = 00, 𝑚′ = 11

𝑡 = 𝑀𝑎𝑐𝑘(𝑚) = 𝐹𝑘(𝐹𝑘(0𝐼𝑉 ⊗ 0) ⊗ 0) = 𝐹𝑘(𝐹𝑘(0)) ≝ 𝐹𝑘
2(0)

𝑡′ = 𝑀𝑎𝑐𝑘(𝑚′) = 𝐹𝑘(𝐹𝑘(0𝐼𝑉 ⊗ 1) ⊗ 1) = 𝐹𝑘(𝐹𝑘(1) ⊗ 1)

𝑚′′ = 00 (1 ⊗ 𝐹𝑘
2(0)) 1

If you compute 𝑡′′ you will get 𝑡′.

𝑡′′ = 𝑀𝑎𝑐𝑘(𝑚′′) = 𝑀𝑎𝑐𝑘 (00 (1 ⊗ 𝐹𝑘
2(0)) 1) = 𝐹𝑘 (𝐹𝑘 (𝐹𝑘(𝐹𝑘(0𝐼𝑉 ⊗ 0) ⊗ 0) ⊗ (1 ⊗ 𝐹𝑘

2(0))) ⊗ 1)

= 𝐹𝑘 (𝐹𝑘 (𝐹𝑘
2(0) ⊗ (1 ⊗ 𝐹𝑘

2(0))) ⊗ 1) = 𝐹𝑘(𝐹𝑘(1) ⊗ 1) = 𝑡′

This attack can actually be generalized.

CBC-MAC for variable length messages
You want to feed the length of the message through 𝐹𝑘 and then XOR the result with 𝑚1 and then just do the same

thing as in the fixed length one.

