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CPA and CCA security 

CPA & the IND-CPA game 
You have an oracle, an adversary who is allowed to keep sending messages to the oracle at any point in time: 

𝑚1, 𝑚2 … 𝑚𝑁 and the oracle will send back 𝐸(𝑚1), 𝐸(𝑚2), … , 𝐸(𝑚𝑁). 

The adversary will send 𝑚1
′ , 𝑚2

′  (they could be one of the 𝑚1, 𝑚2 … 𝑚𝑁) and the oracle encrypts one of them (picks 𝑏 

randomly, 0 or 1) and sends the encryption to the adversary, who’s supposed to tell whether 𝑚1
′  or 𝑚2

′  was encrypted. 

Therefore, no CPA scheme can be deterministic, since the adversary could already have the encryption of 𝑚1
′  or 𝑚2

′ . 

Pr[𝑏′ = 𝑏] ≤
1

2
+ 𝜀 

𝜀 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒 ℎ𝑒𝑟𝑒 

CCA & the IND-CCA game 
The adversary also has access to decryption. He would always win since he would query the decryption oracle with the 

𝐸(𝑚𝑏
′ ) challenge he received from the encryption oracle. Therefore, the attacker cannot query the decryption oracle 

with the challenges that he receives from the encryption oracle. 

This is the strongest model of security for a cryptosystem. 

Example of CPA secure system that’s not CCA secure 
 

𝐸𝑛𝑐𝑘(𝑚) = 〈𝑟, 𝐹𝑘(𝑟) ⊕ 𝑚〉, 𝑤ℎ𝑒𝑟𝑒 |𝑚| = 𝑛, 𝑟 ← 𝑈𝑛 𝑎𝑛𝑑 𝐹𝑘  𝑖𝑠 𝑎 𝑃𝑅𝐹 

A CCA attack 
Adversary sends 𝑚0 = 0𝑛 and 𝑚1 = 1𝑛 to the encryption oracle. 

He gets back 𝐸𝑛𝑐𝑘(𝑚𝑏) = 〈𝑟, 𝐹𝑘(𝑟) ⊕ 𝑚𝑏〉, 𝑏 ← 𝑢 

- 𝐸𝑛𝑐𝑘(𝑚𝑏) = {
𝐸𝑛𝑐𝑘(𝑚0) = 〈𝑟0, 𝐹𝑘(𝑟0)〉, 50% 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒

𝐸𝑛𝑐𝑘(𝑚1) = 〈𝑟1, 𝐹𝑘(𝑟1)〉, 50% 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒
 

Since the decryption oracle will not accept the encryption of the challenge messages (𝑚0 or 𝑚1) as input, the attacker 

will do the next best thing. He can flip the first bit in the encryption of 𝑚𝑏. 

The decryption oracle will gladly decrypt the new ciphertext 〈𝑟, 𝑐 ⊕ 10𝑛−1〉. 

The adversary can now tell from what he gets back (either 01𝑛−1 or 10𝑛−1) whether 𝑚0 = 0𝑛 or 𝑚1 = 1𝑛 was 

encrypted. 
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Constructing CCA-secure encryption schemes 
Common approach: CPA-ENC + EU-MAC 

Most (or maybe all) CCA attacks rely on the attacker modifying 𝐸𝑘(𝑚𝑏
′ ) and then feeding it to the decryption oracle 

whose answer will enable the attacker to tell which message was encrypted. If you add a MAC on top of the encryption, 

disallowing the attacker to fiddle with the ciphertext, then you essentially render the decryption oracle useless. 

Construction: Let 𝜋 = (𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝐺𝑒𝑛). The generator now has to generate two keys, one for the MAC and one for the 

encryption scheme. 

𝐺𝑒𝑛(𝑚𝑠𝑔 𝑠𝑖𝑧𝑒) = 〈𝑘𝑒𝑦𝑒𝑛𝑐 , 𝑘𝑒𝑦𝑚𝑎𝑐〉 

𝐸𝑛𝑐(𝑘𝑒𝑦𝑒𝑛𝑐 , 𝑘𝑒𝑦𝑚𝑎𝑐 , 𝑚𝑠𝑔) = 〈𝑐𝑡𝑥𝑡, 𝑚𝑎𝑐𝑡𝑎𝑔〉 

𝐷𝑒𝑐(𝑘𝑒𝑦𝑒𝑛𝑐 , 𝑘𝑒𝑦𝑚𝑎𝑐, 𝑐𝑡𝑥𝑡, 𝑡𝑎𝑔) = 𝑝𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡 𝑜𝑟 ⊥ 

Theorem: If 𝜋𝐸 is IND-CPA-secure and 𝜋𝑀 is EU-MAC-secure then construction #1 is CCA-secure. 

Proof (idea): Queries to the decryption oracle must be of the form 〈𝑐, 𝑡〉, where: 

𝑐 ← 𝐸𝑘1
(𝑚) 𝑎𝑛𝑑 𝑡 ← 𝑀𝑎𝑐𝑘2

(𝑐) 

Since the MAC is secure the attacker has virtually no chance of modifying the challenge ciphertext without the 

decryption oracle knowing, effectively rendering the oracle useless. 

Three ways of implementing EU-MAC and CCA-ENC 

Encrypt and authenticate independently 

This method computes the MAC of the message, not of the encryption. The ciphertext looks like this: 

〈𝑐, 𝑡〉, 𝑤ℎ𝑒𝑟𝑒 𝑐 ← 𝐸𝑘𝑒𝑛𝑐
(𝑚) 𝑎𝑛𝑑 𝑡 ← 𝑀𝑎𝑐𝑘𝑒𝑦𝑚𝑎𝑐

(𝑚) 

Counterexample: 

𝜋𝑒 is IND-CPA, 𝑐 ← 𝐸𝑘1
(𝑚) 

𝜋𝑀 is EU-MAC, 𝑡 ← (𝑚, 𝑀𝑎𝑐𝑘2
(𝑚)) 

This is bad, because the tag 𝑡 exposes the message 𝑚. 

〈𝑐, 𝑡〉 = 〈𝐸𝑘𝑒𝑛𝑐
(𝑚), 〈𝑚, 𝑀𝑎𝑐𝑘𝑒𝑦𝑚𝑎𝑐

(𝑚)〉〉 

Authenticate then encrypt 

This method also computes the MAC of the message, but this time the MAC is concatenated with the message 𝑚 and 

together they are encrypted to form the ciphertext. 

〈𝑐, 𝑡〉, 𝑤ℎ𝑒𝑟𝑒 𝑡 ← 𝑀𝑎𝑐𝑘2
(𝑚) 𝑎𝑛𝑑 𝑐 ← 𝐸𝑘1

(𝑚 ∥ 𝑡) 

Counterexample: 

Let 𝑇𝑟(𝑚) =  replace each bit 𝑏 of 𝑚 with 𝐹(𝑏). 
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𝐹(𝑏) works very simply. If 𝑏 = 0, then 𝐹(𝑏) = 00 and if 𝑏 = 1, then 𝐹(𝑏) = 01 𝑜𝑟 10 with equal probability. 

𝐹(𝑏) = {

𝐹(0) = 00, 𝑤𝑖𝑡ℎ 𝑝 = 1.0

𝐹(1) = 01, 𝑤𝑖𝑡ℎ 𝑝 = 0.5

𝐹(1) = 10, 𝑤𝑖𝑡ℎ 𝑝 = 0.5

 

Let 𝐸𝑛𝑐𝑘  be a CTR-mode block-cipher. Let our encryption algorithm be 𝐸𝑛𝑐𝑘(𝑚) = 𝐶𝑇𝑅(𝑇𝑟(𝑚 ∥ 𝑡)). 

Then, our decryption algorithm will be 𝐷𝑒𝑐𝑘(〈𝑐, 𝑡〉) = 𝑇𝑟−1(𝐶𝑇𝑅−1(𝑐)) 

If the first bit of the message 𝑚 is 1 then, after encryption, 〈𝑐, 𝑡〉 = {
𝐶𝑇𝑅(01 … )
𝐶𝑇𝑅(10 … )

 

If the first bit of the message 𝑚 is 0 then, after encryption, 〈𝑐, 𝑡〉 = 𝐶𝑇𝑅(00 … ) 

Challenge starts, attacker sends 𝑚0 = 0𝑛 and 𝑚1 = 1𝑛 to the encryption oracle which sends the encryption 〈𝑐, 𝑡〉 =

〈𝐸𝑛𝑐𝑘(𝑚𝑏), 𝑡〉, 𝑤ℎ𝑒𝑟𝑒 𝑏 ← 𝑢 of either 𝑚0 or 𝑚1. 

The attacker will use the following strategy: 

He will flip the first two bits in the ciphertext 〈𝑐, 𝑡〉, and send the modified query to the decryption oracle. The 

decryption oracle will first run CTR mode in reverse, obtaining 𝑇𝑟(𝑚 ∥ 𝑡). It will then run 𝑇𝑟−1(𝑇𝑟(𝑚 ∥ 𝑡)). There are 

two cases now. (Let 𝑚 = 𝑚𝑏). 

1. The first bit of the message 𝑚 was 1, then flipping the first two bits in the ciphertext will either change 01 to 10, 

or 10 to 01 in the transformation 𝑇𝑟(𝑚 ∥ 𝑡) of the original message 𝑚 (remember XOR and its properties and 

the fact that 𝐸𝑛𝑐𝑘(𝑚) = 𝐶𝑇𝑅(𝑇𝑟(𝑚 ∥ 𝑡))). 

a. Either way, while decrypting, 𝑇𝑟−1(𝑇𝑟(𝑚 ∥ 𝑡)) will run successfully returning 𝑚 ∥ 𝑡.  

b. The decryption oracle will successfully check the integrity of 𝑚 using the tag 𝑡, since there was no 

overall change in the original message, even though we flipped bits, and it will send 𝑚 to the attacker.  

c. The attacker now knows 𝑚, so he knows which message was encrypted, which breaks the CCA security. 

2. The first bit of the message 𝑚 was 0, then flipping the first two bits in the ciphertext will change 00 to 11 in the 

transformation 𝑇𝑟(𝑚 ∥ 𝑡) of the original message 𝑚.  

a. This is bad, since there is no reverse mapping from 11 in 𝐹(𝑏), which means 𝑇𝑟−1 will give an error.  

i. Remember, how 𝐹(𝑏) works, it only maps bits to 00, 01 and 10. It doesn’t map anything to 11.  

b. Therefore, when this happens the decryption oracle will return ⊥, indicating it couldn’t decrypt the 

ciphertext.  

c. The attacker now knows that the first bit of the message 𝑚 was 0, since he knows the only error that 

was introduced was the flipping of the first two bits in the ciphertext which resulted in the first bits of 

𝑇𝑟(𝑚 ∥ 𝑡) to be set to 11, making 𝑇𝑟−1 fail. This breaks the CCA security since the attacker will know 

𝑚0 was the encrypted message, since 𝑚1 was all one’s. 

Encrypt then authenticate 

Our first example proved this construction was CCA-secure. 
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Public-key cryptography 
Key distribution is a problem. Key revocation is a problem, if you want to change someone’s key, you do that by 

changing everyone else’s key to a new key. Public-key cryptography is here to solve these problems. 


